Line data Source code
1 : /******************************************************************************************************
2 :
3 : (C) 2022-2025 IVAS codec Public Collaboration with portions copyright Dolby International AB, Ericsson AB,
4 : Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
5 : Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
6 : Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
7 : contributors to this repository. All Rights Reserved.
8 :
9 : This software is protected by copyright law and by international treaties.
10 : The IVAS codec Public Collaboration consisting of Dolby International AB, Ericsson AB,
11 : Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
12 : Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
13 : Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
14 : contributors to this repository retain full ownership rights in their respective contributions in
15 : the software. This notice grants no license of any kind, including but not limited to patent
16 : license, nor is any license granted by implication, estoppel or otherwise.
17 :
18 : Contributors are required to enter into the IVAS codec Public Collaboration agreement before making
19 : contributions.
20 :
21 : This software is provided "AS IS", without any express or implied warranties. The software is in the
22 : development stage. It is intended exclusively for experts who have experience with such software and
23 : solely for the purpose of inspection. All implied warranties of non-infringement, merchantability
24 : and fitness for a particular purpose are hereby disclaimed and excluded.
25 :
26 : Any dispute, controversy or claim arising under or in relation to providing this software shall be
27 : submitted to and settled by the final, binding jurisdiction of the courts of Munich, Germany in
28 : accordance with the laws of the Federal Republic of Germany excluding its conflict of law rules and
29 : the United Nations Convention on Contracts on the International Sales of Goods.
30 :
31 : *******************************************************************************************************/
32 :
33 : /*====================================================================================
34 : EVS Codec 3GPP TS26.443 Nov 04, 2021. Version 12.14.0 / 13.10.0 / 14.6.0 / 15.4.0 / 16.3.0
35 : ====================================================================================*/
36 :
37 : #include <assert.h>
38 : #include <stdint.h>
39 : #include "options.h"
40 : #ifdef DEBUGGING
41 : #include "debug.h"
42 : #endif
43 : #include <math.h>
44 : #include "cnst.h"
45 : #include "prot.h"
46 : #include "rom_com.h"
47 : #include "wmc_auto.h"
48 :
49 : #ifdef _MSC_VER
50 : #pragma warning( disable : 4310 )
51 : #endif
52 :
53 : /*-----------------------------------------------------------------*
54 : * Local constants
55 : *-----------------------------------------------------------------*/
56 :
57 : #define FFT_15PONIT_WNK1 0.55901699f /* EDCT & EMDCT constants */
58 : #define FFT_15PONIT_WNK2 0.95105652f /* EDCT & EMDCT constants */
59 : #define FFT_15PONIT_WNK3 0.58778525f /* EDCT & EMDCT constants */
60 : #define FFT_15PONIT_WNK4 0.86602540f /* EDCT & EMDCT constants */
61 : #define FFT_15PONIT_WNK5 0.25000000f /* EDCT & EMDCT constants */
62 :
63 : /* FFT constants */
64 : #define FFT_C31 -0.8660254037f
65 : #define FFT_C51 0.9510565195f
66 : #define FFT_C52 -1.5388417989f
67 : #define FFT_C53 -0.3632712597f
68 : #define FFT_C54 0.5590169895f
69 : #define FFT_C55 -1.2500000000f
70 : #define FFT_C61 0.8660254036f
71 : #define FFT_C81 0.7071067811f
72 : #define FFT_C82 -0.7071067811f
73 : #define FFT_C161 0.7071067811f
74 : #define FFT_C162 -0.7071067811f
75 : #define FFT_C163 0.9238795325f
76 : #define FFT_C164 -0.9238795325f
77 : #define FFT_C165 0.3826834323f
78 : #define FFT_C166 -0.3826834323f
79 :
80 :
81 : /*-----------------------------------------------------------------*
82 : * Local function prototypes
83 : *-----------------------------------------------------------------*/
84 :
85 : static void cdftForw( int16_t n, float *a, const int16_t *ip, const float *w );
86 : static void bitrv2_SR( int16_t n, const int16_t *ip, float *a );
87 : static void cftfsub( int16_t n, float *a, const float *w );
88 : static void cft1st( int16_t n, float *a, const float *w );
89 : static void cftmdl( int16_t n, int16_t l, float *a, const float *w );
90 : static void fft16( float *x, float *y, const int16_t *Idx );
91 : static void fft5_shift1( int16_t n1, float *zRe, float *zIm, const int16_t *Idx );
92 : static void fft8( float *x, float *y, const int16_t *Idx );
93 : static void fft15_shift2( int16_t n1, float *zRe, float *zIm, const int16_t *Idx );
94 : static void fft15_shift8( int16_t n1, float *zRe, float *zIm, const int16_t *Idx );
95 : static void fft5_shift4( int16_t n1, float *zRe, float *zIm, const int16_t *Idx );
96 : static void fft5_32( float *zRe, float *zIm, const int16_t *Idx );
97 : static void fft64( float *x, float *y, const int16_t *Idx );
98 : static void fft32_15( float *x, float *y, const int16_t *Idx );
99 : static void fft32_5( float *x, float *y, const int16_t *Idx );
100 : static void fft8_5( float *x, float *y, const int16_t *Idx );
101 : static void fft5_8( int16_t n1, float *zRe, float *zIm, const int16_t *Idx );
102 : static void fft4_5( float *x, float *y, const int16_t *Idx );
103 : static void fft5_4( int16_t n1, float *zRe, float *zIm, const int16_t *Idx );
104 :
105 38110176 : static float fmac( float a, float b, float c )
106 : {
107 38110176 : return ( ( ( a ) * ( b ) ) + ( c ) );
108 : }
109 :
110 139737312 : static float fnms( float a, float b, float c )
111 : {
112 139737312 : return ( ( c ) - ( ( a ) * ( b ) ) );
113 : }
114 :
115 : /*-----------------------------------------------------------------*
116 : * fft15_shift2()
117 : * 15-point FFT with 2-point circular shift
118 : *-----------------------------------------------------------------*/
119 :
120 65808 : static void fft15_shift2(
121 : int16_t n1, /* i : length of data */
122 : float *zRe, /* i/o: real part of input and output data */
123 : float *zIm, /* i/o: imaginary part of input and output data */
124 : const int16_t *Idx /* i : pointer of the address table */
125 : )
126 : {
127 : int16_t in0, in8, in16, in24, in32, in1, in9, in17, in25, in33, in2, in10, in18, in26, in34;
128 : float fi1, fi2, fi3, fi4, fi5, fi6, fi7, fi8, fi9, fi10, fi11, fi12, fi13, fi14, fi15;
129 : float fi16, fi17, fi18, fi19, fi20, fi21, fi22, fi23, fi24, fi25, fi26, fi27, fi28, fi29, fi30;
130 : float f2i1, f2i2, f2i3, f2i4, f2i5, f2i6, f2i7, f2i8, f2i9, f2i10, f2i11, f2i12;
131 : float f2i13, f2i14, f2i15, f2i16, f2i17, f2i18, f2i19, f2i20, f2i21, f2i22, f2i23, f2i24;
132 : float f3i1, f3i2, f3i3, f3i4, f3i5, f3i6, f3i7, f3i8, f3i9, f3i10, f3i11, f3i12, f3i13, f3i14, f3i15;
133 : float f4i1, f4i2, f4i3, f4i4, f4i5, f4i6, f4i7, f4i8, f4i9;
134 : float f4i10, f4i11, f4i12, f4i13, f4i14, f4i15, f4i16, f4i17, f4i18, f4i19, f4i20, fo1, fo2, fo3, fo4;
135 : float fo5, fo6, fo7, fo8, fo9, fo10, fo11, fo12, fo13, fo14, fo15, fo16, fo17, fo18;
136 : float f2o1, f2o2, f2o3, f2o4, f2o5, f2o6, f2o7, f2o8, f2o9, f2o10, f2o11, f2o12, f2o13;
137 : float f2o14, f2o15, f3o1, f3o2, f3o3, f3o4, f3o5, f3o6, f3o7, f3o8, f3o9, f3o10, f3o11;
138 : float f3o12, f3o13, f3o14, f3o15, f4o1, f4o2, f4o3, f4o4, f4o5, f4o6;
139 : float f4o7, f4o8, f4o9, f4o10, f4o11, f4o12, f4o13, f4o14, f4o15, f4o16, f4o17, f4o18, f4o19;
140 :
141 65808 : in0 = Idx[0];
142 65808 : in8 = Idx[n1];
143 65808 : in16 = Idx[n1 * 2];
144 65808 : in24 = Idx[n1 * 3];
145 65808 : in32 = Idx[n1 * 4];
146 65808 : in1 = Idx[n1 * 5];
147 65808 : in9 = Idx[n1 * 6];
148 65808 : in17 = Idx[n1 * 7];
149 65808 : in25 = Idx[n1 * 8];
150 65808 : in33 = Idx[n1 * 9];
151 65808 : in2 = Idx[n1 * 10];
152 65808 : in10 = Idx[n1 * 11];
153 65808 : in18 = Idx[n1 * 12];
154 65808 : in26 = Idx[n1 * 13];
155 65808 : in34 = Idx[n1 * 14];
156 :
157 65808 : f2i13 = zRe[in0];
158 65808 : f2i14 = zIm[in0];
159 65808 : f2i21 = zRe[in1];
160 65808 : f2i22 = zRe[in2];
161 65808 : f2i23 = zIm[in1];
162 65808 : f2i24 = zIm[in2];
163 :
164 65808 : f2i15 = f2i21 + f2i22;
165 65808 : f2i16 = FFT_15PONIT_WNK4 * ( f2i22 - f2i21 );
166 65808 : f2i17 = FFT_15PONIT_WNK4 * ( f2i23 - f2i24 );
167 65808 : f2i18 = f2i23 + f2i24;
168 65808 : fi1 = f2i13 + f2i15;
169 65808 : fi2 = f2i14 + f2i18;
170 :
171 65808 : f2i19 = fnms( 0.5f, f2i15, f2i13 );
172 65808 : f2i20 = fnms( 0.5f, f2i18, f2i14 );
173 65808 : fi3 = f2i19 - f2i17;
174 65808 : fi4 = f2i19 + f2i17;
175 65808 : fi5 = f2i16 + f2i20;
176 65808 : fi6 = f2i20 - f2i16;
177 :
178 65808 : f3i1 = zRe[in9];
179 65808 : f4i2 = zRe[in10];
180 65808 : f4i3 = zRe[in8];
181 65808 : f3i2 = f4i2 + f4i3;
182 65808 : f3i3 = fnms( 0.5f, f3i2, f3i1 );
183 65808 : f3i4 = FFT_15PONIT_WNK4 * ( f4i3 - f4i2 );
184 :
185 65808 : f3i5 = zIm[in9];
186 65808 : f4i4 = zIm[in10];
187 65808 : f4i5 = zIm[in8];
188 65808 : f3i6 = f4i4 + f4i5;
189 65808 : f3i7 = FFT_15PONIT_WNK4 * ( f4i4 - f4i5 );
190 65808 : f3i8 = fnms( 0.5f, f3i6, f3i5 );
191 :
192 65808 : f3i9 = zRe[in33];
193 65808 : f4i6 = zRe[in34];
194 65808 : f4i7 = zRe[in32];
195 65808 : f3i10 = f4i6 + f4i7;
196 65808 : f3i11 = fnms( 0.5f, f3i10, f3i9 );
197 65808 : f3i12 = FFT_15PONIT_WNK4 * ( f4i7 - f4i6 );
198 :
199 65808 : f3i13 = zIm[in33];
200 65808 : f4i8 = zIm[in34];
201 65808 : f4i9 = zIm[in32];
202 65808 : f3i14 = f4i8 + f4i9;
203 65808 : f3i15 = FFT_15PONIT_WNK4 * ( f4i8 - f4i9 );
204 65808 : f4i1 = fnms( 0.5f, f3i14, f3i13 );
205 :
206 65808 : fi7 = f3i1 + f3i2;
207 65808 : fi8 = f3i9 + f3i10;
208 65808 : fi9 = fi7 + fi8;
209 65808 : fi10 = f3i3 - f3i7;
210 65808 : fi11 = f3i11 - f3i15;
211 65808 : fi12 = fi10 + fi11;
212 65808 : fi13 = f3i5 + f3i6;
213 65808 : fi14 = f3i13 + f3i14;
214 65808 : fi15 = fi13 + fi14;
215 65808 : fi16 = f3i8 - f3i4;
216 65808 : fi17 = f4i1 - f3i12;
217 65808 : fi18 = fi16 + fi17;
218 65808 : fi19 = f3i4 + f3i8;
219 65808 : fi20 = f3i12 + f4i1;
220 65808 : fi21 = fi19 + fi20;
221 65808 : fi22 = f3i3 + f3i7;
222 65808 : fi23 = f3i11 + f3i15;
223 65808 : fi24 = fi22 + fi23;
224 :
225 65808 : f4i10 = zRe[in24];
226 65808 : fo6 = zRe[in25];
227 65808 : fo7 = zRe[in26];
228 65808 : f4i11 = fo6 + fo7;
229 65808 : f4i12 = fnms( 0.5f, f4i11, f4i10 );
230 65808 : f4i13 = FFT_15PONIT_WNK4 * ( fo7 - fo6 );
231 :
232 65808 : f4i14 = zIm[in24];
233 65808 : fo8 = zIm[in25];
234 65808 : fo9 = zIm[in26];
235 65808 : f4i15 = fo8 + fo9;
236 65808 : f4i16 = FFT_15PONIT_WNK4 * ( fo8 - fo9 );
237 65808 : f4i17 = fnms( 0.5f, f4i15, f4i14 );
238 :
239 65808 : f4i18 = zRe[in18];
240 65808 : f2o10 = zRe[in16];
241 65808 : f2o11 = zRe[in17];
242 65808 : f4i19 = f2o10 + f2o11;
243 65808 : f4i20 = fnms( 0.5f, f4i19, f4i18 );
244 65808 : fo1 = FFT_15PONIT_WNK4 * ( f2o11 - f2o10 );
245 :
246 65808 : fo2 = zIm[in18];
247 65808 : f2o12 = zIm[in16];
248 65808 : f2o13 = zIm[in17];
249 65808 : fo3 = f2o12 + f2o13;
250 65808 : fo4 = FFT_15PONIT_WNK4 * ( f2o12 - f2o13 );
251 65808 : fo5 = fnms( 0.5f, fo3, fo2 );
252 :
253 65808 : fi25 = f4i10 + f4i11;
254 65808 : fi26 = f4i18 + f4i19;
255 65808 : fi27 = fi25 + fi26;
256 65808 : fi28 = f4i12 - f4i16;
257 65808 : fi29 = f4i20 - fo4;
258 65808 : fi30 = fi28 + fi29;
259 65808 : f2i1 = f4i14 + f4i15;
260 65808 : f2i2 = fo2 + fo3;
261 65808 : f2i3 = f2i1 + f2i2;
262 65808 : f2i4 = f4i17 - f4i13;
263 65808 : f2i5 = fo5 - fo1;
264 65808 : f2i6 = f2i4 + f2i5;
265 65808 : f2i7 = f4i13 + f4i17;
266 65808 : f2i8 = fo1 + fo5;
267 65808 : f2i9 = f2i7 + f2i8;
268 65808 : f2i10 = f4i12 + f4i16;
269 65808 : f2i11 = f4i20 + fo4;
270 65808 : f2i12 = f2i10 + f2i11;
271 :
272 65808 : fo10 = FFT_15PONIT_WNK1 * ( fi27 - fi9 );
273 65808 : fo11 = fi27 + fi9;
274 65808 : fo12 = fnms( FFT_15PONIT_WNK5, fo11, fi1 );
275 65808 : fo15 = fi13 - fi14;
276 65808 : fo16 = f2i1 - f2i2;
277 65808 : fo13 = fnms( FFT_15PONIT_WNK3, fo16, FFT_15PONIT_WNK2 * fo15 );
278 65808 : fo14 = fmac( FFT_15PONIT_WNK2, fo16, FFT_15PONIT_WNK3 * fo15 );
279 :
280 65808 : zRe[in0] = fi1 + fo11;
281 65808 : fo17 = fo10 + fo12;
282 65808 : zRe[in18] = fo17 - fo14;
283 65808 : zRe[in24] = fo17 + fo14;
284 65808 : fo18 = fo12 - fo10;
285 65808 : zRe[in9] = fo18 - fo13;
286 65808 : zRe[in33] = fo18 + fo13;
287 :
288 65808 : f2o1 = FFT_15PONIT_WNK1 * ( f2i3 - fi15 );
289 65808 : f2o2 = f2i3 + fi15;
290 65808 : f2o3 = fnms( FFT_15PONIT_WNK5, f2o2, fi2 );
291 65808 : f2o6 = fi7 - fi8;
292 65808 : f2o7 = fi25 - fi26;
293 65808 : f2o4 = fnms( FFT_15PONIT_WNK3, f2o7, FFT_15PONIT_WNK2 * f2o6 );
294 65808 : f2o5 = fmac( FFT_15PONIT_WNK2, f2o7, FFT_15PONIT_WNK3 * f2o6 );
295 65808 : zIm[in0] = fi2 + f2o2;
296 65808 : f2o8 = f2o1 + f2o3;
297 65808 : zIm[in24] = f2o8 - f2o5;
298 65808 : zIm[in18] = f2o5 + f2o8;
299 65808 : f2o9 = f2o3 - f2o1;
300 65808 : zIm[in33] = f2o9 - f2o4;
301 65808 : zIm[in9] = f2o4 + f2o9;
302 :
303 65808 : f2o14 = FFT_15PONIT_WNK1 * ( fi30 - fi12 );
304 65808 : f2o15 = fi30 + fi12;
305 65808 : f3o1 = fnms( FFT_15PONIT_WNK5, f2o15, fi3 );
306 65808 : f3o4 = fi16 - fi17;
307 65808 : f3o5 = f2i4 - f2i5;
308 65808 : f3o2 = fnms( FFT_15PONIT_WNK3, f3o5, FFT_15PONIT_WNK2 * f3o4 );
309 65808 : f3o3 = fmac( FFT_15PONIT_WNK2, f3o5, FFT_15PONIT_WNK3 * f3o4 );
310 65808 : zRe[in2] = fi3 + f2o15;
311 65808 : f3o6 = f2o14 + f3o1;
312 65808 : zRe[in17] = f3o6 - f3o3;
313 65808 : zRe[in26] = f3o6 + f3o3;
314 65808 : f3o7 = f3o1 - f2o14;
315 65808 : zRe[in8] = f3o7 - f3o2;
316 65808 : zRe[in32] = f3o7 + f3o2;
317 :
318 65808 : f3o8 = FFT_15PONIT_WNK1 * ( f2i6 - fi18 );
319 65808 : f3o9 = f2i6 + fi18;
320 65808 : f3o10 = fnms( FFT_15PONIT_WNK5, f3o9, fi6 );
321 65808 : f3o13 = fi10 - fi11;
322 65808 : f3o14 = fi28 - fi29;
323 65808 : f3o11 = fnms( FFT_15PONIT_WNK3, f3o14, FFT_15PONIT_WNK2 * f3o13 );
324 65808 : f3o12 = fmac( FFT_15PONIT_WNK2, f3o14, FFT_15PONIT_WNK3 * f3o13 );
325 65808 : zIm[in2] = fi6 + f3o9;
326 65808 : f3o15 = f3o8 + f3o10;
327 65808 : zIm[in26] = f3o15 - f3o12;
328 65808 : zIm[in17] = f3o12 + f3o15;
329 65808 : f4o1 = f3o10 - f3o8;
330 65808 : zIm[in8] = f3o11 + f4o1;
331 65808 : zIm[in32] = f4o1 - f3o11;
332 :
333 65808 : f4o2 = FFT_15PONIT_WNK1 * ( f2i9 - fi21 );
334 65808 : f4o3 = f2i9 + fi21;
335 65808 : f4o4 = fnms( FFT_15PONIT_WNK5, f4o3, fi5 );
336 65808 : f4o7 = f2i10 - f2i11;
337 65808 : f4o8 = fi22 - fi23;
338 65808 : f4o5 = fmac( FFT_15PONIT_WNK2, f4o7, FFT_15PONIT_WNK3 * f4o8 );
339 65808 : f4o6 = fnms( FFT_15PONIT_WNK3, f4o7, FFT_15PONIT_WNK2 * f4o8 );
340 65808 : zIm[in1] = fi5 + f4o3;
341 65808 : f4o9 = f4o4 - f4o2;
342 65808 : f4o10 = f4o2 + f4o4;
343 :
344 65808 : zIm[in10] = f4o6 + f4o9;
345 65808 : zIm[in34] = f4o9 - f4o6;
346 65808 : zIm[in25] = f4o10 - f4o5;
347 65808 : zIm[in16] = f4o5 + f4o10;
348 :
349 65808 : f4o11 = FFT_15PONIT_WNK1 * ( f2i12 - fi24 );
350 65808 : f4o12 = f2i12 + fi24;
351 65808 : f4o13 = fnms( FFT_15PONIT_WNK5, f4o12, fi4 );
352 65808 : f4o16 = f2i7 - f2i8;
353 65808 : f4o17 = fi19 - fi20;
354 65808 : f4o14 = fmac( FFT_15PONIT_WNK2, f4o16, FFT_15PONIT_WNK3 * f4o17 );
355 65808 : f4o15 = fnms( FFT_15PONIT_WNK3, f4o16, FFT_15PONIT_WNK2 * f4o17 );
356 65808 : zRe[in1] = fi4 + f4o12;
357 65808 : f4o18 = f4o13 - f4o11;
358 65808 : f4o19 = f4o11 + f4o13;
359 :
360 65808 : zRe[in10] = f4o18 - f4o15;
361 65808 : zRe[in34] = f4o18 + f4o15;
362 65808 : zRe[in16] = f4o19 - f4o14;
363 65808 : zRe[in25] = f4o19 + f4o14;
364 :
365 65808 : return;
366 : }
367 :
368 : /*-----------------------------------------------------------------*
369 : * fft15_shift8()
370 : * 15-point FFT with 8-point circular shift
371 : *-----------------------------------------------------------------*/
372 :
373 6285888 : static void fft15_shift8(
374 : int16_t n1, /* i : length of data */
375 : float *zRe, /* i/o: real part of input and output data */
376 : float *zIm, /* i/o: imaginary part of input and output data */
377 : const int16_t *Idx /* i : pointer of the address table */
378 : )
379 : {
380 : int16_t in0, in8, in16, in24, in32, in1, in9, in17, in25, in33, in2, in10, in18, in26, in34;
381 : float fi1, fi2, fi3, fi4, fi5, fi6, fi7, fi8, fi9, fi10, fi11, fi12, fi13, fi14, fi15;
382 : float fi16, fi17, fi18, fi19, fi20, fi21, fi22, fi23, fi24, fi25, fi26, fi27, fi28, fi29, fi30;
383 : float f2i1, f2i2, f2i3, f2i4, f2i5, f2i6, f2i7, f2i8, f2i9, f2i10, f2i11, f2i12;
384 : float f2i13, f2i14, f2i15, f3i1, f3i2, f3i3, f3i4, f3i5, f3i6, f3i7, f3i8, f3i9;
385 : float f3i10, f3i11, f3i12, f3i13, f3i14, f3i15, f4i1, f4i2, f4i3, f4i4, f4i5, f4i6, f4i7, f4i8, f4i9;
386 : float f4i10, f4i11, f4i12, f4i13, f4i14, f4i15, fo1, fo2, fo3, fo4, fo5, fo6;
387 : float fo7, fo8, fo9, fo10, fo11, fo12, fo13, fo14, fo15, f2o1, f2o2, f2o3, f2o4;
388 : float f2o5, f2o6, f2o7, f2o8, f2o9, f2o10, f2o11, f2o12, f2o13, f2o14, f2o15;
389 : float f3o1, f3o2, f3o3, f3o4, f3o5, f3o6, f3o7, f3o8, f3o9, f3o10, f3o11, f3o12;
390 : float f3o13, f3o14, f3o15, f4o1, f4o2, f4o3, f4o4, f4o5, f4o6, f4o7, f4o8, f4o9;
391 : float f4o10, f4o11, f4o12, f4o13, f4o14, f4o15, f5o1, f5o2, f5o3, f5o4, f5o5, f5o6, f5o7;
392 : float f5o8, f5o9, f5o10, f5o11, f5o12, f5o13, f5o14, f5o15, f5o16, f5o17, f5o18, f5o19, f5o21, f5o22;
393 :
394 6285888 : in0 = Idx[0];
395 6285888 : in8 = Idx[n1];
396 6285888 : in16 = Idx[n1 * 2];
397 6285888 : in24 = Idx[n1 * 3];
398 6285888 : in32 = Idx[n1 * 4];
399 6285888 : in1 = Idx[n1 * 5];
400 6285888 : in9 = Idx[n1 * 6];
401 6285888 : in17 = Idx[n1 * 7];
402 6285888 : in25 = Idx[n1 * 8];
403 6285888 : in33 = Idx[n1 * 9];
404 6285888 : in2 = Idx[n1 * 10];
405 6285888 : in10 = Idx[n1 * 11];
406 6285888 : in18 = Idx[n1 * 12];
407 6285888 : in26 = Idx[n1 * 13];
408 6285888 : in34 = Idx[n1 * 14];
409 :
410 6285888 : f2i13 = zRe[in0];
411 6285888 : f2i14 = zIm[in0];
412 6285888 : f3i6 = zRe[in1];
413 6285888 : f3i7 = zRe[in2];
414 6285888 : f3i8 = zIm[in1];
415 6285888 : f3i9 = zIm[in2];
416 :
417 6285888 : f2i15 = f3i6 + f3i7;
418 6285888 : f3i1 = FFT_15PONIT_WNK4 * ( f3i7 - f3i6 );
419 6285888 : f3i2 = FFT_15PONIT_WNK4 * ( f3i8 - f3i9 );
420 6285888 : f3i3 = f3i8 + f3i9;
421 :
422 6285888 : fi1 = f2i13 + f2i15;
423 6285888 : fi2 = f2i14 + f3i3;
424 6285888 : f3i4 = fnms( 0.5f, f2i15, f2i13 );
425 6285888 : fi3 = f3i4 - f3i2;
426 6285888 : fi4 = f3i4 + f3i2;
427 6285888 : f3i5 = fnms( 0.5f, f3i3, f2i14 );
428 6285888 : fi5 = f3i1 + f3i5;
429 6285888 : fi6 = f3i5 - f3i1;
430 :
431 6285888 : f3i10 = zRe[in9];
432 6285888 : f4i11 = zRe[in10];
433 6285888 : f4i12 = zRe[in8];
434 6285888 : f3i14 = zIm[in9];
435 6285888 : f4i13 = zIm[in10];
436 6285888 : f4i14 = zIm[in8];
437 6285888 : f4i3 = zRe[in33];
438 6285888 : f4i15 = zRe[in34];
439 6285888 : fo1 = zRe[in32];
440 6285888 : f4i7 = zIm[in33];
441 6285888 : fo2 = zIm[in34];
442 6285888 : fo3 = zIm[in32];
443 :
444 :
445 6285888 : f3i11 = f4i11 + f4i12;
446 6285888 : f3i12 = fnms( 0.5f, f3i11, f3i10 );
447 6285888 : f3i13 = FFT_15PONIT_WNK4 * ( f4i12 - f4i11 );
448 6285888 : f3i15 = f4i13 + f4i14;
449 6285888 : f4i1 = FFT_15PONIT_WNK4 * ( f4i13 - f4i14 );
450 6285888 : f4i2 = fnms( 0.5f, f3i15, f3i14 );
451 6285888 : f4i4 = f4i15 + fo1;
452 6285888 : f4i5 = fnms( 0.5f, f4i4, f4i3 );
453 6285888 : f4i6 = FFT_15PONIT_WNK4 * ( fo1 - f4i15 );
454 6285888 : f4i8 = fo2 + fo3;
455 6285888 : f4i9 = FFT_15PONIT_WNK4 * ( fo2 - fo3 );
456 6285888 : f4i10 = fnms( 0.5f, f4i8, f4i7 );
457 :
458 6285888 : fi7 = f3i10 + f3i11;
459 6285888 : fi8 = f4i3 + f4i4;
460 6285888 : fi9 = fi7 + fi8;
461 6285888 : fi10 = f3i12 - f4i1;
462 6285888 : fi11 = f4i5 - f4i9;
463 6285888 : fi12 = fi10 + fi11;
464 6285888 : fi13 = f3i14 + f3i15;
465 6285888 : fi14 = f4i7 + f4i8;
466 6285888 : fi15 = fi13 + fi14;
467 6285888 : fi16 = f4i2 - f3i13;
468 6285888 : fi17 = f4i10 - f4i6;
469 6285888 : fi18 = fi16 + fi17;
470 6285888 : fi19 = f3i13 + f4i2;
471 6285888 : fi20 = f4i6 + f4i10;
472 6285888 : fi21 = fi19 + fi20;
473 6285888 : fi22 = f3i12 + f4i1;
474 6285888 : fi23 = f4i5 + f4i9;
475 6285888 : fi24 = fi22 + fi23;
476 :
477 6285888 : fo4 = zRe[in24];
478 6285888 : f2o5 = zRe[in25];
479 6285888 : f2o6 = zRe[in26];
480 6285888 : fo8 = zIm[in24];
481 6285888 : f2o7 = zIm[in25];
482 6285888 : f2o8 = zIm[in26];
483 6285888 : fo12 = zRe[in18];
484 6285888 : f2o9 = zRe[in16];
485 6285888 : f2o10 = zRe[in17];
486 6285888 : f2o1 = zIm[in18];
487 6285888 : f2o11 = zIm[in16];
488 6285888 : f2o12 = zIm[in17];
489 :
490 :
491 6285888 : fo5 = f2o5 + f2o6;
492 6285888 : fo6 = fnms( 0.5f, fo5, fo4 );
493 6285888 : fo7 = FFT_15PONIT_WNK4 * ( f2o6 - f2o5 );
494 6285888 : fo9 = f2o7 + f2o8;
495 6285888 : fo10 = FFT_15PONIT_WNK4 * ( f2o7 - f2o8 );
496 6285888 : fo11 = fnms( 0.5f, fo9, fo8 );
497 6285888 : fo13 = f2o9 + f2o10;
498 6285888 : fo14 = fnms( 0.5f, fo13, fo12 );
499 6285888 : fo15 = FFT_15PONIT_WNK4 * ( f2o10 - f2o9 );
500 6285888 : f2o2 = f2o11 + f2o12;
501 6285888 : f2o3 = FFT_15PONIT_WNK4 * ( f2o11 - f2o12 );
502 6285888 : f2o4 = fnms( 0.5f, f2o2, f2o1 );
503 :
504 6285888 : fi25 = fo4 + fo5;
505 6285888 : fi26 = fo12 + fo13;
506 6285888 : fi27 = fi25 + fi26;
507 6285888 : fi28 = fo6 - fo10;
508 6285888 : fi29 = fo14 - f2o3;
509 6285888 : fi30 = fi28 + fi29;
510 6285888 : f2i1 = fo8 + fo9;
511 6285888 : f2i2 = f2o1 + f2o2;
512 6285888 : f2i3 = f2i1 + f2i2;
513 6285888 : f2i4 = fo11 - fo7;
514 6285888 : f2i5 = f2o4 - fo15;
515 6285888 : f2i6 = f2i4 + f2i5;
516 6285888 : f2i7 = fo7 + fo11;
517 6285888 : f2i8 = fo15 + f2o4;
518 6285888 : f2i9 = f2i7 + f2i8;
519 6285888 : f2i10 = fo6 + fo10;
520 6285888 : f2i11 = fo14 + f2o3;
521 6285888 : f2i12 = f2i10 + f2i11;
522 :
523 6285888 : f2o13 = FFT_15PONIT_WNK1 * ( fi27 - fi9 );
524 6285888 : f2o14 = fi27 + fi9;
525 6285888 : f2o15 = fnms( FFT_15PONIT_WNK5, f2o14, fi1 );
526 6285888 : f3o3 = fi13 - fi14;
527 6285888 : f3o4 = f2i1 - f2i2;
528 6285888 : f3o1 = fnms( FFT_15PONIT_WNK3, f3o4, FFT_15PONIT_WNK2 * f3o3 );
529 6285888 : f3o2 = fmac( FFT_15PONIT_WNK2, f3o4, FFT_15PONIT_WNK3 * f3o3 );
530 6285888 : zRe[in0] = fi1 + f2o14;
531 6285888 : f3o5 = f2o13 + f2o15;
532 6285888 : zRe[in24] = f3o5 - f3o2;
533 6285888 : zRe[in18] = f3o5 + f3o2;
534 6285888 : f3o6 = f2o15 - f2o13;
535 6285888 : zRe[in33] = f3o6 - f3o1;
536 6285888 : zRe[in9] = f3o6 + f3o1;
537 :
538 6285888 : f3o7 = FFT_15PONIT_WNK1 * ( f2i3 - fi15 );
539 6285888 : f3o8 = f2i3 + fi15;
540 6285888 : f3o9 = fnms( FFT_15PONIT_WNK5, f3o8, fi2 );
541 6285888 : f3o12 = fi7 - fi8;
542 6285888 : f3o13 = fi25 - fi26;
543 6285888 : f3o10 = fnms( FFT_15PONIT_WNK3, f3o13, FFT_15PONIT_WNK2 * f3o12 );
544 6285888 : f3o11 = fmac( FFT_15PONIT_WNK2, f3o13, FFT_15PONIT_WNK3 * f3o12 );
545 6285888 : zIm[in0] = fi2 + f3o8;
546 6285888 : f3o14 = f3o7 + f3o9;
547 6285888 : zIm[in18] = f3o14 - f3o11;
548 6285888 : zIm[in24] = f3o11 + f3o14;
549 6285888 : f3o15 = f3o9 - f3o7;
550 6285888 : zIm[in9] = f3o15 - f3o10;
551 6285888 : zIm[in33] = f3o10 + f3o15;
552 :
553 6285888 : f4o1 = FFT_15PONIT_WNK1 * ( fi30 - fi12 );
554 6285888 : f4o2 = fi30 + fi12;
555 6285888 : f4o3 = fnms( FFT_15PONIT_WNK5, f4o2, fi3 );
556 6285888 : f4o6 = fi16 - fi17;
557 6285888 : f4o7 = f2i4 - f2i5;
558 6285888 : f4o4 = fnms( FFT_15PONIT_WNK3, f4o7, FFT_15PONIT_WNK2 * f4o6 );
559 6285888 : f4o5 = fmac( FFT_15PONIT_WNK2, f4o7, FFT_15PONIT_WNK3 * f4o6 );
560 6285888 : zRe[in2] = fi3 + f4o2;
561 6285888 : f4o8 = f4o1 + f4o3;
562 6285888 : zRe[in26] = f4o8 - f4o5;
563 6285888 : zRe[in17] = f4o8 + f4o5;
564 6285888 : f4o9 = f4o3 - f4o1;
565 6285888 : zRe[in32] = f4o9 - f4o4;
566 6285888 : zRe[in8] = f4o9 + f4o4;
567 :
568 6285888 : f4o10 = FFT_15PONIT_WNK1 * ( f2i6 - fi18 );
569 6285888 : f4o11 = f2i6 + fi18;
570 6285888 : f4o12 = fnms( FFT_15PONIT_WNK5, f4o11, fi6 );
571 6285888 : f4o15 = fi10 - fi11;
572 6285888 : f5o1 = fi28 - fi29;
573 6285888 : f4o13 = fnms( FFT_15PONIT_WNK3, f5o1, FFT_15PONIT_WNK2 * f4o15 );
574 6285888 : f4o14 = fmac( FFT_15PONIT_WNK2, f5o1, FFT_15PONIT_WNK3 * f4o15 );
575 6285888 : zIm[in2] = fi6 + f4o11;
576 6285888 : f5o2 = f4o10 + f4o12;
577 6285888 : zIm[in17] = f5o2 - f4o14;
578 6285888 : zIm[in26] = f4o14 + f5o2;
579 6285888 : f5o3 = f4o12 - f4o10;
580 6285888 : zIm[in32] = f4o13 + f5o3;
581 6285888 : zIm[in8] = f5o3 - f4o13;
582 :
583 6285888 : f5o4 = FFT_15PONIT_WNK1 * ( f2i9 - fi21 );
584 6285888 : f5o5 = f2i9 + fi21;
585 6285888 : f5o6 = fnms( FFT_15PONIT_WNK5, f5o5, fi5 );
586 6285888 : f5o9 = f2i10 - f2i11;
587 6285888 : f5o10 = fi22 - fi23;
588 6285888 : f5o7 = fmac( FFT_15PONIT_WNK2, f5o9, FFT_15PONIT_WNK3 * f5o10 );
589 6285888 : f5o8 = fnms( FFT_15PONIT_WNK3, f5o9, FFT_15PONIT_WNK2 * f5o10 );
590 6285888 : zIm[in1] = fi5 + f5o5;
591 6285888 : f5o11 = f5o6 - f5o4;
592 6285888 : f5o12 = f5o4 + f5o6;
593 6285888 : zIm[in34] = f5o8 + f5o11;
594 6285888 : zIm[in10] = f5o11 - f5o8;
595 :
596 6285888 : zIm[in16] = f5o12 - f5o7;
597 6285888 : zIm[in25] = f5o7 + f5o12;
598 :
599 6285888 : f5o13 = FFT_15PONIT_WNK1 * ( f2i12 - fi24 );
600 6285888 : f5o14 = f2i12 + fi24;
601 6285888 : f5o15 = fnms( FFT_15PONIT_WNK5, f5o14, fi4 );
602 6285888 : f5o18 = f2i7 - f2i8;
603 6285888 : f5o19 = fi19 - fi20;
604 6285888 : f5o16 = fmac( FFT_15PONIT_WNK2, f5o18, FFT_15PONIT_WNK3 * f5o19 );
605 6285888 : f5o17 = fnms( FFT_15PONIT_WNK3, f5o18, FFT_15PONIT_WNK2 * f5o19 );
606 6285888 : zRe[in1] = fi4 + f5o14;
607 6285888 : f5o21 = f5o15 - f5o13;
608 6285888 : f5o22 = f5o13 + f5o15;
609 :
610 6285888 : zRe[in34] = f5o21 - f5o17;
611 6285888 : zRe[in10] = f5o21 + f5o17;
612 6285888 : zRe[in25] = f5o22 - f5o16;
613 6285888 : zRe[in16] = f5o22 + f5o16;
614 :
615 6285888 : return;
616 : }
617 :
618 : /*-----------------------------------------------------------------*
619 : * fft5_shift1()
620 : * 5-point FFT with 1-point circular shift
621 : *-----------------------------------------------------------------*/
622 :
623 2898080 : static void fft5_shift1(
624 : int16_t n1, /* i : length of data */
625 : float *zRe, /* i/o: real part of input and output data */
626 : float *zIm, /* i/o: imaginary part of input and output data */
627 : const int16_t *Idx /* i : pointer of the address table */
628 : )
629 : {
630 : float fi1, fi2, fi3, fi4, fi5, fi6, fi7, fi8;
631 : float fo1, fo2, fo3, fo4, fo5, fo6, fo7, fo8;
632 : int16_t in1, in2, in3, in4, in5;
633 :
634 2898080 : in1 = Idx[0];
635 2898080 : in2 = Idx[n1];
636 2898080 : in3 = Idx[n1 * 2];
637 2898080 : in4 = Idx[n1 * 3];
638 2898080 : in5 = Idx[n1 * 4];
639 :
640 2898080 : fi1 = zRe[in1];
641 2898080 : fi2 = zIm[in1];
642 2898080 : fo3 = zRe[in2];
643 2898080 : fo4 = zRe[in5];
644 2898080 : fo6 = zRe[in3];
645 2898080 : fo7 = zRe[in4];
646 :
647 2898080 : fo5 = fo3 + fo4;
648 2898080 : fo8 = fo6 + fo7;
649 2898080 : fi3 = fo5 + fo8;
650 2898080 : fi4 = fo6 - fo7;
651 2898080 : fi5 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
652 2898080 : fi6 = fo3 - fo4;
653 :
654 2898080 : fo3 = zIm[in2];
655 2898080 : fo4 = zIm[in5];
656 2898080 : fo6 = zIm[in3];
657 2898080 : fo7 = zIm[in4];
658 :
659 2898080 : fo5 = fo3 + fo4;
660 2898080 : fo8 = fo6 + fo7;
661 2898080 : fi7 = fo3 - fo4;
662 2898080 : fi8 = fo5 + fo8;
663 2898080 : fo1 = fo6 - fo7;
664 2898080 : fo2 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
665 :
666 2898080 : zRe[in1] = fi1 + fi3;
667 2898080 : zIm[in1] = fi2 + fi8;
668 :
669 2898080 : fo3 = FFT_15PONIT_WNK2 * fi7 + FFT_15PONIT_WNK3 * fo1;
670 2898080 : fo4 = FFT_15PONIT_WNK2 * fo1 - FFT_15PONIT_WNK3 * fi7;
671 2898080 : fo7 = fi1 - fi3 / 4;
672 2898080 : fo5 = fi5 + fo7;
673 2898080 : fo6 = fo7 - fi5;
674 :
675 2898080 : zRe[in2] = fo5 + fo3;
676 2898080 : zRe[in3] = fo6 - fo4;
677 2898080 : zRe[in4] = fo6 + fo4;
678 2898080 : zRe[in5] = fo5 - fo3;
679 :
680 2898080 : fo3 = FFT_15PONIT_WNK2 * fi6 + FFT_15PONIT_WNK3 * fi4;
681 2898080 : fo4 = FFT_15PONIT_WNK2 * fi4 - FFT_15PONIT_WNK3 * fi6;
682 2898080 : fo7 = fi2 - fi8 / 4;
683 2898080 : fo5 = fo2 + fo7;
684 2898080 : fo6 = fo7 - fo2;
685 :
686 2898080 : zIm[in2] = fo5 - fo3;
687 2898080 : zIm[in3] = fo4 + fo6;
688 2898080 : zIm[in4] = fo6 - fo4;
689 2898080 : zIm[in5] = fo3 + fo5;
690 :
691 2898080 : return;
692 : }
693 :
694 : /*-----------------------------------------------------------------*
695 : * fft5_shift4()
696 : * 5-point FFT with 4-point circular shift
697 : *-----------------------------------------------------------------*/
698 :
699 287697664 : static void fft5_shift4(
700 : int16_t n1, /* i : length of data */
701 : float *zRe, /* i/o: real part of input and output data */
702 : float *zIm, /* i/o: imaginary part of input and output data */
703 : const int16_t *Idx /* i : pointer of the address table */
704 : )
705 : {
706 : float fi1, fi2, fi3, fi4, fi5, fi6, fi7, fi8;
707 : float fo1, fo2, fo3, fo4, fo5, fo6, fo7, fo8;
708 : int16_t in1, in2, in3, in4, in5;
709 :
710 287697664 : in1 = Idx[0];
711 287697664 : in2 = Idx[n1];
712 287697664 : in3 = Idx[n1 * 2];
713 287697664 : in4 = Idx[n1 * 3];
714 287697664 : in5 = Idx[n1 * 4];
715 :
716 287697664 : fi1 = zRe[in1];
717 287697664 : fi2 = zIm[in1];
718 287697664 : fo3 = zRe[in2];
719 287697664 : fo4 = zRe[in5];
720 287697664 : fo6 = zRe[in3];
721 287697664 : fo7 = zRe[in4];
722 :
723 287697664 : fo5 = fo3 + fo4;
724 287697664 : fo8 = fo6 + fo7;
725 287697664 : fi3 = fo5 + fo8;
726 287697664 : fi4 = fo6 - fo7;
727 287697664 : fi5 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
728 287697664 : fi6 = fo3 - fo4;
729 :
730 287697664 : fo3 = zIm[in2];
731 287697664 : fo4 = zIm[in5];
732 287697664 : fo6 = zIm[in3];
733 287697664 : fo7 = zIm[in4];
734 :
735 287697664 : fo5 = fo3 + fo4;
736 287697664 : fo8 = fo6 + fo7;
737 287697664 : fi7 = fo3 - fo4;
738 287697664 : fi8 = fo5 + fo8;
739 287697664 : fo1 = fo6 - fo7;
740 287697664 : fo2 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
741 :
742 287697664 : zRe[in1] = fi1 + fi3;
743 287697664 : zIm[in1] = fi2 + fi8;
744 :
745 287697664 : fo3 = FFT_15PONIT_WNK2 * fi7 + FFT_15PONIT_WNK3 * fo1;
746 287697664 : fo4 = FFT_15PONIT_WNK2 * fo1 - FFT_15PONIT_WNK3 * fi7;
747 287697664 : fo7 = fi1 - fi3 / 4;
748 287697664 : fo5 = fi5 + fo7;
749 287697664 : fo6 = fo7 - fi5;
750 287697664 : zRe[in2] = fo5 - fo3;
751 287697664 : zRe[in4] = fo6 - fo4;
752 287697664 : zRe[in3] = fo6 + fo4;
753 287697664 : zRe[in5] = fo5 + fo3;
754 :
755 287697664 : fo3 = FFT_15PONIT_WNK2 * fi6 + FFT_15PONIT_WNK3 * fi4;
756 287697664 : fo4 = FFT_15PONIT_WNK2 * fi4 - FFT_15PONIT_WNK3 * fi6;
757 287697664 : fo7 = fi2 - fi8 / 4;
758 287697664 : fo5 = fo2 + fo7;
759 287697664 : fo6 = fo7 - fo2;
760 :
761 287697664 : zIm[in3] = fo6 - fo4;
762 287697664 : zIm[in2] = fo3 + fo5;
763 287697664 : zIm[in4] = fo4 + fo6;
764 287697664 : zIm[in5] = fo5 - fo3;
765 :
766 287697664 : return;
767 : }
768 :
769 : /*-----------------------------------------------------------------*
770 : * fft5_32()
771 : * 5-point FFT called for 32 times
772 : *-----------------------------------------------------------------*/
773 :
774 11200736 : static void fft5_32(
775 : float *zRe, /* i/o: real part of input and output data */
776 : float *zIm, /* i/o: imaginary part of input and output data */
777 : const int16_t *Idx /* i : pointer of the address table */
778 : )
779 : {
780 : float fi1, fi2, fi3, fi4, fi5, fi6, fi7, fi8;
781 : float fo1, fo2, fo3, fo4, fo5, fo6, fo7, fo8;
782 : int16_t in1, in2, in3, in4, in5;
783 :
784 11200736 : in1 = Idx[0];
785 11200736 : in2 = Idx[32];
786 11200736 : in3 = Idx[64];
787 11200736 : in4 = Idx[96];
788 11200736 : in5 = Idx[128];
789 :
790 11200736 : fi1 = zRe[in1];
791 11200736 : fi2 = zIm[in1];
792 11200736 : fo3 = zRe[in2];
793 11200736 : fo4 = zRe[in5];
794 11200736 : fo6 = zRe[in3];
795 11200736 : fo7 = zRe[in4];
796 :
797 11200736 : fo5 = fo3 + fo4;
798 11200736 : fo8 = fo6 + fo7;
799 11200736 : fi3 = fo5 + fo8;
800 11200736 : fi4 = fo6 - fo7;
801 11200736 : fi5 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
802 11200736 : fi6 = fo3 - fo4;
803 :
804 11200736 : fo3 = zIm[in2];
805 11200736 : fo4 = zIm[in5];
806 11200736 : fo6 = zIm[in3];
807 11200736 : fo7 = zIm[in4];
808 :
809 11200736 : fo5 = fo3 + fo4;
810 11200736 : fo8 = fo6 + fo7;
811 11200736 : fi7 = fo3 - fo4;
812 11200736 : fi8 = fo5 + fo8;
813 11200736 : fo1 = fo6 - fo7;
814 11200736 : fo2 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
815 :
816 11200736 : zRe[in1] = fi1 + fi3;
817 11200736 : zIm[in1] = fi2 + fi8;
818 :
819 11200736 : fo3 = FFT_15PONIT_WNK2 * fi7 + FFT_15PONIT_WNK3 * fo1;
820 11200736 : fo4 = FFT_15PONIT_WNK2 * fo1 - FFT_15PONIT_WNK3 * fi7;
821 11200736 : fo7 = fi1 - fi3 / 4;
822 11200736 : fo5 = fi5 + fo7;
823 11200736 : fo6 = fo7 - fi5;
824 :
825 11200736 : zRe[in2] = fo6 + fo4;
826 11200736 : zRe[in3] = fo5 + fo3;
827 11200736 : zRe[in4] = fo5 - fo3;
828 11200736 : zRe[in5] = fo6 - fo4;
829 :
830 11200736 : fo3 = FFT_15PONIT_WNK2 * fi6 + FFT_15PONIT_WNK3 * fi4;
831 11200736 : fo4 = FFT_15PONIT_WNK2 * fi4 - FFT_15PONIT_WNK3 * fi6;
832 11200736 : fo7 = fi2 - fi8 / 4;
833 11200736 : fo5 = fo2 + fo7;
834 11200736 : fo6 = fo7 - fo2;
835 :
836 11200736 : zIm[in2] = fo6 - fo4;
837 11200736 : zIm[in3] = fo5 - fo3;
838 11200736 : zIm[in4] = fo3 + fo5;
839 11200736 : zIm[in5] = fo4 + fo6;
840 :
841 11200736 : return;
842 : }
843 :
844 : /*-----------------------------------------------------------------*
845 : * fft64()
846 : * 64-point FFT
847 : *-----------------------------------------------------------------*/
848 :
849 22476380 : static void fft64(
850 : float *x, /* i/o: real part of input and output data */
851 : float *y, /* i/o: imaginary part of input and output data */
852 : const int16_t *Idx /* i : pointer of the address table */
853 : )
854 : {
855 : int16_t i, id, jd;
856 : float z[128];
857 1460964700 : for ( i = 0; i < 64; i++ )
858 : {
859 1438488320 : id = Idx[i];
860 1438488320 : z[2 * i] = x[id];
861 1438488320 : z[2 * i + 1] = y[id];
862 : }
863 :
864 22476380 : cdftForw( 128, z, Ip_fft64, w_fft64 );
865 :
866 1460964700 : for ( i = 0; i < 64; i++ )
867 : {
868 1438488320 : jd = Odx_fft64[i];
869 1438488320 : id = Idx[jd];
870 1438488320 : x[id] = z[2 * i];
871 1438488320 : y[id] = z[2 * i + 1];
872 : }
873 :
874 22476380 : return;
875 : }
876 :
877 :
878 : /*-----------------------------------------------------------------*
879 : * fft32_15()
880 : * 32-point FFT called for 15 times
881 : *-----------------------------------------------------------------*/
882 :
883 2946510 : static void fft32_15(
884 : float *x, /* i/o: real part of input and output data */
885 : float *y, /* i/o: imaginary part of input and output data */
886 : const int16_t *Idx /* i : pointer of the address table */
887 : )
888 : {
889 : int16_t i, id, jd;
890 : float z[64];
891 :
892 97234830 : for ( i = 0; i < 32; i++ )
893 : {
894 94288320 : id = Idx[i];
895 94288320 : z[2 * i] = x[id];
896 94288320 : z[2 * i + 1] = y[id];
897 : }
898 :
899 2946510 : cdftForw( 64, z, Ip_fft32, w_fft32 );
900 :
901 97234830 : for ( i = 0; i < 32; i++ )
902 : {
903 94288320 : jd = Odx_fft32_15[i];
904 94288320 : id = Idx[jd];
905 94288320 : x[id] = z[2 * i];
906 94288320 : y[id] = z[2 * i + 1];
907 : }
908 :
909 2946510 : return;
910 : }
911 :
912 : /*-----------------------------------------------------------------*
913 : * fft32_5()
914 : * 32-point FFT called for 5 times
915 : *-----------------------------------------------------------------*/
916 :
917 1750115 : static void fft32_5(
918 : float *x, /* i/o: real part of input and output data */
919 : float *y, /* i/o: imaginary part of input and output data */
920 : const int16_t *Idx /* i : pointer of the address table */
921 : )
922 : {
923 : int16_t i, id, jd;
924 : float z[64];
925 :
926 57753795 : for ( i = 0; i < 32; i++ )
927 : {
928 56003680 : id = Idx[i];
929 56003680 : z[2 * i] = x[id];
930 56003680 : z[2 * i + 1] = y[id];
931 : }
932 :
933 1750115 : cdftForw( 64, z, Ip_fft32, w_fft32 );
934 :
935 57753795 : for ( i = 0; i < 32; i++ )
936 : {
937 56003680 : jd = Odx_fft32_5[i];
938 56003680 : id = Idx[jd];
939 56003680 : x[id] = z[2 * i];
940 56003680 : y[id] = z[2 * i + 1];
941 : }
942 :
943 1750115 : return;
944 : }
945 :
946 : /*-----------------------------------------------------------------*
947 : * fft16()
948 : * 16-point FFT
949 : *-----------------------------------------------------------------*/
950 :
951 905650 : static void fft16(
952 : float *x, /* i/o: real part of input and output data */
953 : float *y, /* i/o: imaginary part of input and output data */
954 : const int16_t *Idx /* i : pointer of the address table */
955 : )
956 : {
957 : int16_t i, id, jd;
958 : float z[32];
959 :
960 15396050 : for ( i = 0; i < 16; i++ )
961 : {
962 14490400 : id = Idx[i];
963 14490400 : z[2 * i] = x[id];
964 14490400 : z[2 * i + 1] = y[id];
965 : }
966 :
967 905650 : cdftForw( 32, z, Ip_fft16, w_fft16 );
968 :
969 15396050 : for ( i = 0; i < 16; i++ )
970 : {
971 14490400 : jd = Odx_fft16[i];
972 14490400 : id = Idx[jd];
973 14490400 : x[id] = z[2 * i];
974 14490400 : y[id] = z[2 * i + 1];
975 : }
976 :
977 905650 : return;
978 : }
979 :
980 : /*-----------------------------------------------------------------*
981 : * fft8()
982 : * 8-point FFT
983 : *-----------------------------------------------------------------*/
984 :
985 123390 : static void fft8(
986 : float *x, /* i/o: real part of input and output data */
987 : float *y, /* i/o: imaginary part of input and output data */
988 : const int16_t *Idx /* i : pointer of the address table */
989 : )
990 : {
991 : int16_t i, id;
992 : float z[16];
993 :
994 1110510 : for ( i = 0; i < 8; i++ )
995 : {
996 987120 : id = Idx[i];
997 987120 : z[2 * i] = x[id];
998 987120 : z[2 * i + 1] = y[id];
999 : }
1000 :
1001 123390 : cdftForw( 16, z, Ip_fft8, w_fft8 );
1002 :
1003 1110510 : for ( i = 0; i < 8; i++ )
1004 : {
1005 987120 : id = Idx[i];
1006 987120 : x[id] = z[2 * i];
1007 987120 : y[id] = z[2 * i + 1];
1008 : }
1009 :
1010 123390 : return;
1011 : }
1012 :
1013 : /*-----------------------------------------------------------------*
1014 : * fft8_5()
1015 : * 8-point FFT with shift 5
1016 : *-----------------------------------------------------------------*/
1017 :
1018 20260 : static void fft8_5(
1019 : float *x, /* i/o: real part of input and output data */
1020 : float *y, /* i/o: imaginary part of input and output data */
1021 : const int16_t *Idx /* i : pointer of the address table */
1022 : )
1023 : {
1024 : int16_t i, id, jd;
1025 : float z[16];
1026 :
1027 182340 : for ( i = 0; i < 8; i++ )
1028 : {
1029 162080 : id = Idx[i];
1030 162080 : z[2 * i] = x[id];
1031 162080 : z[2 * i + 1] = y[id];
1032 : }
1033 :
1034 20260 : cdftForw( 16, z, Ip_fft8, w_fft8 );
1035 :
1036 182340 : for ( i = 0; i < 8; i++ )
1037 : {
1038 162080 : jd = Odx_fft8_5[i];
1039 162080 : id = Idx[jd];
1040 162080 : x[id] = z[2 * i];
1041 162080 : y[id] = z[2 * i + 1];
1042 : }
1043 20260 : return;
1044 : }
1045 :
1046 : /*-----------------------------------------------------------------*
1047 : * fft5_8()
1048 : * 5-point FFT with shift 2
1049 : *-----------------------------------------------------------------*/
1050 :
1051 32416 : static void fft5_8(
1052 : int16_t n1, /* i : length of data */
1053 : float *zRe, /* i/o: real part of input and output data */
1054 : float *zIm, /* i/o: imaginary part of input and output data */
1055 : const int16_t *Idx /* i : pointer of the address table */
1056 : )
1057 : {
1058 : float fi1, fi2, fi3, fi4, fi5, fi6, fi7, fi8;
1059 : float fo1, fo2, fo3, fo4, fo5, fo6, fo7, fo8;
1060 : int16_t in1, in2, in3, in4, in5;
1061 :
1062 32416 : in1 = Idx[0];
1063 32416 : in2 = Idx[n1];
1064 32416 : in3 = Idx[n1 * 2];
1065 32416 : in4 = Idx[n1 * 3];
1066 32416 : in5 = Idx[n1 * 4];
1067 :
1068 32416 : fi1 = zRe[in1];
1069 32416 : fi2 = zIm[in1];
1070 32416 : fo3 = zRe[in2];
1071 32416 : fo4 = zRe[in5];
1072 32416 : fo6 = zRe[in3];
1073 32416 : fo7 = zRe[in4];
1074 :
1075 32416 : fo5 = fo3 + fo4;
1076 32416 : fo8 = fo6 + fo7;
1077 32416 : fi3 = fo5 + fo8;
1078 32416 : fi4 = fo6 - fo7;
1079 32416 : fi5 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
1080 32416 : fi6 = fo3 - fo4;
1081 :
1082 32416 : fo3 = zIm[in2];
1083 32416 : fo4 = zIm[in5];
1084 32416 : fo6 = zIm[in3];
1085 32416 : fo7 = zIm[in4];
1086 :
1087 32416 : fo5 = fo3 + fo4;
1088 32416 : fo8 = fo6 + fo7;
1089 32416 : fi7 = fo3 - fo4;
1090 32416 : fi8 = fo5 + fo8;
1091 32416 : fo1 = fo6 - fo7;
1092 32416 : fo2 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
1093 :
1094 32416 : zRe[in1] = fi1 + fi3;
1095 32416 : zIm[in1] = fi2 + fi8;
1096 :
1097 32416 : fo3 = FFT_15PONIT_WNK2 * fi7 + FFT_15PONIT_WNK3 * fo1;
1098 32416 : fo4 = FFT_15PONIT_WNK2 * fo1 - FFT_15PONIT_WNK3 * fi7;
1099 32416 : fo7 = fi1 - fi3 / 4;
1100 32416 : fo5 = fi5 + fo7;
1101 32416 : fo6 = fo7 - fi5;
1102 :
1103 32416 : zRe[in2] = fo6 - fo4;
1104 32416 : zRe[in3] = fo5 - fo3;
1105 32416 : zRe[in5] = fo6 + fo4;
1106 32416 : zRe[in4] = fo5 + fo3;
1107 :
1108 32416 : fo3 = FFT_15PONIT_WNK2 * fi6 + FFT_15PONIT_WNK3 * fi4;
1109 32416 : fo4 = FFT_15PONIT_WNK2 * fi4 - FFT_15PONIT_WNK3 * fi6;
1110 32416 : fo7 = fi2 - fi8 / 4;
1111 32416 : fo5 = fo2 + fo7;
1112 32416 : fo6 = fo7 - fo2;
1113 :
1114 32416 : zIm[in2] = fo4 + fo6;
1115 32416 : zIm[in3] = fo3 + fo5;
1116 32416 : zIm[in4] = fo5 - fo3;
1117 32416 : zIm[in5] = fo6 - fo4;
1118 :
1119 32416 : return;
1120 : }
1121 :
1122 : /*-----------------------------------------------------------------*
1123 : * fft4_5()
1124 : * 8-point FFT with shift 1
1125 : *-----------------------------------------------------------------*/
1126 :
1127 2440 : static void fft4_5(
1128 : float *x, /* i/o: real part of input and output data */
1129 : float *y, /* i/o: imaginary part of input and output data */
1130 : const int16_t *Idx /* i : pointer of the address table */
1131 : )
1132 : {
1133 : int16_t i, id, jd;
1134 : float z[8];
1135 :
1136 12200 : for ( i = 0; i < 4; i++ )
1137 : {
1138 9760 : id = Idx[i];
1139 9760 : z[2 * i] = x[id];
1140 9760 : z[2 * i + 1] = y[id];
1141 : }
1142 :
1143 2440 : cdftForw( 8, z, Ip_fft4, w_fft4 );
1144 :
1145 12200 : for ( i = 0; i < 4; i++ )
1146 : {
1147 9760 : jd = Odx_fft4_5[i];
1148 9760 : id = Idx[jd];
1149 9760 : x[id] = z[2 * i];
1150 9760 : y[id] = z[2 * i + 1];
1151 : }
1152 2440 : return;
1153 : }
1154 :
1155 : /*-----------------------------------------------------------------*
1156 : * fft5_4()
1157 : * 5-point FFT with shift 4
1158 : *-----------------------------------------------------------------*/
1159 :
1160 1952 : static void fft5_4(
1161 : int16_t n1,
1162 : float *zRe,
1163 : float *zIm,
1164 : const int16_t *Idx )
1165 : {
1166 : float fi1, fi2, fi3, fi4, fi5, fi6, fi7, fi8;
1167 : float fo1, fo2, fo3, fo4, fo5, fo6, fo7, fo8;
1168 : int16_t in1, in2, in3, in4, in5;
1169 :
1170 1952 : in1 = Idx[0];
1171 1952 : in2 = Idx[n1];
1172 1952 : in3 = Idx[n1 * 2];
1173 1952 : in4 = Idx[n1 * 3];
1174 1952 : in5 = Idx[n1 * 4];
1175 :
1176 1952 : fi1 = zRe[in1];
1177 1952 : fi2 = zIm[in1];
1178 1952 : fo3 = zRe[in2];
1179 1952 : fo4 = zRe[in5];
1180 1952 : fo6 = zRe[in3];
1181 1952 : fo7 = zRe[in4];
1182 :
1183 1952 : fo5 = fo3 + fo4;
1184 1952 : fo8 = fo6 + fo7;
1185 1952 : fi3 = fo5 + fo8;
1186 1952 : fi4 = fo6 - fo7;
1187 1952 : fi5 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
1188 1952 : fi6 = fo3 - fo4;
1189 :
1190 1952 : fo3 = zIm[in2];
1191 1952 : fo4 = zIm[in5];
1192 1952 : fo6 = zIm[in3];
1193 1952 : fo7 = zIm[in4];
1194 :
1195 1952 : fo5 = fo3 + fo4;
1196 1952 : fo8 = fo6 + fo7;
1197 1952 : fi7 = fo3 - fo4;
1198 1952 : fi8 = fo5 + fo8;
1199 1952 : fo1 = fo6 - fo7;
1200 1952 : fo2 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
1201 :
1202 1952 : zRe[in1] = fi1 + fi3;
1203 1952 : zIm[in1] = fi2 + fi8;
1204 :
1205 1952 : fo3 = FFT_15PONIT_WNK2 * fi7 + FFT_15PONIT_WNK3 * fo1;
1206 1952 : fo4 = FFT_15PONIT_WNK2 * fo1 - FFT_15PONIT_WNK3 * fi7;
1207 1952 : fo7 = fi1 - fi3 / 4;
1208 1952 : fo5 = fi5 + fo7;
1209 1952 : fo6 = fo7 - fi5;
1210 :
1211 1952 : zRe[in2] = fo5 - fo3;
1212 1952 : zRe[in4] = fo6 - fo4;
1213 1952 : zRe[in3] = fo6 + fo4;
1214 1952 : zRe[in5] = fo5 + fo3;
1215 :
1216 1952 : fo3 = FFT_15PONIT_WNK2 * fi6 + FFT_15PONIT_WNK3 * fi4;
1217 1952 : fo4 = FFT_15PONIT_WNK2 * fi4 - FFT_15PONIT_WNK3 * fi6;
1218 1952 : fo7 = fi2 - fi8 / 4;
1219 1952 : fo5 = fo2 + fo7;
1220 1952 : fo6 = fo7 - fo2;
1221 :
1222 1952 : zIm[in2] = fo3 + fo5;
1223 1952 : zIm[in3] = fo6 - fo4;
1224 1952 : zIm[in4] = fo4 + fo6;
1225 1952 : zIm[in5] = fo5 - fo3;
1226 :
1227 1952 : return;
1228 : }
1229 :
1230 :
1231 : /*-----------------------------------------------------------------*
1232 : * DoRTFT80()
1233 : * a low complexity 2-dimensional DFT of 80 points
1234 : *-----------------------------------------------------------------*/
1235 :
1236 181130 : void DoRTFT80(
1237 : float *x, /* i/o: real part of input and output data */
1238 : float *y /* i/o: imaginary part of input and output data */
1239 : )
1240 : {
1241 : int16_t j;
1242 :
1243 : /* Applying 16-point FFT for 5 times based on the address table Idx_dortft80 */
1244 1086780 : for ( j = 0; j < 5; j++ )
1245 : {
1246 905650 : fft16( x, y, Idx_dortft80 + 16 * j );
1247 : }
1248 :
1249 : /* Applying 5-point FFT for 16 times based on the address table Idx_dortft80 */
1250 3079210 : for ( j = 0; j < 16; j++ )
1251 : {
1252 2898080 : fft5_shift1( 16, x, y, Idx_dortft80 + j );
1253 : }
1254 :
1255 181130 : return;
1256 : }
1257 :
1258 : /*-----------------------------------------------------------------*
1259 : * DoRTFT120()
1260 : * a low complexity 2-dimensional DFT of 120 points
1261 : *-----------------------------------------------------------------*/
1262 :
1263 8226 : void DoRTFT120(
1264 : float *x, /* i/o: real part of input and output data */
1265 : float *y /* i/o: imaginary part of input and output data */
1266 : )
1267 : {
1268 : int16_t j;
1269 :
1270 : /* Applying 8-point FFT for 15 times based on the address table Idx_dortft120 */
1271 131616 : for ( j = 0; j < 15; j++ )
1272 : {
1273 123390 : fft8( x, y, Idx_dortft120 + 8 * j );
1274 : }
1275 :
1276 : /* Applying 15-point FFT for 8 times based on the address table Idx_dortft120 */
1277 74034 : for ( j = 0; j < 8; j++ )
1278 : {
1279 65808 : fft15_shift2( 8, x, y, Idx_dortft120 + j );
1280 : }
1281 :
1282 8226 : return;
1283 : }
1284 :
1285 : /*-----------------------------------------------------------------*
1286 : * DoRTFT160()
1287 : * a low complexity 2-dimensional DFT of 160 points
1288 : *-----------------------------------------------------------------*/
1289 :
1290 350023 : void DoRTFT160(
1291 : float x[], /* i/o: real part of input and output data */
1292 : float y[] /* i/o: imaginary part of input and output data */
1293 : )
1294 : {
1295 : int16_t j;
1296 :
1297 : /* Applying 32-point FFT for 5 times based on the address table Idx_dortft160 */
1298 2100138 : for ( j = 0; j < 5; j++ )
1299 : {
1300 1750115 : fft32_5( x, y, Idx_dortft160 + 32 * j );
1301 : }
1302 :
1303 : /* Applying 5-point FFT for 32 times based on the address table Idx_dortft160 */
1304 11550759 : for ( j = 0; j < 32; j++ )
1305 : {
1306 11200736 : fft5_32( x, y, Idx_dortft160 + j );
1307 : }
1308 :
1309 350023 : return;
1310 : }
1311 :
1312 : /*-----------------------------------------------------------------*
1313 : * DoRTFT320()
1314 : * a low complexity 2-dimensional DFT of 320 points
1315 : *-----------------------------------------------------------------*/
1316 :
1317 4495276 : void DoRTFT320(
1318 : float *x, /* i/o: real part of input and output data */
1319 : float *y /* i/o: imaginary part of input and output data */
1320 : )
1321 : {
1322 : int16_t j;
1323 :
1324 : /* Applying 64-point FFT for 5 times based on the address table Idx_dortft160 */
1325 26971656 : for ( j = 0; j < 5; j++ )
1326 : {
1327 22476380 : fft64( x, y, Idx_dortft320 + 64 * j );
1328 : }
1329 :
1330 : /* Applying 5-point FFT for 64 times based on the address table Idx_dortft160 */
1331 292192940 : for ( j = 0; j < 64; j++ )
1332 : {
1333 287697664 : fft5_shift4( 64, x, y, Idx_dortft320 + j );
1334 : }
1335 :
1336 4495276 : return;
1337 : }
1338 :
1339 : /*-----------------------------------------------------------------*
1340 : * DoRTFT480()
1341 : * a low complexity 2-dimensional DFT of 480 points
1342 : *-----------------------------------------------------------------*/
1343 :
1344 196434 : void DoRTFT480(
1345 : float *x, /* i/o: real part of input and output data */
1346 : float *y /* i/o: imaginary part of input and output data */
1347 : )
1348 : {
1349 : int16_t j;
1350 :
1351 : /* Applying 32-point FFT for 15 times based on the address table Idx_dortft160 */
1352 3142944 : for ( j = 0; j < 15; j++ )
1353 : {
1354 2946510 : fft32_15( x, y, Idx_dortft480 + 32 * j );
1355 : }
1356 :
1357 : /* Applying 5-point FFT for 32 times based on the address table Idx_dortft160 */
1358 6482322 : for ( j = 0; j < 32; j++ )
1359 : {
1360 6285888 : fft15_shift8( 32, x, y, Idx_dortft480 + j );
1361 : }
1362 :
1363 196434 : return;
1364 : }
1365 :
1366 : /*-----------------------------------------------------------------*
1367 : * DoRTFT40()
1368 : * a low complexity 2-dimensional DFT of 40 points
1369 : *-----------------------------------------------------------------*/
1370 :
1371 4052 : void DoRTFT40(
1372 : float *x, /* i/o: real part of input and output data */
1373 : float *y /* i/o: imaginary part of input and output data */
1374 : )
1375 : {
1376 : int16_t j;
1377 : /* Applying 8-point FFT for 5 times based on the address table Idx_dortft40 */
1378 24312 : for ( j = 0; j < 5; j++ )
1379 : {
1380 20260 : fft8_5( x, y, Idx_dortft40 + 8 * j );
1381 : }
1382 :
1383 : /* Applying 5-point FFT for 8 times based on the address table Idx_dortft40 */
1384 36468 : for ( j = 0; j < 8; j++ )
1385 : {
1386 32416 : fft5_8( 8, x, y, Idx_dortft40 + j );
1387 : }
1388 :
1389 4052 : return;
1390 : }
1391 :
1392 : /*-----------------------------------------------------------------*
1393 : * DoRTFT20()
1394 : * a low complexity 2-dimensional DFT of 20 points
1395 : *-----------------------------------------------------------------*/
1396 :
1397 488 : void DoRTFT20(
1398 : float *x, /* i/o: real part of input and output data */
1399 : float *y /* i/o: imaginary part of input and output data */
1400 : )
1401 : {
1402 : int16_t j;
1403 :
1404 : /* Applying 4-point FFT for 5 times based on the address table Idx_dortft20 */
1405 2928 : for ( j = 0; j < 5; j++ )
1406 : {
1407 2440 : fft4_5( x, y, Idx_dortft20 + 4 * j );
1408 : }
1409 :
1410 : /* Applying 5-point FFT for 4 times based on the address table Idx_dortft20 */
1411 2440 : for ( j = 0; j < 4; j++ )
1412 : {
1413 1952 : fft5_4( 4, x, y, Idx_dortft20 + j );
1414 : }
1415 :
1416 488 : return;
1417 : }
1418 :
1419 : /*-----------------------------------------------------------------*
1420 : * DoRTFT128()
1421 : * FFT with 128 points
1422 : *-----------------------------------------------------------------*/
1423 :
1424 12956981 : void DoRTFT128(
1425 : float *x, /* i/o: real part of input and output data */
1426 : float *y /* i/o: imaginary part of input and output data */
1427 : )
1428 : {
1429 :
1430 : int16_t i;
1431 : float z[256];
1432 :
1433 1671450549 : for ( i = 0; i < 128; i++ )
1434 : {
1435 1658493568 : z[2 * i] = x[i];
1436 1658493568 : z[2 * i + 1] = y[i];
1437 : }
1438 :
1439 12956981 : cdftForw( 256, z, Ip_fft128, w_fft128 );
1440 :
1441 12956981 : x[0] = z[0];
1442 12956981 : y[0] = z[1];
1443 1658493568 : for ( i = 1; i < 128; i++ )
1444 : {
1445 1645536587 : x[128 - i] = z[2 * i];
1446 1645536587 : y[128 - i] = z[2 * i + 1];
1447 : }
1448 :
1449 12956981 : return;
1450 : }
1451 :
1452 : /*-----------------------------------------------------------------*
1453 : * cdftForw()
1454 : * Main fuction of Complex Discrete Fourier Transform
1455 : *-----------------------------------------------------------------*/
1456 :
1457 45266445 : static void cdftForw(
1458 : int16_t n, /* i : data length of real and imag */
1459 : float *a, /* i/o: input/output data */
1460 : const int16_t *ip, /* i : work area for bit reversal */
1461 : const float *w /* i : cos/sin table */
1462 : )
1463 : {
1464 : /* bit reversal */
1465 45266445 : bitrv2_SR( n, ip + 2, a );
1466 :
1467 : /* Do FFT */
1468 45266445 : cftfsub( n, a, w );
1469 45266445 : }
1470 :
1471 : /*-----------------------------------------------------------------*
1472 : * bitrv2_SR()
1473 : * Bit reversal
1474 : *-----------------------------------------------------------------*/
1475 :
1476 46542105 : static void bitrv2_SR(
1477 : int16_t n, /* i : data length of real and imag */
1478 : const int16_t *ip, /* i/o: work area for bit reversal */
1479 : float *a /* i/o: input/output data */
1480 : )
1481 : {
1482 : int16_t j, j1, k, k1, m, m2;
1483 : int16_t l;
1484 : float xr, xi, yr, yi;
1485 :
1486 46542105 : if ( n == 64 )
1487 : {
1488 5972285 : m = 4;
1489 5972285 : l = -1;
1490 : }
1491 40569820 : else if ( n == 256 )
1492 : {
1493 12956989 : m = 8;
1494 12956989 : l = -1;
1495 : }
1496 27612831 : else if ( n == 16 )
1497 : {
1498 143650 : m = 2;
1499 143650 : l = -1;
1500 : }
1501 : else
1502 : {
1503 27469181 : l = n;
1504 27469181 : m = 1;
1505 :
1506 88994322 : while ( ( m << 3 ) < l )
1507 : {
1508 61525141 : l >>= 1;
1509 61525141 : m <<= 1;
1510 : }
1511 27469181 : l -= m * 8;
1512 : }
1513 :
1514 46542105 : m2 = 2 * m;
1515 :
1516 46542105 : if ( l == 0 )
1517 : {
1518 120125788 : for ( k = 0; k < m; k++ )
1519 : {
1520 247182320 : for ( j = 0; j < k; j++ )
1521 : {
1522 151027600 : j1 = 2 * j + ip[k];
1523 151027600 : k1 = 2 * k + ip[j];
1524 151027600 : xr = a[j1];
1525 151027600 : xi = a[j1 + 1];
1526 151027600 : yr = a[k1];
1527 151027600 : yi = a[k1 + 1];
1528 151027600 : a[j1] = yr;
1529 151027600 : a[j1 + 1] = yi;
1530 151027600 : a[k1] = xr;
1531 151027600 : a[k1 + 1] = xi;
1532 151027600 : j1 += m2;
1533 151027600 : k1 += 2 * m2;
1534 151027600 : xr = a[j1];
1535 151027600 : xi = a[j1 + 1];
1536 151027600 : yr = a[k1];
1537 151027600 : yi = a[k1 + 1];
1538 151027600 : a[j1] = yr;
1539 151027600 : a[j1 + 1] = yi;
1540 151027600 : a[k1] = xr;
1541 151027600 : a[k1 + 1] = xi;
1542 151027600 : j1 += m2;
1543 151027600 : k1 -= m2;
1544 151027600 : xr = a[j1];
1545 151027600 : xi = a[j1 + 1];
1546 151027600 : yr = a[k1];
1547 151027600 : yi = a[k1 + 1];
1548 151027600 : a[j1] = yr;
1549 151027600 : a[j1 + 1] = yi;
1550 151027600 : a[k1] = xr;
1551 151027600 : a[k1 + 1] = xi;
1552 151027600 : j1 += m2;
1553 151027600 : k1 += 2 * m2;
1554 151027600 : xr = a[j1];
1555 151027600 : xi = a[j1 + 1];
1556 151027600 : yr = a[k1];
1557 151027600 : yi = a[k1 + 1];
1558 151027600 : a[j1] = yr;
1559 151027600 : a[j1 + 1] = yi;
1560 151027600 : a[k1] = xr;
1561 151027600 : a[k1 + 1] = xi;
1562 : }
1563 :
1564 96154720 : j1 = 2 * k + m2 + ip[k];
1565 96154720 : k1 = j1 + m2;
1566 96154720 : xr = a[j1];
1567 96154720 : xi = a[j1 + 1];
1568 96154720 : yr = a[k1];
1569 96154720 : yi = a[k1 + 1];
1570 96154720 : a[j1] = yr;
1571 96154720 : a[j1 + 1] = yi;
1572 96154720 : a[k1] = xr;
1573 96154720 : a[k1 + 1] = xi;
1574 : }
1575 : }
1576 : else
1577 : {
1578 183802160 : for ( k = 1; k < m; k++ )
1579 : {
1580 979777735 : for ( j = 0; j < k; j++ )
1581 : {
1582 818546612 : j1 = 2 * j + ip[k];
1583 818546612 : k1 = 2 * k + ip[j];
1584 818546612 : xr = a[j1];
1585 818546612 : xi = a[j1 + 1];
1586 818546612 : yr = a[k1];
1587 818546612 : yi = a[k1 + 1];
1588 818546612 : a[j1] = yr;
1589 818546612 : a[j1 + 1] = yi;
1590 818546612 : a[k1] = xr;
1591 818546612 : a[k1 + 1] = xi;
1592 818546612 : j1 += m2;
1593 818546612 : k1 += m2;
1594 818546612 : xr = a[j1];
1595 818546612 : xi = a[j1 + 1];
1596 818546612 : yr = a[k1];
1597 818546612 : yi = a[k1 + 1];
1598 818546612 : a[j1] = yr;
1599 818546612 : a[j1 + 1] = yi;
1600 818546612 : a[k1] = xr;
1601 818546612 : a[k1 + 1] = xi;
1602 : }
1603 : }
1604 : }
1605 :
1606 46542105 : return;
1607 : }
1608 :
1609 : /*-----------------------------------------------------------------*
1610 : * cftfsub()
1611 : * Complex Discrete Fourier Transform
1612 : *-----------------------------------------------------------------*/
1613 :
1614 46186335 : static void cftfsub(
1615 : int16_t n, /* i : data length of real and imag */
1616 : float *a, /* i/o: input/output data */
1617 : const float *w /* i : cos/sin table */
1618 : )
1619 : {
1620 : int16_t j, j1, j2, j3, l;
1621 : float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
1622 :
1623 46186335 : l = 2;
1624 46186335 : if ( n > 8 )
1625 : {
1626 46183895 : cft1st( n, a, w );
1627 :
1628 46183895 : l = 8;
1629 111772788 : while ( ( l << 2 ) < n )
1630 : {
1631 65588893 : cftmdl( n, l, a, w );
1632 65588893 : l <<= 2;
1633 : }
1634 : }
1635 :
1636 46186335 : if ( ( l << 2 ) == n )
1637 : {
1638 422180988 : for ( j = 0; j < l; j += 2 )
1639 : {
1640 398209920 : j1 = j + l;
1641 398209920 : j2 = j1 + l;
1642 398209920 : j3 = j2 + l;
1643 398209920 : x0r = a[j] + a[j1];
1644 398209920 : x0i = a[j + 1] + a[j1 + 1];
1645 398209920 : x1r = a[j] - a[j1];
1646 398209920 : x1i = a[j + 1] - a[j1 + 1];
1647 398209920 : x2r = a[j2] + a[j3];
1648 398209920 : x2i = a[j2 + 1] + a[j3 + 1];
1649 398209920 : x3r = a[j2] - a[j3];
1650 398209920 : x3i = a[j2 + 1] - a[j3 + 1];
1651 398209920 : a[j] = x0r + x2r;
1652 398209920 : a[j + 1] = x0i + x2i;
1653 398209920 : a[j2] = x0r - x2r;
1654 398209920 : a[j2 + 1] = x0i - x2i;
1655 398209920 : a[j1] = x1r - x3i;
1656 398209920 : a[j1 + 1] = x1i + x3r;
1657 398209920 : a[j3] = x1r + x3i;
1658 398209920 : a[j3 + 1] = x1i - x3r;
1659 : }
1660 : }
1661 : else
1662 : {
1663 1837418331 : for ( j = 0; j < l; j += 2 )
1664 : {
1665 1815203064 : j1 = j + l;
1666 1815203064 : x0r = a[j] - a[j1];
1667 1815203064 : x0i = a[j + 1] - a[j1 + 1];
1668 1815203064 : a[j] += a[j1];
1669 1815203064 : a[j + 1] += a[j1 + 1];
1670 1815203064 : a[j1] = x0r;
1671 1815203064 : a[j1 + 1] = x0i;
1672 : }
1673 : }
1674 :
1675 46186335 : return;
1676 : }
1677 :
1678 : /*-----------------------------------------------------------------*
1679 : * cft1st()
1680 : * Subfunction of Complex Discrete Fourier Transform
1681 : *-----------------------------------------------------------------*/
1682 :
1683 46539665 : static void cft1st(
1684 : int16_t n, /* i : data length of real and imag */
1685 : float *a, /* i/o: input/output data */
1686 : const float *w /* i : cos/sin table */
1687 : )
1688 : {
1689 : int16_t j, k1, k2;
1690 : float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
1691 : float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
1692 :
1693 46539665 : x0r = a[0] + a[2];
1694 46539665 : x0i = a[1] + a[3];
1695 46539665 : x1r = a[0] - a[2];
1696 46539665 : x1i = a[1] - a[3];
1697 46539665 : x2r = a[4] + a[6];
1698 46539665 : x2i = a[5] + a[7];
1699 46539665 : x3r = a[4] - a[6];
1700 46539665 : x3i = a[5] - a[7];
1701 46539665 : a[0] = x0r + x2r;
1702 46539665 : a[1] = x0i + x2i;
1703 46539665 : a[4] = x0r - x2r;
1704 46539665 : a[5] = x0i - x2i;
1705 46539665 : a[2] = x1r - x3i;
1706 46539665 : a[3] = x1i + x3r;
1707 46539665 : a[6] = x1r + x3i;
1708 46539665 : a[7] = x1i - x3r;
1709 46539665 : wk1r = w[2];
1710 46539665 : x0r = a[8] + a[10];
1711 46539665 : x0i = a[9] + a[11];
1712 46539665 : x1r = a[8] - a[10];
1713 46539665 : x1i = a[9] - a[11];
1714 46539665 : x2r = a[12] + a[14];
1715 46539665 : x2i = a[13] + a[15];
1716 46539665 : x3r = a[12] - a[14];
1717 46539665 : x3i = a[13] - a[15];
1718 46539665 : a[8] = x0r + x2r;
1719 46539665 : a[9] = x0i + x2i;
1720 46539665 : a[12] = x2i - x0i;
1721 46539665 : a[13] = x0r - x2r;
1722 46539665 : x0r = x1r - x3i;
1723 46539665 : x0i = x1i + x3r;
1724 46539665 : a[10] = wk1r * ( x0r - x0i );
1725 46539665 : a[11] = wk1r * ( x0r + x0i );
1726 46539665 : x0r = x3i + x1r;
1727 46539665 : x0i = x3r - x1i;
1728 46539665 : a[14] = wk1r * ( x0i - x0r );
1729 46539665 : a[15] = wk1r * ( x0i + x0r );
1730 46539665 : k1 = 0;
1731 :
1732 654327586 : for ( j = 16; j < n; j += 16 )
1733 : {
1734 607787921 : k1 += 2;
1735 607787921 : k2 = 2 * k1;
1736 607787921 : wk2r = w[k1];
1737 607787921 : wk2i = w[k1 + 1];
1738 607787921 : wk1r = w[k2];
1739 607787921 : wk1i = w[k2 + 1];
1740 607787921 : wk3r = wk1r - 2 * wk2i * wk1i;
1741 607787921 : wk3i = 2 * wk2i * wk1r - wk1i;
1742 607787921 : x0r = a[j] + a[j + 2];
1743 607787921 : x0i = a[j + 1] + a[j + 3];
1744 607787921 : x1r = a[j] - a[j + 2];
1745 607787921 : x1i = a[j + 1] - a[j + 3];
1746 607787921 : x2r = a[j + 4] + a[j + 6];
1747 607787921 : x2i = a[j + 5] + a[j + 7];
1748 607787921 : x3r = a[j + 4] - a[j + 6];
1749 607787921 : x3i = a[j + 5] - a[j + 7];
1750 607787921 : a[j] = x0r + x2r;
1751 607787921 : a[j + 1] = x0i + x2i;
1752 607787921 : x0r -= x2r;
1753 607787921 : x0i -= x2i;
1754 607787921 : a[j + 4] = wk2r * x0r - wk2i * x0i;
1755 607787921 : a[j + 5] = wk2r * x0i + wk2i * x0r;
1756 607787921 : x0r = x1r - x3i;
1757 607787921 : x0i = x1i + x3r;
1758 607787921 : a[j + 2] = wk1r * x0r - wk1i * x0i;
1759 607787921 : a[j + 3] = wk1r * x0i + wk1i * x0r;
1760 607787921 : x0r = x1r + x3i;
1761 607787921 : x0i = x1i - x3r;
1762 607787921 : a[j + 6] = wk3r * x0r - wk3i * x0i;
1763 607787921 : a[j + 7] = wk3r * x0i + wk3i * x0r;
1764 607787921 : wk1r = w[k2 + 2];
1765 607787921 : wk1i = w[k2 + 3];
1766 607787921 : wk3r = wk1r - 2 * wk2r * wk1i;
1767 607787921 : wk3i = 2 * wk2r * wk1r - wk1i;
1768 607787921 : x0r = a[j + 8] + a[j + 10];
1769 607787921 : x0i = a[j + 9] + a[j + 11];
1770 607787921 : x1r = a[j + 8] - a[j + 10];
1771 607787921 : x1i = a[j + 9] - a[j + 11];
1772 607787921 : x2r = a[j + 12] + a[j + 14];
1773 607787921 : x2i = a[j + 13] + a[j + 15];
1774 607787921 : x3r = a[j + 12] - a[j + 14];
1775 607787921 : x3i = a[j + 13] - a[j + 15];
1776 607787921 : a[j + 8] = x0r + x2r;
1777 607787921 : a[j + 9] = x0i + x2i;
1778 607787921 : x0r -= x2r;
1779 607787921 : x0i -= x2i;
1780 607787921 : a[j + 12] = -wk2i * x0r - wk2r * x0i;
1781 607787921 : a[j + 13] = -wk2i * x0i + wk2r * x0r;
1782 607787921 : x0r = x1r - x3i;
1783 607787921 : x0i = x1i + x3r;
1784 607787921 : a[j + 10] = wk1r * x0r - wk1i * x0i;
1785 607787921 : a[j + 11] = wk1r * x0i + wk1i * x0r;
1786 607787921 : x0r = x1r + x3i;
1787 607787921 : x0i = x1i - x3r;
1788 607787921 : a[j + 14] = wk3r * x0r - wk3i * x0i;
1789 607787921 : a[j + 15] = wk3r * x0i + wk3i * x0r;
1790 : }
1791 :
1792 46539665 : return;
1793 : }
1794 :
1795 : /*-----------------------------------------------------------------*
1796 : * cftmdl()
1797 : * Subfunction of Complex Discrete Fourier Transform
1798 : *-----------------------------------------------------------------*/
1799 :
1800 65944663 : static void cftmdl(
1801 : int16_t n, /* i : data length of real and imag */
1802 : int16_t l, /* i : initial shift for processing */
1803 : float *a, /* i/o: input/output data */
1804 : const float *w /* i : cos/sin table */
1805 : )
1806 : {
1807 : int16_t j, j1, j2, j3, k, k1, k2, m, m2;
1808 : float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
1809 : float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
1810 :
1811 65944663 : m = l << 2;
1812 743592731 : for ( j = 0; j < l; j += 2 )
1813 : {
1814 677648068 : j1 = j + l;
1815 677648068 : j2 = j1 + l;
1816 677648068 : j3 = j2 + l;
1817 677648068 : x0r = a[j] + a[j1];
1818 677648068 : x0i = a[j + 1] + a[j1 + 1];
1819 677648068 : x1r = a[j] - a[j1];
1820 677648068 : x1i = a[j + 1] - a[j1 + 1];
1821 677648068 : x2r = a[j2] + a[j3];
1822 677648068 : x2i = a[j2 + 1] + a[j3 + 1];
1823 677648068 : x3r = a[j2] - a[j3];
1824 677648068 : x3i = a[j2 + 1] - a[j3 + 1];
1825 677648068 : a[j] = x0r + x2r;
1826 677648068 : a[j + 1] = x0i + x2i;
1827 677648068 : a[j2] = x0r - x2r;
1828 677648068 : a[j2 + 1] = x0i - x2i;
1829 677648068 : a[j1] = x1r - x3i;
1830 677648068 : a[j1 + 1] = x1i + x3r;
1831 677648068 : a[j3] = x1r + x3i;
1832 677648068 : a[j3 + 1] = x1i - x3r;
1833 : }
1834 :
1835 65944663 : wk1r = w[2];
1836 743592731 : for ( j = m; j < l + m; j += 2 )
1837 : {
1838 677648068 : j1 = j + l;
1839 677648068 : j2 = j1 + l;
1840 677648068 : j3 = j2 + l;
1841 677648068 : x0r = a[j] + a[j1];
1842 677648068 : x0i = a[j + 1] + a[j1 + 1];
1843 677648068 : x1r = a[j] - a[j1];
1844 677648068 : x1i = a[j + 1] - a[j1 + 1];
1845 677648068 : x2r = a[j2] + a[j3];
1846 677648068 : x2i = a[j2 + 1] + a[j3 + 1];
1847 677648068 : x3r = a[j2] - a[j3];
1848 677648068 : x3i = a[j2 + 1] - a[j3 + 1];
1849 677648068 : a[j] = x0r + x2r;
1850 677648068 : a[j + 1] = x0i + x2i;
1851 677648068 : a[j2] = x2i - x0i;
1852 677648068 : a[j2 + 1] = x0r - x2r;
1853 677648068 : x0r = x1r - x3i;
1854 677648068 : x0i = x1i + x3r;
1855 677648068 : a[j1] = wk1r * ( x0r - x0i );
1856 677648068 : a[j1 + 1] = wk1r * ( x0r + x0i );
1857 677648068 : x0r = x3i + x1r;
1858 677648068 : x0i = x3r - x1i;
1859 677648068 : a[j3] = wk1r * ( x0i - x0r );
1860 677648068 : a[j3 + 1] = wk1r * ( x0i + x0r );
1861 : }
1862 :
1863 65944663 : k1 = 0;
1864 65944663 : m2 = 2 * m;
1865 194606431 : for ( k = m2; k < n; k += m2 )
1866 : {
1867 128661768 : k1 += 2;
1868 128661768 : k2 = 2 * k1;
1869 128661768 : wk2r = w[k1];
1870 128661768 : wk2i = w[k1 + 1];
1871 128661768 : wk1r = w[k2];
1872 128661768 : wk1i = w[k2 + 1];
1873 128661768 : wk3r = wk1r - 2 * wk2i * wk1i;
1874 128661768 : wk3i = 2 * wk2i * wk1r - wk1i;
1875 775762320 : for ( j = k; j < l + k; j += 2 )
1876 : {
1877 647100552 : j1 = j + l;
1878 647100552 : j2 = j1 + l;
1879 647100552 : j3 = j2 + l;
1880 647100552 : x0r = a[j] + a[j1];
1881 647100552 : x0i = a[j + 1] + a[j1 + 1];
1882 647100552 : x1r = a[j] - a[j1];
1883 647100552 : x1i = a[j + 1] - a[j1 + 1];
1884 647100552 : x2r = a[j2] + a[j3];
1885 647100552 : x2i = a[j2 + 1] + a[j3 + 1];
1886 647100552 : x3r = a[j2] - a[j3];
1887 647100552 : x3i = a[j2 + 1] - a[j3 + 1];
1888 647100552 : a[j] = x0r + x2r;
1889 647100552 : a[j + 1] = x0i + x2i;
1890 647100552 : x0r -= x2r;
1891 647100552 : x0i -= x2i;
1892 647100552 : a[j2] = wk2r * x0r - wk2i * x0i;
1893 647100552 : a[j2 + 1] = wk2r * x0i + wk2i * x0r;
1894 647100552 : x0r = x1r - x3i;
1895 647100552 : x0i = x1i + x3r;
1896 647100552 : a[j1] = wk1r * x0r - wk1i * x0i;
1897 647100552 : a[j1 + 1] = wk1r * x0i + wk1i * x0r;
1898 647100552 : x0r = x1r + x3i;
1899 647100552 : x0i = x1i - x3r;
1900 647100552 : a[j3] = wk3r * x0r - wk3i * x0i;
1901 647100552 : a[j3 + 1] = wk3r * x0i + wk3i * x0r;
1902 : }
1903 :
1904 128661768 : wk1r = w[k2 + 2];
1905 128661768 : wk1i = w[k2 + 3];
1906 128661768 : wk3r = wk1r - 2 * wk2r * wk1i;
1907 128661768 : wk3i = 2 * wk2r * wk1r - wk1i;
1908 775762320 : for ( j = k + m; j < l + ( k + m ); j += 2 )
1909 : {
1910 647100552 : j1 = j + l;
1911 647100552 : j2 = j1 + l;
1912 647100552 : j3 = j2 + l;
1913 647100552 : x0r = a[j] + a[j1];
1914 647100552 : x0i = a[j + 1] + a[j1 + 1];
1915 647100552 : x1r = a[j] - a[j1];
1916 647100552 : x1i = a[j + 1] - a[j1 + 1];
1917 647100552 : x2r = a[j2] + a[j3];
1918 647100552 : x2i = a[j2 + 1] + a[j3 + 1];
1919 647100552 : x3r = a[j2] - a[j3];
1920 647100552 : x3i = a[j2 + 1] - a[j3 + 1];
1921 647100552 : a[j] = x0r + x2r;
1922 647100552 : a[j + 1] = x0i + x2i;
1923 647100552 : x0r -= x2r;
1924 647100552 : x0i -= x2i;
1925 647100552 : a[j2] = -wk2i * x0r - wk2r * x0i;
1926 647100552 : a[j2 + 1] = -wk2i * x0i + wk2r * x0r;
1927 647100552 : x0r = x1r - x3i;
1928 647100552 : x0i = x1i + x3r;
1929 647100552 : a[j1] = wk1r * x0r - wk1i * x0i;
1930 647100552 : a[j1 + 1] = wk1r * x0i + wk1i * x0r;
1931 647100552 : x0r = x1r + x3i;
1932 647100552 : x0i = x1i - x3r;
1933 647100552 : a[j3] = wk3r * x0r - wk3i * x0i;
1934 647100552 : a[j3 + 1] = wk3r * x0i + wk3i * x0r;
1935 : }
1936 : }
1937 :
1938 65944663 : return;
1939 : }
1940 :
1941 355770 : static void cftbsub(
1942 : int16_t n,
1943 : float *a,
1944 : const float *w /* i : cos/sin table */
1945 : )
1946 : {
1947 : int16_t j, j1, j2, j3, l;
1948 : float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
1949 :
1950 355770 : l = 2;
1951 355770 : if ( n > 8 )
1952 : {
1953 355770 : cft1st( n, a, w );
1954 355770 : l = 8;
1955 :
1956 711540 : while ( ( l << 2 ) < n )
1957 : {
1958 355770 : cftmdl( n, l, a, w );
1959 355770 : l <<= 2;
1960 : }
1961 : }
1962 :
1963 355770 : if ( ( l << 2 ) == n )
1964 : {
1965 0 : for ( j = 0; j < l; j += 2 )
1966 : {
1967 0 : j1 = j + l;
1968 0 : j2 = j1 + l;
1969 0 : j3 = j2 + l;
1970 0 : x0r = a[j] + a[j1];
1971 0 : x0i = -a[j + 1] - a[j1 + 1];
1972 0 : x1r = a[j] - a[j1];
1973 0 : x1i = -a[j + 1] + a[j1 + 1];
1974 0 : x2r = a[j2] + a[j3];
1975 0 : x2i = a[j2 + 1] + a[j3 + 1];
1976 0 : x3r = a[j2] - a[j3];
1977 0 : x3i = a[j2 + 1] - a[j3 + 1];
1978 0 : a[j] = x0r + x2r;
1979 0 : a[j + 1] = x0i - x2i;
1980 0 : a[j2] = x0r - x2r;
1981 0 : a[j2 + 1] = x0i + x2i;
1982 0 : a[j1] = x1r - x3i;
1983 0 : a[j1 + 1] = x1i - x3r;
1984 0 : a[j3] = x1r + x3i;
1985 0 : a[j3 + 1] = x1i + x3r;
1986 : }
1987 : }
1988 : else
1989 : {
1990 6048090 : for ( j = 0; j < l; j += 2 )
1991 : {
1992 5692320 : j1 = j + l;
1993 5692320 : x0r = a[j] - a[j1];
1994 5692320 : x0i = -a[j + 1] + a[j1 + 1];
1995 5692320 : a[j] += a[j1];
1996 5692320 : a[j + 1] = -a[j + 1] - a[j1 + 1];
1997 5692320 : a[j1] = x0r;
1998 5692320 : a[j1 + 1] = x0i;
1999 : }
2000 : }
2001 :
2002 355770 : return;
2003 : }
2004 :
2005 919890 : static void rftfsub(
2006 : int16_t n,
2007 : float *a,
2008 : int16_t nc,
2009 : const float *c )
2010 : {
2011 : int16_t j, k, kk, ks, m;
2012 : float wkr, wki, xr, xi, yr, yi;
2013 :
2014 919890 : m = n >> 1;
2015 919890 : ks = 2 * nc / m;
2016 919890 : kk = 0;
2017 14718240 : for ( j = 2; j < m; j += 2 )
2018 : {
2019 13798350 : k = n - j;
2020 13798350 : kk += ks;
2021 13798350 : wkr = 0.5f - c[nc - kk];
2022 13798350 : wki = c[kk];
2023 13798350 : xr = a[j] - a[k];
2024 13798350 : xi = a[j + 1] + a[k + 1];
2025 13798350 : yr = wkr * xr - wki * xi;
2026 13798350 : yi = wkr * xi + wki * xr;
2027 13798350 : a[j] -= yr;
2028 13798350 : a[j + 1] -= yi;
2029 13798350 : a[k] += yr;
2030 13798350 : a[k + 1] -= yi;
2031 : }
2032 :
2033 919890 : return;
2034 : }
2035 :
2036 :
2037 355770 : static void rftbsub(
2038 : int16_t n,
2039 : float *a,
2040 : int16_t nc,
2041 : const float *c )
2042 : {
2043 : int16_t j, k, kk, ks, m;
2044 : float wkr, wki, xr, xi, yr, yi;
2045 :
2046 355770 : a[1] = -a[1];
2047 355770 : m = n >> 1;
2048 355770 : ks = 2 * nc / m;
2049 355770 : kk = 0;
2050 5692320 : for ( j = 2; j < m; j += 2 )
2051 : {
2052 5336550 : k = n - j;
2053 5336550 : kk += ks;
2054 5336550 : wkr = 0.5f - c[nc - kk];
2055 5336550 : wki = c[kk];
2056 5336550 : xr = a[j] - a[k];
2057 5336550 : xi = a[j + 1] + a[k + 1];
2058 5336550 : yr = wkr * xr + wki * xi;
2059 5336550 : yi = wkr * xi - wki * xr;
2060 5336550 : a[j] -= yr;
2061 5336550 : a[j + 1] = yi - a[j + 1];
2062 5336550 : a[k] += yr;
2063 5336550 : a[k + 1] = yi - a[k + 1];
2064 : }
2065 355770 : a[m + 1] = -a[m + 1];
2066 :
2067 355770 : return;
2068 : }
2069 :
2070 :
2071 1275660 : static void dctsub(
2072 : int16_t n,
2073 : float *a,
2074 : int16_t nc,
2075 : const float *c )
2076 : {
2077 : int16_t j, k, kk, ks, m;
2078 : float wkr, wki, xr;
2079 :
2080 1275660 : m = n >> 1;
2081 1275660 : ks = nc / n;
2082 1275660 : kk = 0;
2083 40821120 : for ( j = 1; j < m; j++ )
2084 : {
2085 39545460 : k = n - j;
2086 39545460 : kk += ks;
2087 39545460 : wkr = c[kk] - c[nc - kk];
2088 39545460 : wki = c[kk] + c[nc - kk];
2089 39545460 : xr = wki * a[j] - wkr * a[k];
2090 39545460 : a[j] = wkr * a[j] + wki * a[k];
2091 39545460 : a[k] = xr;
2092 : }
2093 1275660 : a[m] *= c[0];
2094 :
2095 1275660 : return;
2096 : }
2097 :
2098 :
2099 : /*-----------------------------------------------------------------*
2100 : * edct2()
2101 : *
2102 : * Transformation of the signal to DCT domain
2103 : * OR Inverse EDCT-II for short frames
2104 : *-----------------------------------------------------------------*/
2105 :
2106 1275660 : void edct2(
2107 : const int16_t n,
2108 : const int16_t isgn,
2109 : float *in,
2110 : float *a,
2111 : const int16_t *ip,
2112 : const float *w )
2113 : {
2114 : int16_t j, nw, nc;
2115 : float xr;
2116 :
2117 1275660 : mvr2r( in, a, n );
2118 :
2119 1275660 : nw = ip[0];
2120 1275660 : if ( n > ( nw << 2 ) )
2121 : {
2122 0 : nw = n >> 2;
2123 : }
2124 :
2125 1275660 : nc = ip[1];
2126 1275660 : if ( n > nc )
2127 : {
2128 0 : nc = n;
2129 : }
2130 :
2131 1275660 : if ( isgn < 0 )
2132 : {
2133 355770 : xr = a[n - 1];
2134 11384640 : for ( j = n - 2; j >= 2; j -= 2 )
2135 : {
2136 11028870 : a[j + 1] = a[j] - a[j - 1];
2137 11028870 : a[j] += a[j - 1];
2138 : }
2139 355770 : a[1] = a[0] - xr;
2140 355770 : a[0] += xr;
2141 :
2142 355770 : if ( n > 4 )
2143 : {
2144 355770 : rftbsub( n, a, nc, w + nw );
2145 355770 : bitrv2_SR( n, ip + 2, a );
2146 355770 : cftbsub( n, a, w );
2147 : }
2148 0 : else if ( n == 4 )
2149 : {
2150 0 : cftfsub( n, a, w );
2151 : }
2152 : }
2153 :
2154 1275660 : if ( isgn >= 0 )
2155 : {
2156 919890 : a[0] *= 0.5f;
2157 : }
2158 :
2159 1275660 : dctsub( n, a, nc, w + nw );
2160 :
2161 1275660 : if ( isgn >= 0 )
2162 : {
2163 919890 : if ( n > 4 )
2164 : {
2165 919890 : bitrv2_SR( n, ip + 2, a );
2166 919890 : cftfsub( n, a, w );
2167 919890 : rftfsub( n, a, nc, w + nw );
2168 : }
2169 0 : else if ( n == 4 )
2170 : {
2171 0 : cftfsub( n, a, w );
2172 : }
2173 919890 : xr = a[0] - a[1];
2174 919890 : a[0] += a[1];
2175 29436480 : for ( j = 2; j < n; j += 2 )
2176 : {
2177 28516590 : a[j - 1] = a[j] - a[j + 1];
2178 28516590 : a[j] += a[j + 1];
2179 : }
2180 919890 : a[n - 1] = xr;
2181 :
2182 59792850 : for ( j = 0; j < n; j++ )
2183 : {
2184 58872960 : a[j] /= 32.0f;
2185 : }
2186 : }
2187 1275660 : }
2188 :
2189 :
2190 4084719 : void DoRTFTn(
2191 : float *x, /* i/o: real part of input and output data */
2192 : float *y, /* i/o: imaginary part of input and output data */
2193 : const int16_t n /* i : size of the FFT up to 1024 */
2194 : )
2195 : {
2196 :
2197 : int16_t i;
2198 : float z[2048];
2199 :
2200 1934970799 : for ( i = 0; i < n; i++ )
2201 : {
2202 1930886080 : z[2 * i] = x[i];
2203 1930886080 : z[2 * i + 1] = y[i];
2204 : }
2205 :
2206 4084719 : switch ( n )
2207 : {
2208 42368 : case ( 16 ):
2209 42368 : cdftForw( 2 * n, z, Ip_fft16, w_fft16 );
2210 42368 : break;
2211 0 : case ( 32 ):
2212 0 : cdftForw( 2 * n, z, Ip_fft32, w_fft32 );
2213 0 : break;
2214 779 : case ( 64 ):
2215 779 : cdftForw( 2 * n, z, Ip_fft64, w_fft64 );
2216 779 : break;
2217 8 : case ( 128 ):
2218 8 : cdftForw( 2 * n, z, Ip_fft128, w_fft128 );
2219 8 : break;
2220 543451 : case ( 256 ):
2221 543451 : cdftForw( 2 * n, z, Ip_fft256, w_fft256 );
2222 543451 : break;
2223 3498113 : case ( 512 ):
2224 3498113 : cdftForw( 2 * n, z, Ip_fft512, w_fft512 );
2225 3498113 : break;
2226 0 : default:
2227 0 : assert( 0 );
2228 : }
2229 :
2230 4084719 : x[0] = z[0];
2231 4084719 : y[0] = z[1];
2232 1930886080 : for ( i = 1; i < n; i++ )
2233 : {
2234 1926801361 : x[n - i] = z[2 * i];
2235 1926801361 : y[n - i] = z[2 * i + 1];
2236 : }
2237 :
2238 4084719 : return;
2239 : }
2240 :
2241 :
2242 5514 : void fft3(
2243 : const float X[],
2244 : float Y[],
2245 : const int16_t n )
2246 : {
2247 : float Z[PH_ECU_SPEC_SIZE];
2248 : float *Z0, *Z1, *Z2;
2249 : float *z0, *z1, *z2;
2250 : const float *x;
2251 5514 : const float *t_sin = sincos_t_rad3;
2252 : int16_t m, step, order;
2253 : int16_t i, j;
2254 : int16_t c1_ind, s1_ind, c2_ind, s2_ind;
2255 : int16_t c1_step, s1_step, c2_step, s2_step;
2256 : float *RY, *IY, *RZ0, *IZ0, *RZ1, *IZ1, *RZ2, *IZ2;
2257 :
2258 : /* Determine the order of the transform, the length of decimated */
2259 : /* transforms m, and the step for the sine and cosine tables. */
2260 5514 : switch ( n )
2261 : {
2262 1838 : case 1536:
2263 1838 : order = 9;
2264 1838 : m = 512;
2265 1838 : step = 1;
2266 1838 : break;
2267 3676 : case 384:
2268 3676 : order = 7;
2269 3676 : m = 128;
2270 3676 : step = 4;
2271 3676 : break;
2272 0 : default:
2273 0 : order = 9;
2274 0 : m = 512;
2275 0 : step = 1;
2276 : }
2277 :
2278 : /* Compose decimated sequences X[3i], X[3i+1],X[3i+2] */
2279 : /* compute their FFT of length m. */
2280 5514 : Z0 = &Z[0];
2281 5514 : z0 = &Z0[0];
2282 5514 : Z1 = &Z0[m];
2283 5514 : z1 = &Z1[0]; /* Z1 = &Z[ m]; */
2284 5514 : Z2 = &Z1[m];
2285 5514 : z2 = &Z2[0]; /* Z2 = &Z[2m]; */
2286 5514 : x = &X[0];
2287 1417098 : for ( i = 0; i < n / 3; i++ )
2288 : {
2289 1411584 : *z0++ = *x++; /* Z0[i] = X[3i]; */
2290 1411584 : *z1++ = *x++; /* Z1[i] = X[3i+1]; */
2291 1411584 : *z2++ = *x++; /* Z2[i] = X[3i+2]; */
2292 : }
2293 :
2294 5514 : fft_rel( &Z0[0], m, order );
2295 5514 : fft_rel( &Z1[0], m, order );
2296 5514 : fft_rel( &Z2[0], m, order );
2297 :
2298 : /* Butterflies of order 3. */
2299 : /* pointer initialization */
2300 5514 : RY = &Y[0];
2301 5514 : IY = &Y[n];
2302 5514 : RZ0 = &Z0[0];
2303 5514 : IZ0 = &Z0[m];
2304 5514 : RZ1 = &Z1[0];
2305 5514 : IZ1 = &Z1[m];
2306 5514 : RZ2 = &Z2[0];
2307 5514 : IZ2 = &Z2[m];
2308 :
2309 5514 : c1_step = -step;
2310 5514 : s1_step = step;
2311 5514 : c2_step = -2 * step;
2312 5514 : s2_step = 2 * step;
2313 5514 : c1_ind = T_SIN_PI_2 + c1_step;
2314 5514 : s1_ind = s1_step;
2315 5514 : c2_ind = T_SIN_PI_2 + c2_step;
2316 5514 : s2_ind = s2_step;
2317 :
2318 : /* special case: i = 0 */
2319 5514 : RY[0] = RZ0[0] + RZ1[0] + RZ2[0];
2320 :
2321 : /* first 3/12 */
2322 529344 : for ( i = 1; i < 3 * m / 8; i++, c1_ind += c1_step, s1_ind += s1_step, c2_ind += c2_step, s2_ind += s2_step )
2323 : {
2324 523830 : RY[i] = RZ0[i] + RZ1[i] * t_sin[c1_ind] + IZ1[-i] * t_sin[s1_ind] + RZ2[i] * t_sin[c2_ind] + IZ2[-i] * t_sin[s2_ind];
2325 523830 : IY[-i] = IZ0[-i] - RZ1[i] * t_sin[s1_ind] + IZ1[-i] * t_sin[c1_ind] - RZ2[i] * t_sin[s2_ind] + IZ2[-i] * t_sin[c2_ind];
2326 : }
2327 :
2328 : /* next 1/12 */
2329 181962 : for ( ; i < 4 * m / 8; i++, c1_ind += c1_step, s1_ind += s1_step, c2_ind -= c2_step, s2_ind -= s2_step )
2330 : {
2331 176448 : RY[i] = RZ0[i] + RZ1[i] * t_sin[c1_ind] + IZ1[-i] * t_sin[s1_ind] - RZ2[i] * t_sin[c2_ind] + IZ2[-i] * t_sin[s2_ind];
2332 176448 : IY[-i] = IZ0[-i] - RZ1[i] * t_sin[s1_ind] + IZ1[-i] * t_sin[c1_ind] - RZ2[i] * t_sin[s2_ind] - IZ2[-i] * t_sin[c2_ind];
2333 : }
2334 :
2335 : /* special case: i = m/2 i.e. 1/3 */
2336 5514 : RY[i] = RZ0[i] + RZ1[i] * t_sin[c1_ind] - RZ2[i] * t_sin[c2_ind];
2337 5514 : IY[-i] = -RZ1[i] * t_sin[s1_ind] - RZ2[i] * t_sin[s2_ind];
2338 5514 : i++;
2339 :
2340 5514 : c1_ind += c1_step, s1_ind += s1_step, c2_ind -= c2_step, s2_ind -= s2_step;
2341 :
2342 : /* next 2/12 */
2343 352896 : for ( j = i - 2; i < 6 * m / 8; i++, j--, c1_ind += c1_step, s1_ind += s1_step, c2_ind -= c2_step, s2_ind -= s2_step )
2344 : {
2345 347382 : RY[i] = RZ0[j] + RZ1[j] * t_sin[c1_ind] - IZ1[-j] * t_sin[s1_ind] - RZ2[j] * t_sin[c2_ind] - IZ2[-j] * t_sin[s2_ind];
2346 347382 : IY[-i] = -IZ0[-j] - RZ1[j] * t_sin[s1_ind] - IZ1[-j] * t_sin[c1_ind] - RZ2[j] * t_sin[s2_ind] + IZ2[-j] * t_sin[c2_ind];
2347 : }
2348 :
2349 : /*--------------------------half--------------------------*/
2350 : /* next 2/12 */
2351 358410 : for ( ; i < 8 * m / 8; i++, j--, c1_ind -= c1_step, s1_ind -= s1_step, c2_ind += c2_step, s2_ind += s2_step )
2352 : {
2353 352896 : RY[i] = RZ0[j] - RZ1[j] * t_sin[c1_ind] - IZ1[-j] * t_sin[s1_ind] - RZ2[j] * t_sin[c2_ind] + IZ2[-j] * t_sin[s2_ind];
2354 352896 : IY[-i] = -IZ0[-j] - RZ1[j] * t_sin[s1_ind] + IZ1[-j] * t_sin[c1_ind] + RZ2[j] * t_sin[s2_ind] + IZ2[-j] * t_sin[c2_ind];
2355 : }
2356 :
2357 : /* special case: i = m, i.e 2/3 */
2358 5514 : RY[i] = RZ0[j] - RZ1[j] * t_sin[c1_ind] - RZ2[j] * t_sin[c2_ind];
2359 5514 : IY[-i++] = -RZ1[j] * t_sin[s1_ind] + RZ2[j] * t_sin[s2_ind];
2360 5514 : c1_ind -= c1_step, s1_ind -= s1_step, c2_ind += c2_step, s2_ind += s2_step;
2361 :
2362 : /* next 1/12 */
2363 176448 : for ( j = 1; i < 9 * m / 8; i++, j++, c1_ind -= c1_step, s1_ind -= s1_step, c2_ind += c2_step, s2_ind += s2_step )
2364 : {
2365 170934 : RY[i] = RZ0[j] - RZ1[j] * t_sin[c1_ind] + IZ1[-j] * t_sin[s1_ind] - RZ2[j] * t_sin[c2_ind] - IZ2[-j] * t_sin[s2_ind];
2366 170934 : IY[-i] = IZ0[-j] - RZ1[j] * t_sin[s1_ind] - IZ1[-j] * t_sin[c1_ind] + RZ2[j] * t_sin[s2_ind] - IZ2[-j] * t_sin[c2_ind];
2367 : }
2368 :
2369 : /* last 3/12 */
2370 534858 : for ( ; i < 12 * m / 8; i++, j++, c1_ind -= c1_step, s1_ind -= s1_step, c2_ind -= c2_step, s2_ind -= s2_step )
2371 : {
2372 529344 : RY[i] = RZ0[j] - RZ1[j] * t_sin[c1_ind] + IZ1[-j] * t_sin[s1_ind] + RZ2[j] * t_sin[c2_ind] - IZ2[-j] * t_sin[s2_ind];
2373 529344 : IY[-i] = IZ0[-j] - RZ1[j] * t_sin[s1_ind] - IZ1[-j] * t_sin[c1_ind] + RZ2[j] * t_sin[s2_ind] + IZ2[-j] * t_sin[c2_ind];
2374 : }
2375 :
2376 : /* special case: i = 3*m/2 */
2377 5514 : RY[i] = RZ0[j] - RZ1[j] * t_sin[c1_ind] + RZ2[j] * t_sin[c2_ind];
2378 :
2379 5514 : return;
2380 : }
2381 :
2382 4189 : void ifft3(
2383 : const float Z[],
2384 : float X[],
2385 : const int16_t n )
2386 : {
2387 : float Y[PH_ECU_SPEC_SIZE];
2388 4189 : const float *t_sin = sincos_t_rad3;
2389 : int16_t m, step, step2, order;
2390 : int16_t i;
2391 : int16_t c0_ind, s0_ind, c1_ind, s1_ind, c2_ind, s2_ind;
2392 : float scale;
2393 : const float *RZ0, *IZ0, *RZ1, *IZ1, *RZ2, *IZ2;
2394 : float *RY0, *IY0, *RY1, *IY1, *RY2, *IY2, *y0, *y1, *y2;
2395 :
2396 : /* Determine the order of the transform, the length of decimated */
2397 : /* transforms m, and the step for the sine and cosine tables. */
2398 4189 : switch ( n )
2399 : {
2400 4189 : case 1536:
2401 4189 : order = 9;
2402 4189 : m = 512;
2403 4189 : step = 1;
2404 4189 : break;
2405 0 : case 384:
2406 0 : order = 7;
2407 0 : m = 128;
2408 0 : step = 4;
2409 0 : break;
2410 0 : default:
2411 0 : order = 9;
2412 0 : m = 512;
2413 0 : step = 1;
2414 : }
2415 :
2416 : /* pointer initialization */
2417 4189 : RY0 = &Y[0];
2418 4189 : IY0 = &RY0[m];
2419 4189 : RY1 = &RY0[m];
2420 4189 : IY1 = &RY1[m];
2421 4189 : RY2 = &RY1[m];
2422 4189 : IY2 = &RY2[m];
2423 :
2424 4189 : RZ0 = &Z[0];
2425 4189 : RZ1 = RZ0 + m;
2426 4189 : RZ2 = RZ0 + n / 2 - m / 2;
2427 4189 : IZ0 = &Z[n];
2428 4189 : IZ1 = IZ0 - m;
2429 4189 : IZ2 = IZ0 - n / 2 + m / 2;
2430 :
2431 : /* Inverse butterflies of order 3. */
2432 :
2433 : /* Construction of Y0 */
2434 4189 : RY0[0] = RZ0[0] + RZ1[0] + RZ2[0];
2435 1072384 : for ( i = 1; i < m / 2; i++ )
2436 : {
2437 1068195 : RY0[i] = RZ0[i] + RZ1[i] + RZ2[-i];
2438 1068195 : IY0[-i] = IZ0[-i] + IZ1[-i] - IZ2[i];
2439 : }
2440 :
2441 : /* m/2 */
2442 4189 : RY0[i] = RZ0[i] + RZ1[i] + RZ2[-i];
2443 :
2444 : /* Construction of Y1 */
2445 4189 : c0_ind = T_SIN_PI_2;
2446 4189 : s0_ind = 0;
2447 4189 : c1_ind = T_SIN_PI_2 * 1 / 3;
2448 4189 : s1_ind = T_SIN_PI_2 * 2 / 3;
2449 4189 : c2_ind = T_SIN_PI_2 * 1 / 3;
2450 4189 : s2_ind = T_SIN_PI_2 * 2 / 3;
2451 :
2452 4189 : RY1[0] = RZ0[0] * t_sin[c0_ind] - RZ1[0] * t_sin[c1_ind] - RZ2[0] * t_sin[c2_ind] - IZ1[0] * t_sin[s1_ind] - IZ2[0] * t_sin[s2_ind];
2453 :
2454 4189 : c0_ind -= step, s0_ind += step, c1_ind += step, s1_ind -= step, c2_ind -= step, s2_ind += step;
2455 536192 : for ( i = 1; i < m / 4; i++, c0_ind -= step, s0_ind += step, c1_ind += step, s1_ind -= step, c2_ind -= step, s2_ind += step )
2456 : {
2457 532003 : RY1[i] = RZ0[i] * t_sin[c0_ind] - RZ1[i] * t_sin[c1_ind] - RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] - IZ1[-i] * t_sin[s1_ind] - IZ2[i] * t_sin[s2_ind];
2458 532003 : IY1[-i] = IZ0[-i] * t_sin[c0_ind] - IZ1[-i] * t_sin[c1_ind] + IZ2[i] * t_sin[c2_ind] + RZ0[i] * t_sin[s0_ind] + RZ1[i] * t_sin[s1_ind] - RZ2[-i] * t_sin[s2_ind];
2459 : }
2460 :
2461 540381 : for ( ; i < m / 2; i++, c0_ind -= step, s0_ind += step, c1_ind += step, s1_ind -= step, c2_ind += step, s2_ind -= step )
2462 : {
2463 536192 : RY1[i] = RZ0[i] * t_sin[c0_ind] - RZ1[i] * t_sin[c1_ind] + RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] - IZ1[-i] * t_sin[s1_ind] - IZ2[i] * t_sin[s2_ind];
2464 536192 : IY1[-i] = IZ0[-i] * t_sin[c0_ind] - IZ1[-i] * t_sin[c1_ind] - IZ2[i] * t_sin[c2_ind] + RZ0[i] * t_sin[s0_ind] + RZ1[i] * t_sin[s1_ind] - RZ2[-i] * t_sin[s2_ind];
2465 : }
2466 :
2467 : /* m/2 */
2468 4189 : RY1[i] = RZ0[i] * t_sin[c0_ind] - RZ1[i] * t_sin[c1_ind] + RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] - IZ1[-i] * t_sin[s1_ind] - IZ2[i] * t_sin[s2_ind];
2469 :
2470 : /* Construction of Y2 */
2471 4189 : c0_ind = T_SIN_PI_2;
2472 4189 : s0_ind = 0;
2473 4189 : c1_ind = T_SIN_PI_2 * 1 / 3;
2474 4189 : s1_ind = T_SIN_PI_2 * 2 / 3;
2475 4189 : c2_ind = T_SIN_PI_2 * 1 / 3;
2476 4189 : s2_ind = T_SIN_PI_2 * 2 / 3;
2477 4189 : step2 = 2 * step;
2478 4189 : RY2[0] = RZ0[0] * t_sin[c0_ind] - RZ1[0] * t_sin[c1_ind] - RZ2[0] * t_sin[c2_ind] + IZ1[0] * t_sin[s1_ind] + IZ2[0] * t_sin[s2_ind];
2479 :
2480 4189 : c0_ind -= step2, s0_ind += step2, c1_ind -= step2, s1_ind += step2, c2_ind += step2, s2_ind -= step2;
2481 268096 : for ( i = 1; i < m / 8; i++, c0_ind -= step2, s0_ind += step2, c1_ind -= step2, s1_ind += step2, c2_ind += step2, s2_ind -= step2 )
2482 : {
2483 263907 : RY2[i] = RZ0[i] * t_sin[c0_ind] - RZ1[i] * t_sin[c1_ind] - RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] + IZ1[-i] * t_sin[s1_ind] + IZ2[i] * t_sin[s2_ind];
2484 263907 : IY2[-i] = IZ0[-i] * t_sin[c0_ind] - IZ1[-i] * t_sin[c1_ind] + IZ2[i] * t_sin[c2_ind] + RZ0[i] * t_sin[s0_ind] - RZ1[i] * t_sin[s1_ind] + RZ2[-i] * t_sin[s2_ind];
2485 : }
2486 :
2487 272285 : for ( ; i < m / 4; i++, c0_ind -= step2, s0_ind += step2, c1_ind += step2, s1_ind -= step2, c2_ind += step2, s2_ind -= step2 )
2488 : {
2489 268096 : RY2[i] = RZ0[i] * t_sin[c0_ind] + RZ1[i] * t_sin[c1_ind] - RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] + IZ1[-i] * t_sin[s1_ind] + IZ2[i] * t_sin[s2_ind];
2490 268096 : IY2[-i] = IZ0[-i] * t_sin[c0_ind] + IZ1[-i] * t_sin[c1_ind] + IZ2[i] * t_sin[c2_ind] + RZ0[i] * t_sin[s0_ind] - RZ1[i] * t_sin[s1_ind] + RZ2[-i] * t_sin[s2_ind];
2491 : }
2492 :
2493 272285 : for ( ; i < 3 * m / 8; i++, c0_ind -= step2, s0_ind += step2, c1_ind += step2, s1_ind -= step2, c2_ind -= step2, s2_ind += step2 )
2494 : {
2495 268096 : RY2[i] = RZ0[i] * t_sin[c0_ind] + RZ1[i] * t_sin[c1_ind] - RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] + IZ1[-i] * t_sin[s1_ind] - IZ2[i] * t_sin[s2_ind];
2496 268096 : IY2[-i] = IZ0[-i] * t_sin[c0_ind] + IZ1[-i] * t_sin[c1_ind] + IZ2[i] * t_sin[c2_ind] + RZ0[i] * t_sin[s0_ind] - RZ1[i] * t_sin[s1_ind] - RZ2[-i] * t_sin[s2_ind];
2497 : }
2498 :
2499 272285 : for ( ; i < m / 2; i++, c0_ind += step2, s0_ind -= step2, c1_ind += step2, s1_ind -= step2, c2_ind -= step2, s2_ind += step2 )
2500 : {
2501 268096 : RY2[i] = -RZ0[i] * t_sin[c0_ind] + RZ1[i] * t_sin[c1_ind] - RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] + IZ1[-i] * t_sin[s1_ind] - IZ2[i] * t_sin[s2_ind];
2502 268096 : IY2[-i] = -IZ0[-i] * t_sin[c0_ind] + IZ1[-i] * t_sin[c1_ind] + IZ2[i] * t_sin[c2_ind] + RZ0[i] * t_sin[s0_ind] - RZ1[i] * t_sin[s1_ind] - RZ2[-i] * t_sin[s2_ind];
2503 : }
2504 :
2505 : /* m/2 */
2506 4189 : RY2[i] = -RZ0[i] * t_sin[c0_ind] + RZ1[i] * t_sin[c1_ind] - RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] + IZ1[-i] * t_sin[s1_ind] - IZ2[i] * t_sin[s2_ind];
2507 :
2508 : /* Compute the inverse FFT for all 3 blocks. */
2509 4189 : ifft_rel( RY0, m, order );
2510 4189 : ifft_rel( RY1, m, order );
2511 4189 : ifft_rel( RY2, m, order );
2512 :
2513 4189 : y0 = RY0;
2514 4189 : y1 = RY1;
2515 4189 : y2 = RY2;
2516 :
2517 : /* Interlacing and scaling, scale = 1/3 */
2518 4189 : scale = 1.0f / 3;
2519 2148957 : for ( i = 0; i < n; )
2520 : {
2521 2144768 : X[i++] = ( *y0++ ) * scale;
2522 2144768 : X[i++] = ( *y1++ ) * scale;
2523 2144768 : X[i++] = ( *y2++ ) * scale;
2524 : }
2525 :
2526 4189 : return;
2527 : }
2528 :
2529 :
2530 2081972 : static void rfft_post(
2531 : const float *sine_table,
2532 : float *buf,
2533 : const int16_t len )
2534 : {
2535 : float tmp1, tmp2, tmp3, tmp4, s, c;
2536 2081972 : int16_t i = 0;
2537 :
2538 2081972 : tmp1 = buf[0] + buf[1];
2539 2081972 : buf[1] = buf[0] - buf[1];
2540 2081972 : buf[0] = tmp1;
2541 :
2542 335197492 : for ( i = 1; i <= ( len + 2 ) / 4; i++ )
2543 : {
2544 333115520 : s = sine_table[i]; /* sin(pi*i/(len/2)) */
2545 333115520 : c = sine_table[i + len / 4]; /* cos(pi*i/(len/2)) */
2546 :
2547 333115520 : tmp1 = buf[2 * i] - buf[len - 2 * i];
2548 333115520 : tmp2 = buf[2 * i + 1] + buf[len - 2 * i + 1];
2549 333115520 : tmp3 = s * tmp1 - c * tmp2; /* real part of j*W(k,N)*[T(k) - T'(N-k)] */
2550 333115520 : tmp4 = c * tmp1 + s * tmp2; /* imag part of j*W(k,N)*[T(k) - T'(N-k)] */
2551 333115520 : tmp1 = buf[2 * i] + buf[len - 2 * i];
2552 333115520 : tmp2 = buf[2 * i + 1] - buf[len - 2 * i + 1];
2553 :
2554 333115520 : buf[2 * i] = 0.5f * ( tmp1 - tmp3 );
2555 333115520 : buf[2 * i + 1] = 0.5f * ( tmp2 - tmp4 );
2556 333115520 : buf[len - 2 * i] = 0.5f * ( tmp1 + tmp3 );
2557 333115520 : buf[len - 2 * i + 1] = -0.5f * ( tmp2 + tmp4 );
2558 : }
2559 2081972 : }
2560 :
2561 1923287 : static void rfft_pre(
2562 : const float *sine_table,
2563 : float *buf,
2564 : const int16_t len )
2565 : {
2566 1923287 : const float scale = 1.0f / len;
2567 : float tmp1, tmp2, tmp3, tmp4, s, c;
2568 1923287 : int16_t i = 0;
2569 :
2570 1923287 : tmp1 = buf[0] + buf[1];
2571 1923287 : buf[1] = scale * ( buf[0] - buf[1] );
2572 1923287 : buf[0] = scale * tmp1;
2573 :
2574 309649207 : for ( i = 1; i <= ( len + 2 ) / 4; i++ )
2575 : {
2576 307725920 : s = sine_table[i]; /* sin(pi*i/(len/2)) */
2577 307725920 : c = sine_table[i + len / 4]; /* cos(pi*i/(len/2)) */
2578 :
2579 307725920 : tmp1 = buf[2 * i] - buf[len - 2 * i];
2580 307725920 : tmp2 = buf[2 * i + 1] + buf[len - 2 * i + 1];
2581 307725920 : tmp3 = s * tmp1 + c * tmp2; /* real part of j*W(k,N)*[T(k) - T'(N-k)] */
2582 307725920 : tmp4 = -c * tmp1 + s * tmp2; /* imag part of j*W(k,N)*[T(k) - T'(N-k)] */
2583 307725920 : tmp1 = buf[2 * i] + buf[len - 2 * i];
2584 307725920 : tmp2 = buf[2 * i + 1] - buf[len - 2 * i + 1];
2585 :
2586 307725920 : buf[2 * i] = scale * ( tmp1 + tmp3 );
2587 307725920 : buf[2 * i + 1] = -scale * ( tmp2 + tmp4 );
2588 307725920 : buf[len - 2 * i] = scale * ( tmp1 - tmp3 );
2589 307725920 : buf[len - 2 * i + 1] = scale * ( tmp2 - tmp4 );
2590 : }
2591 :
2592 1923287 : return;
2593 : }
2594 :
2595 6647215 : int16_t RFFTN(
2596 : float *data,
2597 : const float *sine_table,
2598 : const int16_t len,
2599 : const int16_t sign )
2600 : {
2601 6647215 : assert( len <= 640 && len > 0 );
2602 :
2603 6647215 : if ( len == 640 )
2604 : {
2605 : float x[320], y[320];
2606 : int16_t i;
2607 :
2608 4005259 : if ( sign != -1 )
2609 : {
2610 1923287 : rfft_pre( sine_table, data, len );
2611 : }
2612 :
2613 1285688139 : for ( i = 0; i < 320; i++ )
2614 : {
2615 1281682880 : x[i] = data[2 * i];
2616 1281682880 : y[i] = data[2 * i + 1];
2617 : }
2618 4005259 : DoRTFT320( x, y );
2619 1285688139 : for ( i = 0; i < 320; i++ )
2620 : {
2621 1281682880 : data[2 * i] = x[i];
2622 1281682880 : data[2 * i + 1] = y[i];
2623 : }
2624 :
2625 4005259 : if ( sign == -1 )
2626 : {
2627 2081972 : rfft_post( sine_table, data, len );
2628 : }
2629 : }
2630 : else
2631 : {
2632 2641956 : if ( len == 512 )
2633 : {
2634 : int16_t i;
2635 2641956 : const int16_t log2 = 9;
2636 : float reordered_data[512];
2637 :
2638 2641956 : if ( sign == -1 )
2639 : {
2640 1552247 : fft_rel( data, len, log2 );
2641 1552247 : reordered_data[0] = data[0];
2642 1552247 : reordered_data[1] = data[len / 2];
2643 397375232 : for ( i = 1; i < len / 2; i++ )
2644 : {
2645 395822985 : reordered_data[2 * i] = data[i];
2646 395822985 : reordered_data[2 * i + 1] = data[len - i];
2647 : }
2648 : }
2649 : else
2650 : {
2651 1089709 : reordered_data[0] = data[0];
2652 1089709 : reordered_data[len / 2] = data[1];
2653 278965504 : for ( i = 1; i < len / 2; i++ )
2654 : {
2655 277875795 : reordered_data[i] = data[2 * i];
2656 277875795 : reordered_data[len - i] = data[2 * i + 1];
2657 : }
2658 1089709 : ifft_rel( reordered_data, len, log2 );
2659 : }
2660 2641956 : mvr2r( reordered_data, data, len );
2661 : }
2662 : else
2663 : {
2664 0 : assert( !"Not supported FFT length!" );
2665 : }
2666 : }
2667 :
2668 6647215 : return 0;
2669 : }
2670 :
2671 313381290 : static void butterfly(
2672 : const float a,
2673 : const float b,
2674 : float *aPlusb,
2675 : float *aMinusb )
2676 : {
2677 313381290 : *aPlusb = a + b;
2678 313381290 : *aMinusb = a - b;
2679 :
2680 313381290 : return;
2681 : }
2682 :
2683 207413760 : static void fft2(
2684 : float *pInOut )
2685 : {
2686 : /* FFT MATRIX:
2687 : 1.0000 1.0000
2688 : 1.0000 -1.0000
2689 : */
2690 : float re1, im1;
2691 : float re2, im2;
2692 :
2693 207413760 : re1 = pInOut[0];
2694 207413760 : im1 = pInOut[1];
2695 207413760 : re2 = pInOut[2];
2696 207413760 : im2 = pInOut[3];
2697 207413760 : pInOut[0] = re1 + re2;
2698 207413760 : pInOut[1] = im1 + im2;
2699 :
2700 207413760 : pInOut[2] = re1 - re2;
2701 207413760 : pInOut[3] = im1 - im2;
2702 :
2703 207413760 : return;
2704 : }
2705 :
2706 : static const float C31 = 0.5f; /* cos(PI/3); sin(2*PI/3) */
2707 : static const float C32 = 0.866025403784439f; /* cos(PI/3); sin(2*PI/3) */
2708 :
2709 138298640 : static void fft3_2(
2710 : float *pInOut )
2711 : {
2712 : float re1, im1;
2713 : float re2, im2;
2714 : float re3, im3;
2715 :
2716 : float tmp1, tmp2;
2717 : float tmp3, tmp4;
2718 :
2719 138298640 : re1 = pInOut[0];
2720 138298640 : im1 = pInOut[1];
2721 138298640 : re2 = pInOut[2];
2722 138298640 : im2 = pInOut[3];
2723 138298640 : re3 = pInOut[4];
2724 138298640 : im3 = pInOut[5];
2725 :
2726 : /* FFT MATRIX:
2727 : 1.0000 1.0000 1.0000
2728 : C31 C32
2729 : 1.0000 -0.5000 - 0.8660i -0.5000 + 0.8660i
2730 : 1.0000 -0.5000 + 0.8660i -0.5000 - 0.8660i
2731 : */
2732 138298640 : tmp1 = re2 + re3;
2733 138298640 : tmp3 = im2 + im3;
2734 138298640 : tmp2 = re2 - re3;
2735 138298640 : tmp4 = im2 - im3;
2736 138298640 : pInOut[0] = re1 + tmp1;
2737 138298640 : pInOut[1] = im1 + tmp3;
2738 138298640 : pInOut[2] = re1 - C31 * tmp1 + C32 * tmp4;
2739 138298640 : pInOut[4] = re1 - C31 * tmp1 - C32 * tmp4;
2740 :
2741 138298640 : pInOut[3] = im1 - C32 * tmp2 - C31 * tmp3;
2742 138298640 : pInOut[5] = im1 + C32 * tmp2 - C31 * tmp3;
2743 138298640 : }
2744 :
2745 :
2746 2275 : static void fft4(
2747 : float *pInOut )
2748 : {
2749 : float re1, im1;
2750 : float re2, im2;
2751 : float re3, im3;
2752 : float re4, im4;
2753 :
2754 : float tmp1, tmp2;
2755 : float tmp3, tmp4;
2756 : float tmp5, tmp6;
2757 : float tmp7, tmp8;
2758 :
2759 2275 : re1 = pInOut[0];
2760 2275 : im1 = pInOut[1];
2761 2275 : re2 = pInOut[2];
2762 2275 : im2 = pInOut[3];
2763 2275 : re3 = pInOut[4];
2764 2275 : im3 = pInOut[5];
2765 2275 : re4 = pInOut[6];
2766 2275 : im4 = pInOut[7];
2767 :
2768 : /*
2769 : 1.0000 1.0000 1.0000 1.0000
2770 : 1.0000 -1.0000i -1.0000 1.0000i
2771 : 1.0000 -1.0000 1.0000 -1.0000
2772 : 1.0000 1.0000i -1.0000 -1.0000i
2773 : */
2774 2275 : tmp1 = re1 + re3;
2775 2275 : tmp3 = re2 + re4;
2776 2275 : tmp5 = im1 + im3;
2777 2275 : tmp7 = im2 + im4;
2778 2275 : pInOut[0] = tmp1 + tmp3;
2779 2275 : pInOut[4] = tmp1 - tmp3;
2780 :
2781 2275 : pInOut[1] = tmp5 + tmp7;
2782 2275 : pInOut[5] = tmp5 - tmp7;
2783 2275 : tmp2 = re1 - re3;
2784 2275 : tmp4 = re2 - re4;
2785 2275 : tmp6 = im1 - im3;
2786 2275 : tmp8 = im2 - im4;
2787 2275 : pInOut[2] = tmp2 + tmp8;
2788 2275 : pInOut[6] = tmp2 - tmp8;
2789 :
2790 2275 : pInOut[3] = -tmp4 + tmp6;
2791 2275 : pInOut[7] = tmp4 + tmp6;
2792 :
2793 2275 : return;
2794 : }
2795 :
2796 : static const float C51 = 0.309016994374947f; /* cos(2*PI/5); */
2797 : static const float C52 = 0.951056516295154f; /* sin(2*PI/5); */
2798 : static const float C53 = 0.809016994374947f; /* cos( PI/5); */
2799 : static const float C54 = 0.587785252292473f; /* sin( PI/5); */
2800 :
2801 84265784 : static void fft5(
2802 : float *pInOut )
2803 : {
2804 : float re1, im1;
2805 : float re2, im2;
2806 : float re3, im3;
2807 : float re4, im4;
2808 : float re5, im5;
2809 :
2810 : float tmp1, tmp2;
2811 : float tmp3, tmp4;
2812 : float tmp5, tmp6;
2813 : float tmp7, tmp8;
2814 :
2815 :
2816 84265784 : re1 = pInOut[0];
2817 84265784 : im1 = pInOut[1];
2818 84265784 : re2 = pInOut[2];
2819 84265784 : im2 = pInOut[3];
2820 84265784 : re3 = pInOut[4];
2821 84265784 : im3 = pInOut[5];
2822 84265784 : re4 = pInOut[6];
2823 84265784 : im4 = pInOut[7];
2824 84265784 : re5 = pInOut[8];
2825 84265784 : im5 = pInOut[9];
2826 :
2827 : /*
2828 : 1.0000 1.0000 1.0000 1.0000 1.0000
2829 : C51 C52 C53 C54
2830 : 1.0000 0.3090 - 0.9511i -0.8090 - 0.5878i -0.8090 + 0.5878i 0.3090 + 0.9511i
2831 : 1.0000 -0.8090 - 0.5878i 0.3090 + 0.9511i 0.3090 - 0.9511i -0.8090 + 0.5878i
2832 : 1.0000 -0.8090 + 0.5878i 0.3090 - 0.9511i 0.3090 + 0.9511i -0.8090 - 0.5878i
2833 : 1.0000 0.3090 + 0.9511i -0.8090 + 0.5878i -0.8090 - 0.5878i 0.3090 - 0.9511i
2834 : */
2835 84265784 : tmp1 = re2 + re5;
2836 84265784 : tmp2 = re2 - re5;
2837 84265784 : tmp3 = im2 + im5;
2838 84265784 : tmp4 = im2 - im5;
2839 84265784 : tmp5 = re3 + re4;
2840 84265784 : tmp6 = re3 - re4;
2841 84265784 : tmp7 = im3 + im4;
2842 84265784 : tmp8 = im3 - im4;
2843 :
2844 :
2845 84265784 : pInOut[0] = re1 + tmp1 + tmp5;
2846 84265784 : pInOut[1] = im1 + tmp3 + tmp7;
2847 :
2848 84265784 : pInOut[2] = re1 + C51 * tmp1 - C53 * tmp5 + C52 * tmp4 + C54 * tmp8;
2849 84265784 : pInOut[8] = re1 + C51 * tmp1 - C53 * tmp5 - C52 * tmp4 - C54 * tmp8;
2850 84265784 : pInOut[3] = im1 - C52 * tmp2 - C54 * tmp6 + C51 * tmp3 - C53 * tmp7;
2851 84265784 : pInOut[9] = im1 + C52 * tmp2 + C54 * tmp6 + C51 * tmp3 - C53 * tmp7;
2852 84265784 : pInOut[4] = re1 - C53 * tmp1 + C51 * tmp5 + C54 * tmp4 - C52 * tmp8;
2853 84265784 : pInOut[6] = re1 - C53 * tmp1 + C51 * tmp5 - C54 * tmp4 + C52 * tmp8;
2854 84265784 : pInOut[5] = im1 - C54 * tmp2 + C52 * tmp6 - C53 * tmp3 + C51 * tmp7;
2855 84265784 : pInOut[7] = im1 + C54 * tmp2 - C52 * tmp6 - C53 * tmp3 + C51 * tmp7;
2856 :
2857 84265784 : return;
2858 : }
2859 :
2860 : static const float C81 = 0.707106781186548f; /* cos(PI/4); */
2861 :
2862 52230215 : static void fft8_2(
2863 : float *pInOut )
2864 : {
2865 : float re0, im0, re4, im4;
2866 :
2867 : float re1_7p, re1_7m;
2868 : float im1_7p, im1_7m;
2869 : float re2_6p, re2_6m;
2870 : float im2_6p, im2_6m;
2871 : float re3_5p, re3_5m;
2872 : float im3_5p, im3_5m;
2873 :
2874 52230215 : re0 = pInOut[0];
2875 52230215 : im0 = pInOut[1];
2876 52230215 : re4 = pInOut[8];
2877 52230215 : im4 = pInOut[9];
2878 52230215 : butterfly( pInOut[1 * 2], pInOut[7 * 2], &re1_7p, &re1_7m );
2879 52230215 : butterfly( pInOut[1 * 2 + 1], pInOut[7 * 2 + 1], &im1_7p, &im1_7m );
2880 52230215 : butterfly( pInOut[2 * 2], pInOut[6 * 2], &re2_6p, &re2_6m );
2881 52230215 : butterfly( pInOut[2 * 2 + 1], pInOut[6 * 2 + 1], &im2_6p, &im2_6m );
2882 52230215 : butterfly( pInOut[3 * 2], pInOut[5 * 2], &re3_5p, &re3_5m );
2883 52230215 : butterfly( pInOut[3 * 2 + 1], pInOut[5 * 2 + 1], &im3_5p, &im3_5m );
2884 :
2885 : /*
2886 : 0: 1 + 0i 1 + 0i 1 + 0i 1 + 0i 1 + 0i 1 + 0i 1 + 0i 1 + 0i
2887 : 1: 1 + 0i C81 - C81i 0 - 1i -C81 - C81i -1 - 0i -C81 + C81i - 0 + 1i C81 + C81i
2888 : 2: 1 + 0i 0 - 1i -1 - 0i - 0 + 1i 1 + 0i 0 - 1i - 1 - 0i - 0 + 1i
2889 : 3: 1 + 0i -C81 - C81i -0 + 1i C81 - C81i -1 - 0i C81 + C81i 0 - 1i -C81 + C81i
2890 : 4: 1 + 0i - 1 - 0i 1 + 0i - 1 - 0i 1 + 0i - 1 - 0i 1 + 0i - 1 - 0i
2891 : 5: 1 + 0i -C81 + C81i 0 - 1i C81 + C81i -1 - 0i C81 - C81i - 0 + 1i -C81 - C81i
2892 : 6: 1 + 0i - 0 + 1i -1 - 0i 0 - 1i 1 + 0i - 0 + 1i - 1 - 0i - 0 - 1i
2893 : 7: 1 + 0i C81 + C81i -0 + 1i -C81 + C81i -1 - 0i -C81 - C81i - 0 - 1i C81 - C81i
2894 : */
2895 52230215 : pInOut[0] = re0 + re4 + re1_7p + re2_6p + re3_5p;
2896 52230215 : pInOut[1] = im0 + im4 + im1_7p + im2_6p + im3_5p;
2897 :
2898 52230215 : pInOut[2] = re0 + C81 * ( re1_7p - re3_5p ) - re4 + C81 * ( im1_7m + im3_5m ) + im2_6m;
2899 52230215 : pInOut[3] = im0 + C81 * ( im1_7p - im3_5p ) - im4 - C81 * ( re1_7m + re3_5m ) - re2_6m;
2900 :
2901 52230215 : pInOut[4] = re0 - re2_6p + re4 + im1_7m - im3_5m;
2902 52230215 : pInOut[5] = im0 - im2_6p + im4 - re1_7m + re3_5m;
2903 :
2904 52230215 : pInOut[6] = re0 + C81 * ( -re1_7p + re3_5p ) - re4 + C81 * ( im1_7m + im3_5m ) - im2_6m;
2905 52230215 : pInOut[7] = im0 + C81 * ( -im1_7p + im3_5p ) - im4 - C81 * ( re1_7m + re3_5m ) + re2_6m;
2906 :
2907 52230215 : pInOut[8] = re0 - re1_7p + re2_6p - re3_5p + re4;
2908 52230215 : pInOut[9] = im0 - im1_7p + im2_6p - im3_5p + im4;
2909 :
2910 52230215 : pInOut[10] = re0 + C81 * ( -re1_7p + re3_5p ) - re4 - C81 * ( im1_7m + im3_5m ) + im2_6m;
2911 52230215 : pInOut[11] = im0 + C81 * ( -im1_7p + im3_5p ) - im4 + C81 * ( re1_7m + re3_5m ) - re2_6m;
2912 :
2913 52230215 : pInOut[12] = re0 - re2_6p + re4 - im1_7m + im3_5m;
2914 52230215 : pInOut[13] = im0 - im2_6p + im4 + re1_7m - re3_5m;
2915 :
2916 52230215 : pInOut[14] = re0 + C81 * ( re1_7p - re3_5p ) - re4 - C81 * ( im1_7m + im3_5m ) - im2_6m;
2917 52230215 : pInOut[15] = im0 + C81 * ( im1_7p - im3_5p ) - im4 + C81 * ( re1_7m + re3_5m ) + re2_6m;
2918 :
2919 52230215 : return;
2920 : }
2921 :
2922 52549060 : static void nextFFT(
2923 : float *x,
2924 : const int16_t length )
2925 : {
2926 52549060 : switch ( length )
2927 : {
2928 0 : case 2:
2929 0 : fft2( x );
2930 0 : break;
2931 0 : case 3:
2932 0 : fft3_2( x );
2933 0 : break;
2934 0 : case 4:
2935 0 : fft4( x );
2936 0 : break;
2937 695620 : case 5:
2938 695620 : fft5( x );
2939 695620 : break;
2940 51853440 : case 8:
2941 51853440 : fft8_2( x );
2942 51853440 : break;
2943 0 : default:
2944 0 : assert( !"length not supported" );
2945 : break;
2946 : }
2947 :
2948 52549060 : return;
2949 : }
2950 :
2951 : static const int16_t CTFFTfactors[] = { 9, 8, 7, 5, 4, 3, 2, 0 };
2952 :
2953 26065844 : static __inline int16_t findFactor(
2954 : const int16_t length )
2955 : {
2956 26065844 : int16_t i = 0;
2957 26065844 : int16_t factor = 0;
2958 :
2959 52409936 : while ( CTFFTfactors[i] != 0 )
2960 : {
2961 52409936 : if ( 0 == ( length % CTFFTfactors[i] ) )
2962 : {
2963 26065844 : factor = CTFFTfactors[i];
2964 26065844 : break;
2965 : }
2966 26344092 : i++;
2967 : }
2968 26065844 : return factor;
2969 : }
2970 :
2971 26065844 : static __inline void twiddle(
2972 : float *x,
2973 : const int16_t length,
2974 : const int16_t n1,
2975 : const int16_t n2 )
2976 : {
2977 : int16_t i, ii;
2978 26065844 : double pi = 4. * atan( 1. );
2979 : float sinValOrg, cosValOrg;
2980 26065844 : float sinVal = 0.f, cosVal = 1.f;
2981 26065844 : float twReal = 0.f, twImag = 1.f;
2982 :
2983 26065844 : cosValOrg = (float) cos( -2 * pi * 1. / (double) length );
2984 26065844 : sinValOrg = (float) sin( -2 * pi * 1. / (double) length );
2985 208109380 : for ( i = 1; i < n1; i++ )
2986 : {
2987 : float tmp;
2988 182043536 : twReal = 1.f;
2989 182043536 : twImag = 0.f;
2990 182043536 : tmp = cosVal * cosValOrg - sinVal * sinValOrg;
2991 182043536 : sinVal = sinVal * cosValOrg + cosVal * sinValOrg;
2992 182043536 : cosVal = tmp;
2993 365756560 : for ( ii = 1; ii < n2; ii++ )
2994 : {
2995 : float xRe, xIm, tmpReal;
2996 : /* cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y); */
2997 : /* sin(x+y) = sin(x)*cos(y) + sin(y)*cos(x); */
2998 183713024 : tmpReal = twReal * cosVal - twImag * sinVal;
2999 183713024 : twImag = twImag * cosVal + sinVal * twReal;
3000 183713024 : twReal = tmpReal;
3001 183713024 : xRe = x[2 * ( i * n2 + ii )];
3002 183713024 : xIm = x[2 * ( i * n2 + ii ) + 1];
3003 183713024 : x[2 * ( i * n2 + ii )] = twReal * xRe - twImag * xIm;
3004 183713024 : x[2 * ( i * n2 + ii ) + 1] = twImag * xRe + twReal * xIm;
3005 : }
3006 182043536 : tmp = cosVal;
3007 : }
3008 :
3009 26065844 : return;
3010 : }
3011 :
3012 455727458 : static void cooleyTukeyFFT(
3013 : float *x,
3014 : const int16_t length,
3015 : float *scratch )
3016 : {
3017 : int16_t factor;
3018 : int16_t i, ii;
3019 : int16_t n1, n2;
3020 455727458 : int16_t cnt = 0;
3021 : float *src, *dest;
3022 :
3023 455727458 : switch ( length )
3024 : {
3025 0 : case 1:
3026 0 : break;
3027 207413760 : case 2:
3028 207413760 : fft2( x );
3029 207413760 : break;
3030 138298640 : case 3:
3031 138298640 : fft3_2( x );
3032 138298640 : break;
3033 2275 : case 4:
3034 2275 : fft4( x );
3035 2275 : break;
3036 83570164 : case 5:
3037 83570164 : fft5( x );
3038 83570164 : break;
3039 376775 : case 8:
3040 376775 : fft8_2( x );
3041 376775 : break;
3042 26065844 : default:
3043 : {
3044 26065844 : factor = findFactor( length );
3045 26065844 : if ( factor > 0 && ( length / factor > 1 ) )
3046 : {
3047 26065844 : n1 = factor;
3048 26065844 : n2 = length / factor;
3049 :
3050 : /* DATA Resorting for stage1 */
3051 26065844 : dest = scratch;
3052 234175224 : for ( i = 0; i < 2 * n1; i += 2 )
3053 : {
3054 208109380 : src = x + i;
3055 626415000 : for ( ii = 0; ii < n2; ii++ )
3056 : {
3057 : /* *dest++ = x[2*(i+ii*n1)]; */
3058 : /* *dest++ = x[2*(i+ii*n1)+1]; */
3059 418305620 : *dest++ = *src;
3060 418305620 : *dest++ = *( src + 1 );
3061 418305620 : src += 2 * n1;
3062 : }
3063 : }
3064 26065844 : src = scratch;
3065 26065844 : dest = x;
3066 444371464 : for ( i = 0; i < length; i++ )
3067 : {
3068 418305620 : *dest++ = *src++;
3069 418305620 : *dest++ = *src++;
3070 : }
3071 : /* perform n1 ffts of length n2 */
3072 234175224 : for ( i = 0; i < n1; i++ )
3073 : {
3074 208109380 : cooleyTukeyFFT( x + 2 * i * n2, n2, scratch + 2 * i * n2 );
3075 : }
3076 : /*data twiddeling */
3077 26065844 : twiddle( x, length, n1, n2 );
3078 : /* DATA Resorting for stage2 */
3079 26065844 : cnt = 0;
3080 78614904 : for ( i = 0; i < n2; i++ )
3081 : {
3082 470854680 : for ( ii = 0; ii < n1; ii++ )
3083 : {
3084 418305620 : scratch[2 * cnt] = x[2 * ( i + ii * n2 )];
3085 418305620 : scratch[2 * cnt + 1] = x[2 * ( i + ii * n2 ) + 1];
3086 418305620 : cnt++;
3087 : }
3088 : }
3089 : /* perform n2 ffts of length n1 */
3090 78614904 : for ( i = 0; i < n2; i++ )
3091 : {
3092 52549060 : nextFFT( scratch + 2 * i * n1, n1 );
3093 : }
3094 26065844 : cnt = 0;
3095 234175224 : for ( i = 0; i < n1; i++ )
3096 : {
3097 626415000 : for ( ii = 0; ii < n2; ii++ )
3098 : {
3099 418305620 : x[2 * cnt] = scratch[2 * ( i + ii * n1 )];
3100 418305620 : x[2 * cnt + 1] = scratch[2 * ( i + ii * n1 ) + 1];
3101 418305620 : cnt++;
3102 : }
3103 : }
3104 : }
3105 : else
3106 : {
3107 0 : assert( !"length not supported" );
3108 : }
3109 : }
3110 : }
3111 :
3112 455727458 : return;
3113 : }
3114 :
3115 168028471 : static void pfaDFT(
3116 : float *x,
3117 : const int16_t length,
3118 : float *scratch1,
3119 : const int16_t numFactors,
3120 : const int16_t *factor )
3121 : {
3122 : int16_t i, ii;
3123 : int16_t cnt;
3124 :
3125 168028471 : if ( numFactors > 1 )
3126 : {
3127 29387756 : float *tmp = scratch1;
3128 29387756 : int16_t n1_inv = 1, n2_inv = 1;
3129 29387756 : int16_t n2 = factor[0 /*idx*/];
3130 29387756 : int16_t n1 = length / n2;
3131 : int16_t idx, incr;
3132 :
3133 81522565 : while ( ( ( n1_inv * n1 ) % n2 ) != 1 )
3134 : {
3135 52134809 : n1_inv++;
3136 : }
3137 57043500 : while ( ( ( n2_inv * n2 ) % n1 ) != 1 )
3138 : {
3139 27655744 : n2_inv++;
3140 : }
3141 29387756 : idx = 0;
3142 29387756 : incr = n1 * n1_inv;
3143 29387756 : cnt = 0;
3144 138365119 : for ( i = 0; i < n1; i++ )
3145 : {
3146 832746740 : for ( ii = 0; ii < n2 - 1; ii++ )
3147 : {
3148 723769377 : tmp[cnt++] = x[2 * idx];
3149 723769377 : tmp[cnt++] = x[2 * idx + 1];
3150 :
3151 723769377 : idx += incr;
3152 723769377 : if ( idx > length )
3153 : {
3154 475999474 : idx -= length;
3155 : }
3156 : }
3157 108977363 : tmp[cnt++] = x[2 * idx];
3158 108977363 : tmp[cnt++] = x[2 * idx + 1];
3159 108977363 : idx++;
3160 : }
3161 138365119 : for ( cnt = 0; cnt < length; cnt += n2 )
3162 : {
3163 108977363 : cooleyTukeyFFT( tmp + 2 * cnt, n2, x + 2 * cnt );
3164 : }
3165 138365119 : for ( cnt = 0; cnt < n1; cnt++ )
3166 : {
3167 941724103 : for ( i = 0; i < n2; i++ )
3168 : {
3169 832746740 : x[2 * ( cnt + i * n1 )] = tmp[2 * ( cnt * n2 + i )];
3170 832746740 : x[2 * ( cnt + i * n1 ) + 1] = tmp[2 * ( cnt * n2 + i ) + 1];
3171 : }
3172 : }
3173 195675119 : for ( cnt = 0; cnt < length; cnt += n1 )
3174 : {
3175 166287363 : pfaDFT( x + 2 * cnt, n1, tmp, numFactors - 1, &factor[1] );
3176 : }
3177 29387756 : idx = 0;
3178 29387756 : cnt = 0;
3179 195675119 : for ( i = 0; i < n2; i++ )
3180 : {
3181 166287363 : idx = i * n1;
3182 999034103 : for ( ii = 0; ii < n1; ii++ )
3183 : {
3184 832746740 : tmp[2 * idx] = x[cnt++];
3185 832746740 : tmp[2 * idx + 1] = x[cnt++];
3186 832746740 : idx += n2;
3187 832746740 : if ( idx > length )
3188 : {
3189 136899607 : idx -= length;
3190 : }
3191 : }
3192 : }
3193 862134496 : for ( cnt = 0; cnt < length; cnt++ )
3194 : {
3195 832746740 : x[2 * cnt] = tmp[2 * cnt];
3196 832746740 : x[2 * cnt + 1] = tmp[2 * cnt + 1];
3197 : }
3198 : }
3199 : else
3200 : {
3201 138640715 : cooleyTukeyFFT( x, length, scratch1 );
3202 : }
3203 :
3204 168028471 : return;
3205 : }
3206 :
3207 1741108 : static void fftf_interleave(
3208 : float *re,
3209 : float *im,
3210 : float *out,
3211 : const int16_t len )
3212 : {
3213 1741108 : int16_t i = 0;
3214 :
3215 419591928 : for ( i = 0; i < len; i++ )
3216 : {
3217 417850820 : *out++ = *re++;
3218 417850820 : *out++ = *im++;
3219 : }
3220 :
3221 1741108 : return;
3222 : }
3223 :
3224 1741108 : static void fftf_deinterleave(
3225 : float *in,
3226 : float *re,
3227 : float *im,
3228 : const int16_t len )
3229 : {
3230 1741108 : int16_t i = 0;
3231 :
3232 419591928 : for ( i = 0; i < len; i++ )
3233 : {
3234 417850820 : *re++ = *in++;
3235 417850820 : *im++ = *in++;
3236 : }
3237 :
3238 1741108 : return;
3239 : }
3240 :
3241 872 : static void DoRTFT600(
3242 : float *x, /* i/o: real part of input and output data */
3243 : float *y /* i/o: imaginary part of input and output data */
3244 : )
3245 : {
3246 : float scratch[1200], cmplx[1200];
3247 872 : const int16_t factors[3] = { 25, 8, 3 };
3248 :
3249 872 : fftf_interleave( x, y, cmplx, 600 );
3250 872 : pfaDFT( cmplx, 600, scratch, 3, factors );
3251 872 : fftf_deinterleave( cmplx, x, y, 600 );
3252 :
3253 872 : return;
3254 : }
3255 :
3256 1137 : static void DoRTFT400(
3257 : float *x, /* i/o: real part of input and output data */
3258 : float *y /* i/o: imaginary part of input and output data */
3259 : )
3260 : {
3261 : float scratch[800], cmplx[800];
3262 1137 : const int16_t factors[2] = { 25, 16 };
3263 :
3264 1137 : fftf_interleave( x, y, cmplx, 400 );
3265 1137 : pfaDFT( cmplx, 400, scratch, 2, factors );
3266 1137 : fftf_deinterleave( cmplx, x, y, 400 );
3267 :
3268 :
3269 1137 : return;
3270 : }
3271 :
3272 1726553 : static void DoRTFT240(
3273 : float *x, /* i/o: real part of input and output data */
3274 : float *y /* i/o: imaginary part of input and output data */
3275 : )
3276 : {
3277 : float scratch[480], cmplx[480];
3278 1726553 : const int16_t factors[3] = { 16, 5, 3 };
3279 :
3280 1726553 : fftf_interleave( x, y, cmplx, 240 );
3281 1726553 : pfaDFT( cmplx, 240, scratch, 3, factors );
3282 1726553 : fftf_deinterleave( cmplx, x, y, 240 );
3283 :
3284 1726553 : return;
3285 : }
3286 :
3287 12455 : static void DoRTFT200(
3288 : float *x, /* i/o: real part of input and output data */
3289 : float *y /* i/o: imaginary part of input and output data */
3290 : )
3291 : {
3292 : float scratch[400], cmplx[400];
3293 12455 : const int16_t factors[2] = { 25, 8 };
3294 :
3295 12455 : fftf_interleave( x, y, cmplx, 200 );
3296 12455 : pfaDFT( cmplx, 200, scratch, 2, factors );
3297 12455 : fftf_deinterleave( cmplx, x, y, 200 );
3298 :
3299 12455 : return;
3300 : }
3301 :
3302 91 : static void DoRTFT100(
3303 : float *x, /* i/o: real part of input and output data */
3304 : float *y /* i/o: imaginary part of input and output data */
3305 : )
3306 : {
3307 : float scratch[200], cmplx[200];
3308 91 : const int16_t factors[2] = { 25, 4 };
3309 :
3310 91 : fftf_interleave( x, y, cmplx, 100 );
3311 91 : pfaDFT( cmplx, 100, scratch, 2, factors );
3312 91 : fftf_deinterleave( cmplx, x, y, 100 );
3313 :
3314 91 : return;
3315 : }
3316 :
3317 :
3318 15937012 : void DoFFT(
3319 : float *re2,
3320 : float *im2,
3321 : const int16_t length )
3322 : {
3323 15937012 : switch ( length )
3324 : {
3325 872 : case 600:
3326 872 : DoRTFT600( re2, im2 );
3327 872 : break;
3328 196434 : case 480:
3329 196434 : DoRTFT480( re2, im2 );
3330 196434 : break;
3331 1137 : case 400:
3332 1137 : DoRTFT400( re2, im2 );
3333 1137 : break;
3334 490017 : case 320:
3335 490017 : DoRTFT320( re2, im2 );
3336 490017 : break;
3337 7857 : case 256:
3338 7857 : DoRTFTn( re2, im2, 256 );
3339 7857 : break;
3340 1726553 : case 240:
3341 1726553 : DoRTFT240( re2, im2 );
3342 1726553 : break;
3343 12455 : case 200:
3344 12455 : DoRTFT200( re2, im2 );
3345 12455 : break;
3346 350023 : case 160:
3347 350023 : DoRTFT160( re2, im2 );
3348 350023 : break;
3349 12956981 : case 128:
3350 12956981 : DoRTFT128( re2, im2 );
3351 12956981 : break;
3352 8226 : case 120:
3353 8226 : DoRTFT120( re2, im2 );
3354 8226 : break;
3355 91 : case 100:
3356 91 : DoRTFT100( re2, im2 );
3357 91 : break;
3358 181130 : case 80:
3359 181130 : DoRTFT80( re2, im2 );
3360 181130 : break;
3361 696 : case 64:
3362 696 : DoRTFTn( re2, im2, 64 );
3363 696 : break;
3364 4052 : case 40:
3365 4052 : DoRTFT40( re2, im2 );
3366 4052 : break;
3367 488 : case 20:
3368 488 : DoRTFT20( re2, im2 );
3369 488 : break;
3370 0 : default:
3371 0 : assert( !"fft is not supported!" );
3372 : }
3373 :
3374 15937012 : return;
3375 : }
3376 :
3377 : /*-----------------------------------------------------------------*
3378 : * Low-complexity implementation of FFT
3379 : *-----------------------------------------------------------------*/
3380 :
3381 6212472 : static void fft_len5(
3382 : float *re,
3383 : float *im,
3384 : const int16_t s )
3385 : {
3386 : float x0, x1, x2, x3, x4;
3387 : float r1, r2, r3, r4;
3388 : float s1, s2, s3, s4;
3389 : float t;
3390 :
3391 6212472 : x0 = re[s * 0];
3392 6212472 : x1 = re[s * 1];
3393 6212472 : x2 = re[s * 2];
3394 6212472 : x3 = re[s * 3];
3395 6212472 : x4 = re[s * 4];
3396 :
3397 6212472 : r1 = ( x1 + x4 );
3398 6212472 : r4 = ( x1 - x4 );
3399 6212472 : r3 = ( x2 + x3 );
3400 6212472 : r2 = ( x2 - x3 );
3401 6212472 : t = ( ( r1 - r3 ) * FFT_C54 );
3402 6212472 : r1 = ( r1 + r3 );
3403 6212472 : re[0] = ( x0 + r1 );
3404 :
3405 6212472 : r1 = ( re[0] + ( ( r1 * FFT_C55 ) ) );
3406 6212472 : r3 = ( r1 - t );
3407 6212472 : r1 = ( r1 + t );
3408 6212472 : t = ( ( r4 + r2 ) * FFT_C51 );
3409 :
3410 6212472 : r4 = ( t + ( r4 * FFT_C52 ) );
3411 6212472 : r2 = ( t + ( r2 * FFT_C53 ) );
3412 :
3413 6212472 : x0 = im[s * 0];
3414 6212472 : x1 = im[s * 1];
3415 6212472 : x2 = im[s * 2];
3416 6212472 : x3 = im[s * 3];
3417 6212472 : x4 = im[s * 4];
3418 :
3419 6212472 : s1 = ( x1 + x4 );
3420 6212472 : s4 = ( x1 - x4 );
3421 6212472 : s3 = ( x2 + x3 );
3422 6212472 : s2 = ( x2 - x3 );
3423 6212472 : t = ( ( s1 - s3 ) * FFT_C54 );
3424 6212472 : s1 = ( s1 + s3 );
3425 6212472 : im[0] = ( x0 + s1 );
3426 :
3427 6212472 : s1 = ( im[0] + ( s1 * FFT_C55 ) );
3428 6212472 : s3 = ( s1 - t );
3429 6212472 : s1 = ( s1 + t );
3430 6212472 : t = ( ( s4 + s2 ) * FFT_C51 );
3431 :
3432 6212472 : s4 = ( t + ( s4 * FFT_C52 ) );
3433 6212472 : s2 = ( t + ( s2 * FFT_C53 ) );
3434 :
3435 6212472 : re[s * 1] = ( r1 + s2 );
3436 6212472 : re[s * 4] = ( r1 - s2 );
3437 6212472 : re[s * 2] = ( r3 - s4 );
3438 6212472 : re[s * 3] = ( r3 + s4 );
3439 :
3440 6212472 : im[s * 1] = ( s1 - r2 );
3441 6212472 : im[s * 4] = ( s1 + r2 );
3442 6212472 : im[s * 2] = ( s3 + r4 );
3443 6212472 : im[s * 3] = ( s3 - r4 );
3444 :
3445 6212472 : return;
3446 : }
3447 :
3448 4103752 : static void fft_len8(
3449 : float *re,
3450 : float *im,
3451 : const int16_t s )
3452 : {
3453 : float x00, x01, x02, x03, x04, x05, x06, x07;
3454 : float x08, x09, x10, x11, x12, x13, x14, x15;
3455 : float t00, t01, t02, t03, t04, t05, t06, t07;
3456 : float t08, t09, t10, t11, t12, t13, t14, t15;
3457 : float s00, s01, s02, s03, s04, s05, s06, s07;
3458 : float s08, s09, s10, s11, s12, s13, s14, s15;
3459 :
3460 4103752 : x00 = re[s * 0];
3461 4103752 : x01 = im[s * 0];
3462 4103752 : x02 = re[s * 1];
3463 4103752 : x03 = im[s * 1];
3464 4103752 : x04 = re[s * 2];
3465 4103752 : x05 = im[s * 2];
3466 4103752 : x06 = re[s * 3];
3467 4103752 : x07 = im[s * 3];
3468 4103752 : x08 = re[s * 4];
3469 4103752 : x09 = im[s * 4];
3470 4103752 : x10 = re[s * 5];
3471 4103752 : x11 = im[s * 5];
3472 4103752 : x12 = re[s * 6];
3473 4103752 : x13 = im[s * 6];
3474 4103752 : x14 = re[s * 7];
3475 4103752 : x15 = im[s * 7];
3476 :
3477 4103752 : t00 = ( x00 + x08 );
3478 4103752 : t02 = ( x00 - x08 );
3479 4103752 : t01 = ( x01 + x09 );
3480 4103752 : t03 = ( x01 - x09 );
3481 4103752 : t04 = ( x02 + x10 );
3482 4103752 : t06 = ( x02 - x10 );
3483 4103752 : t05 = ( x03 + x11 );
3484 4103752 : t07 = ( x03 - x11 );
3485 4103752 : t08 = ( x04 + x12 );
3486 4103752 : t10 = ( x04 - x12 );
3487 4103752 : t09 = ( x05 + x13 );
3488 4103752 : t11 = ( x05 - x13 );
3489 4103752 : t12 = ( x06 + x14 );
3490 4103752 : t14 = ( x06 - x14 );
3491 4103752 : t13 = ( x07 + x15 );
3492 4103752 : t15 = ( x07 - x15 );
3493 :
3494 4103752 : s00 = ( t00 + t08 );
3495 4103752 : s04 = ( t00 - t08 );
3496 4103752 : s01 = ( t01 + t09 );
3497 4103752 : s05 = ( t01 - t09 );
3498 4103752 : s08 = ( t02 - t11 );
3499 4103752 : s10 = ( t02 + t11 );
3500 4103752 : s09 = ( t03 + t10 );
3501 4103752 : s11 = ( t03 - t10 );
3502 4103752 : s02 = ( t04 + t12 );
3503 4103752 : s07 = ( t04 - t12 );
3504 4103752 : s03 = ( t05 + t13 );
3505 4103752 : s06 = ( t13 - t05 );
3506 :
3507 4103752 : t01 = ( t06 + t14 );
3508 4103752 : t02 = ( t06 - t14 );
3509 4103752 : t00 = ( t07 + t15 );
3510 4103752 : t03 = ( t07 - t15 );
3511 :
3512 4103752 : s12 = ( ( t00 + t02 ) * FFT_C81 );
3513 4103752 : s14 = ( ( t00 - t02 ) * FFT_C81 );
3514 4103752 : s13 = ( ( t03 - t01 ) * FFT_C81 );
3515 4103752 : s15 = ( ( t01 + t03 ) * FFT_C82 );
3516 :
3517 4103752 : re[s * 0] = ( s00 + s02 );
3518 4103752 : re[s * 4] = ( s00 - s02 );
3519 4103752 : im[s * 0] = ( s01 + s03 );
3520 4103752 : im[s * 4] = ( s01 - s03 );
3521 4103752 : re[s * 2] = ( s04 - s06 );
3522 4103752 : re[s * 6] = ( s04 + s06 );
3523 4103752 : im[s * 2] = ( s05 - s07 );
3524 4103752 : im[s * 6] = ( s05 + s07 );
3525 4103752 : re[s * 3] = ( s08 + s14 );
3526 4103752 : re[s * 7] = ( s08 - s14 );
3527 4103752 : im[s * 3] = ( s09 + s15 );
3528 4103752 : im[s * 7] = ( s09 - s15 );
3529 4103752 : re[s * 1] = ( s10 + s12 );
3530 4103752 : re[s * 5] = ( s10 - s12 );
3531 4103752 : im[s * 1] = ( s11 + s13 );
3532 4103752 : im[s * 5] = ( s11 - s13 );
3533 :
3534 4103752 : return;
3535 : }
3536 :
3537 101624480 : static void fft_len10(
3538 : float *re,
3539 : float *im,
3540 : const int16_t s )
3541 : {
3542 : float t;
3543 : float x0, x1, x2, x3, x4;
3544 : float r1, r2, r3, r4;
3545 : float s1, s2, s3, s4;
3546 : float y00, y01, y02, y03, y04, y05, y06, y07, y08, y09;
3547 : float y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
3548 :
3549 101624480 : x0 = re[s * 0];
3550 101624480 : x1 = re[s * 2];
3551 101624480 : x2 = re[s * 4];
3552 101624480 : x3 = re[s * 6];
3553 101624480 : x4 = re[s * 8];
3554 :
3555 101624480 : r1 = ( x3 + x2 );
3556 101624480 : r4 = ( x3 - x2 );
3557 101624480 : r3 = ( x1 + x4 );
3558 101624480 : r2 = ( x1 - x4 );
3559 101624480 : t = ( ( r1 - r3 ) * FFT_C54 );
3560 101624480 : r1 = ( r1 + r3 );
3561 101624480 : y00 = ( x0 + r1 );
3562 101624480 : r1 = ( y00 + ( ( r1 * FFT_C55 ) ) );
3563 101624480 : r3 = ( r1 - t );
3564 101624480 : r1 = ( r1 + t );
3565 101624480 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
3566 101624480 : r4 = ( t + ( r4 * FFT_C52 ) );
3567 101624480 : r2 = ( t + ( r2 * FFT_C53 ) );
3568 :
3569 101624480 : x0 = im[s * 0];
3570 101624480 : x1 = im[s * 2];
3571 101624480 : x2 = im[s * 4];
3572 101624480 : x3 = im[s * 6];
3573 101624480 : x4 = im[s * 8];
3574 :
3575 101624480 : s1 = ( x3 + x2 );
3576 101624480 : s4 = ( x3 - x2 );
3577 101624480 : s3 = ( x1 + x4 );
3578 101624480 : s2 = ( x1 - x4 );
3579 101624480 : t = ( ( s1 - s3 ) * FFT_C54 );
3580 101624480 : s1 = ( s1 + s3 );
3581 101624480 : y01 = ( x0 + s1 );
3582 101624480 : s1 = ( y01 + ( s1 * FFT_C55 ) );
3583 101624480 : s3 = ( s1 - t );
3584 101624480 : s1 = ( s1 + t );
3585 101624480 : t = ( ( s4 + s2 ) * FFT_C51 );
3586 101624480 : s4 = ( t + ( s4 * FFT_C52 ) );
3587 101624480 : s2 = ( t + ( s2 * FFT_C53 ) );
3588 :
3589 101624480 : y04 = ( r1 + s2 );
3590 101624480 : y16 = ( r1 - s2 );
3591 101624480 : y08 = ( r3 - s4 );
3592 101624480 : y12 = ( r3 + s4 );
3593 :
3594 101624480 : y05 = ( s1 - r2 );
3595 101624480 : y17 = ( s1 + r2 );
3596 101624480 : y09 = ( s3 + r4 );
3597 101624480 : y13 = ( s3 - r4 );
3598 :
3599 101624480 : x0 = re[s * 5];
3600 101624480 : x1 = re[s * 1];
3601 101624480 : x2 = re[s * 3];
3602 101624480 : x3 = re[s * 7];
3603 101624480 : x4 = re[s * 9];
3604 :
3605 101624480 : r1 = ( x1 + x4 );
3606 101624480 : r4 = ( x1 - x4 );
3607 101624480 : r3 = ( x3 + x2 );
3608 101624480 : r2 = ( x3 - x2 );
3609 101624480 : t = ( ( r1 - r3 ) * FFT_C54 );
3610 101624480 : r1 = ( r1 + r3 );
3611 101624480 : y02 = ( x0 + r1 );
3612 101624480 : r1 = ( y02 + ( ( r1 * FFT_C55 ) ) );
3613 101624480 : r3 = ( r1 - t );
3614 101624480 : r1 = ( r1 + t );
3615 101624480 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
3616 101624480 : r4 = ( t + ( r4 * FFT_C52 ) );
3617 101624480 : r2 = ( t + ( r2 * FFT_C53 ) );
3618 :
3619 101624480 : x0 = im[s * 5];
3620 101624480 : x1 = im[s * 1];
3621 101624480 : x2 = im[s * 3];
3622 101624480 : x3 = im[s * 7];
3623 101624480 : x4 = im[s * 9];
3624 :
3625 101624480 : s1 = ( x1 + x4 );
3626 101624480 : s4 = ( x1 - x4 );
3627 101624480 : s3 = ( x3 + x2 );
3628 101624480 : s2 = ( x3 - x2 );
3629 101624480 : t = ( ( s1 - s3 ) * FFT_C54 );
3630 101624480 : s1 = ( s1 + s3 );
3631 101624480 : y03 = ( x0 + s1 );
3632 101624480 : s1 = ( y03 + ( s1 * FFT_C55 ) );
3633 101624480 : s3 = ( s1 - t );
3634 101624480 : s1 = ( s1 + t );
3635 101624480 : t = ( ( s4 + s2 ) * FFT_C51 );
3636 101624480 : s4 = ( t + ( s4 * FFT_C52 ) );
3637 101624480 : s2 = ( t + ( s2 * FFT_C53 ) );
3638 :
3639 101624480 : y06 = ( r1 + s2 );
3640 101624480 : y18 = ( r1 - s2 );
3641 101624480 : y10 = ( r3 - s4 );
3642 101624480 : y14 = ( r3 + s4 );
3643 :
3644 101624480 : y07 = ( s1 - r2 );
3645 101624480 : y19 = ( s1 + r2 );
3646 101624480 : y11 = ( s3 + r4 );
3647 101624480 : y15 = ( s3 - r4 );
3648 :
3649 101624480 : re[s * 0] = ( y00 + y02 );
3650 101624480 : im[s * 0] = ( y01 + y03 );
3651 101624480 : re[s * 5] = ( y00 - y02 );
3652 101624480 : im[s * 5] = ( y01 - y03 );
3653 :
3654 101624480 : re[s * 2] = ( y04 + y06 );
3655 101624480 : im[s * 2] = ( y05 + y07 );
3656 101624480 : re[s * 7] = ( y04 - y06 );
3657 101624480 : im[s * 7] = ( y05 - y07 );
3658 :
3659 101624480 : re[s * 4] = ( y08 + y10 );
3660 101624480 : im[s * 4] = ( y09 + y11 );
3661 101624480 : re[s * 9] = ( y08 - y10 );
3662 101624480 : im[s * 9] = ( y09 - y11 );
3663 :
3664 101624480 : re[s * 6] = ( y12 + y14 );
3665 101624480 : im[s * 6] = ( y13 + y15 );
3666 101624480 : re[s * 1] = ( y12 - y14 );
3667 101624480 : im[s * 1] = ( y13 - y15 );
3668 :
3669 101624480 : re[s * 8] = ( y16 + y18 );
3670 101624480 : im[s * 8] = ( y17 + y19 );
3671 101624480 : re[s * 3] = ( y16 - y18 );
3672 101624480 : im[s * 3] = ( y17 - y19 );
3673 :
3674 101624480 : return;
3675 : }
3676 :
3677 62095344 : static void fft_len15(
3678 : float *re,
3679 : float *im,
3680 : const int16_t s )
3681 : {
3682 : float t;
3683 : float r1, r2, r3, r4;
3684 : float s1, s2, s3, s4;
3685 : float x00, x01, x02, x03, x04, x05, x06, x07, x08, x09;
3686 : float x10, x11, x12, x13, x14, x15, x16, x17, x18, x19;
3687 : float x20, x21, x22, x23, x24, x25, x26, x27, x28, x29;
3688 : float y00, y01, y02, y03, y04, y05, y06, y07, y08, y09;
3689 : float y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
3690 : float y20, y21, y22, y23, y24, y25, y26, y27, y28, y29;
3691 :
3692 62095344 : x00 = re[s * 0];
3693 62095344 : x01 = im[s * 0];
3694 62095344 : x02 = re[s * 3];
3695 62095344 : x03 = im[s * 3];
3696 62095344 : x04 = re[s * 6];
3697 62095344 : x05 = im[s * 6];
3698 62095344 : x06 = re[s * 9];
3699 62095344 : x07 = im[s * 9];
3700 62095344 : x08 = re[s * 12];
3701 62095344 : x09 = im[s * 12];
3702 :
3703 62095344 : x10 = re[s * 5];
3704 62095344 : x11 = im[s * 5];
3705 62095344 : x12 = re[s * 8];
3706 62095344 : x13 = im[s * 8];
3707 62095344 : x14 = re[s * 11];
3708 62095344 : x15 = im[s * 11];
3709 62095344 : x16 = re[s * 14];
3710 62095344 : x17 = im[s * 14];
3711 62095344 : x18 = re[s * 2];
3712 62095344 : x19 = im[s * 2];
3713 :
3714 62095344 : x20 = re[s * 10];
3715 62095344 : x21 = im[s * 10];
3716 62095344 : x22 = re[s * 13];
3717 62095344 : x23 = im[s * 13];
3718 62095344 : x24 = re[s * 1];
3719 62095344 : x25 = im[s * 1];
3720 62095344 : x26 = re[s * 4];
3721 62095344 : x27 = im[s * 4];
3722 62095344 : x28 = re[s * 7];
3723 62095344 : x29 = im[s * 7];
3724 :
3725 62095344 : r1 = ( x02 + x08 );
3726 62095344 : r4 = ( x02 - x08 );
3727 62095344 : r3 = ( x04 + x06 );
3728 62095344 : r2 = ( x04 - x06 );
3729 62095344 : t = ( ( r1 - r3 ) * FFT_C54 );
3730 62095344 : r1 = ( r1 + r3 );
3731 62095344 : y00 = ( x00 + r1 );
3732 62095344 : r1 = ( y00 + ( ( r1 * FFT_C55 ) ) );
3733 62095344 : r3 = ( r1 - t );
3734 62095344 : r1 = ( r1 + t );
3735 62095344 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
3736 62095344 : r4 = ( t + ( r4 * FFT_C52 ) );
3737 62095344 : r2 = ( t + ( r2 * FFT_C53 ) );
3738 :
3739 62095344 : s1 = ( x03 + x09 );
3740 62095344 : s4 = ( x03 - x09 );
3741 62095344 : s3 = ( x05 + x07 );
3742 62095344 : s2 = ( x05 - x07 );
3743 62095344 : t = ( ( s1 - s3 ) * FFT_C54 );
3744 62095344 : s1 = ( s1 + s3 );
3745 62095344 : y01 = ( x01 + s1 );
3746 62095344 : s1 = ( y01 + ( s1 * FFT_C55 ) );
3747 62095344 : s3 = ( s1 - t );
3748 62095344 : s1 = ( s1 + t );
3749 62095344 : t = ( ( s4 + s2 ) * FFT_C51 );
3750 62095344 : s4 = ( t + ( s4 * FFT_C52 ) );
3751 62095344 : s2 = ( t + ( s2 * FFT_C53 ) );
3752 :
3753 62095344 : y02 = ( r1 + s2 );
3754 62095344 : y08 = ( r1 - s2 );
3755 62095344 : y04 = ( r3 - s4 );
3756 62095344 : y06 = ( r3 + s4 );
3757 :
3758 62095344 : y03 = ( s1 - r2 );
3759 62095344 : y09 = ( s1 + r2 );
3760 62095344 : y05 = ( s3 + r4 );
3761 62095344 : y07 = ( s3 - r4 );
3762 :
3763 62095344 : r1 = ( x12 + x18 );
3764 62095344 : r4 = ( x12 - x18 );
3765 62095344 : r3 = ( x14 + x16 );
3766 62095344 : r2 = ( x14 - x16 );
3767 62095344 : t = ( ( r1 - r3 ) * FFT_C54 );
3768 62095344 : r1 = ( r1 + r3 );
3769 62095344 : y10 = ( x10 + r1 );
3770 62095344 : r1 = ( y10 + ( ( r1 * FFT_C55 ) ) );
3771 62095344 : r3 = ( r1 - t );
3772 62095344 : r1 = ( r1 + t );
3773 62095344 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
3774 62095344 : r4 = ( t + ( r4 * FFT_C52 ) );
3775 62095344 : r2 = ( t + ( r2 * FFT_C53 ) );
3776 :
3777 62095344 : s1 = ( x13 + x19 );
3778 62095344 : s4 = ( x13 - x19 );
3779 62095344 : s3 = ( x15 + x17 );
3780 62095344 : s2 = ( x15 - x17 );
3781 62095344 : t = ( ( s1 - s3 ) * FFT_C54 );
3782 62095344 : s1 = ( s1 + s3 );
3783 62095344 : y11 = ( x11 + s1 );
3784 62095344 : s1 = ( y11 + ( s1 * FFT_C55 ) );
3785 62095344 : s3 = ( s1 - t );
3786 62095344 : s1 = ( s1 + t );
3787 62095344 : t = ( ( s4 + s2 ) * FFT_C51 );
3788 62095344 : s4 = ( t + ( s4 * FFT_C52 ) );
3789 62095344 : s2 = ( t + ( s2 * FFT_C53 ) );
3790 :
3791 62095344 : y12 = ( r1 + s2 );
3792 62095344 : y18 = ( r1 - s2 );
3793 62095344 : y14 = ( r3 - s4 );
3794 62095344 : y16 = ( r3 + s4 );
3795 :
3796 62095344 : y13 = ( s1 - r2 );
3797 62095344 : y19 = ( s1 + r2 );
3798 62095344 : y15 = ( s3 + r4 );
3799 62095344 : y17 = ( s3 - r4 );
3800 :
3801 62095344 : r1 = ( x22 + x28 );
3802 62095344 : r4 = ( x22 - x28 );
3803 62095344 : r3 = ( x24 + x26 );
3804 62095344 : r2 = ( x24 - x26 );
3805 62095344 : t = ( ( r1 - r3 ) * FFT_C54 );
3806 62095344 : r1 = ( r1 + r3 );
3807 62095344 : y20 = ( x20 + r1 );
3808 62095344 : r1 = ( y20 + ( ( r1 * FFT_C55 ) ) );
3809 62095344 : r3 = ( r1 - t );
3810 62095344 : r1 = ( r1 + t );
3811 62095344 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
3812 62095344 : r4 = ( t + ( r4 * FFT_C52 ) );
3813 62095344 : r2 = ( t + ( r2 * FFT_C53 ) );
3814 :
3815 62095344 : s1 = ( x23 + x29 );
3816 62095344 : s4 = ( x23 - x29 );
3817 62095344 : s3 = ( x25 + x27 );
3818 62095344 : s2 = ( x25 - x27 );
3819 62095344 : t = ( ( s1 - s3 ) * FFT_C54 );
3820 62095344 : s1 = ( s1 + s3 );
3821 62095344 : y21 = ( x21 + s1 );
3822 62095344 : s1 = ( y21 + ( s1 * FFT_C55 ) );
3823 62095344 : s3 = ( s1 - t );
3824 62095344 : s1 = ( s1 + t );
3825 62095344 : t = ( ( s4 + s2 ) * FFT_C51 );
3826 62095344 : s4 = ( t + ( s4 * FFT_C52 ) );
3827 62095344 : s2 = ( t + ( s2 * FFT_C53 ) );
3828 :
3829 62095344 : y22 = ( r1 + s2 );
3830 62095344 : y28 = ( r1 - s2 );
3831 62095344 : y24 = ( r3 - s4 );
3832 62095344 : y26 = ( r3 + s4 );
3833 :
3834 62095344 : y23 = ( s1 - r2 );
3835 62095344 : y29 = ( s1 + r2 );
3836 62095344 : y25 = ( s3 + r4 );
3837 62095344 : y27 = ( s3 - r4 );
3838 :
3839 62095344 : r1 = ( y10 + y20 );
3840 62095344 : r2 = ( ( y10 - y20 ) * FFT_C31 );
3841 62095344 : re[s * 0] = ( y00 + r1 );
3842 62095344 : r1 = ( y00 - r1 * 0.5f );
3843 :
3844 62095344 : s1 = ( y11 + y21 );
3845 62095344 : s2 = ( ( y11 - y21 ) * FFT_C31 );
3846 62095344 : im[s * 0] = ( y01 + s1 );
3847 62095344 : s1 = ( y01 - s1 * 0.5f );
3848 :
3849 62095344 : re[s * 10] = ( r1 - s2 );
3850 62095344 : re[s * 5] = ( r1 + s2 );
3851 62095344 : im[s * 10] = ( s1 + r2 );
3852 62095344 : im[s * 5] = ( s1 - r2 );
3853 :
3854 62095344 : r1 = ( y12 + y22 );
3855 62095344 : r2 = ( ( y12 - y22 ) * FFT_C31 );
3856 62095344 : re[s * 6] = ( y02 + r1 );
3857 62095344 : r1 = ( y02 - r1 * 0.5f );
3858 :
3859 62095344 : s1 = ( y13 + y23 );
3860 62095344 : s2 = ( ( y13 - y23 ) * FFT_C31 );
3861 62095344 : im[s * 6] = ( y03 + s1 );
3862 62095344 : s1 = ( y03 - s1 * 0.5f );
3863 :
3864 62095344 : re[s * 1] = ( r1 - s2 );
3865 62095344 : re[s * 11] = ( r1 + s2 );
3866 62095344 : im[s * 1] = ( s1 + r2 );
3867 62095344 : im[s * 11] = ( s1 - r2 );
3868 :
3869 62095344 : r1 = ( y14 + y24 );
3870 62095344 : r2 = ( ( y14 - y24 ) * FFT_C31 );
3871 62095344 : re[s * 12] = ( y04 + r1 );
3872 62095344 : r1 = ( y04 - r1 * 0.5f );
3873 :
3874 62095344 : s1 = ( y15 + y25 );
3875 62095344 : s2 = ( ( y15 - y25 ) * FFT_C31 );
3876 62095344 : im[s * 12] = ( y05 + s1 );
3877 62095344 : s1 = ( y05 - s1 * 0.5f );
3878 :
3879 62095344 : re[s * 7] = ( r1 - s2 );
3880 62095344 : re[s * 2] = ( r1 + s2 );
3881 62095344 : im[s * 7] = ( s1 + r2 );
3882 62095344 : im[s * 2] = ( s1 - r2 );
3883 :
3884 62095344 : r1 = ( y16 + y26 );
3885 62095344 : r2 = ( ( y16 - y26 ) * FFT_C31 );
3886 62095344 : re[s * 3] = ( y06 + r1 );
3887 62095344 : r1 = ( y06 - r1 * 0.5f );
3888 :
3889 62095344 : s1 = ( y17 + y27 );
3890 62095344 : s2 = ( ( y17 - y27 ) * FFT_C31 );
3891 62095344 : im[s * 3] = ( y07 + s1 );
3892 62095344 : s1 = ( y07 - s1 * 0.5f );
3893 :
3894 62095344 : re[s * 13] = ( r1 - s2 );
3895 62095344 : re[s * 8] = ( r1 + s2 );
3896 62095344 : im[s * 13] = ( s1 + r2 );
3897 62095344 : im[s * 8] = ( s1 - r2 );
3898 :
3899 62095344 : r1 = ( y18 + y28 );
3900 62095344 : r2 = ( ( y18 - y28 ) * FFT_C31 );
3901 62095344 : re[s * 9] = ( y08 + r1 );
3902 62095344 : r1 = ( y08 - r1 * 0.5f );
3903 :
3904 62095344 : s1 = ( y19 + y29 );
3905 62095344 : s2 = ( ( y19 - y29 ) * FFT_C31 );
3906 62095344 : im[s * 9] = ( y09 + s1 );
3907 62095344 : s1 = ( y09 - s1 * 0.5f );
3908 :
3909 62095344 : re[s * 4] = ( r1 - s2 );
3910 62095344 : re[s * 14] = ( r1 + s2 );
3911 62095344 : im[s * 4] = ( s1 + r2 );
3912 62095344 : im[s * 14] = ( s1 - r2 );
3913 :
3914 62095344 : return;
3915 : }
3916 :
3917 1739650526 : static void fft_len16(
3918 : float *re,
3919 : float *im,
3920 : const int16_t s )
3921 : {
3922 : float x0, x1, x2, x3, x4, x5, x6, x7;
3923 : float t0, t1, t2, t3, t4, t5, t6, t7;
3924 : float y00, y01, y02, y03, y04, y05, y06, y07;
3925 : float y08, y09, y10, y11, y12, y13, y14, y15;
3926 : float y16, y17, y18, y19, y20, y21, y22, y23;
3927 : float y24, y25, y26, y27, y28, y29, y30, y31;
3928 :
3929 1739650526 : x0 = re[s * 0];
3930 1739650526 : x1 = im[s * 0];
3931 1739650526 : x2 = re[s * 4];
3932 1739650526 : x3 = im[s * 4];
3933 1739650526 : x4 = re[s * 8];
3934 1739650526 : x5 = im[s * 8];
3935 1739650526 : x6 = re[s * 12];
3936 1739650526 : x7 = im[s * 12];
3937 :
3938 1739650526 : t0 = ( x0 + x4 );
3939 1739650526 : t2 = ( x0 - x4 );
3940 1739650526 : t1 = ( x1 + x5 );
3941 1739650526 : t3 = ( x1 - x5 );
3942 1739650526 : t4 = ( x2 + x6 );
3943 1739650526 : t7 = ( x2 - x6 );
3944 1739650526 : t5 = ( x7 + x3 );
3945 1739650526 : t6 = ( x7 - x3 );
3946 :
3947 1739650526 : y00 = ( t0 + t4 );
3948 1739650526 : y01 = ( t1 + t5 );
3949 1739650526 : y02 = ( t2 - t6 );
3950 1739650526 : y03 = ( t3 - t7 );
3951 1739650526 : y04 = ( t0 - t4 );
3952 1739650526 : y05 = ( t1 - t5 );
3953 1739650526 : y06 = ( t2 + t6 );
3954 1739650526 : y07 = ( t3 + t7 );
3955 :
3956 1739650526 : x0 = re[s * 1];
3957 1739650526 : x1 = im[s * 1];
3958 1739650526 : x2 = re[s * 5];
3959 1739650526 : x3 = im[s * 5];
3960 1739650526 : x4 = re[s * 9];
3961 1739650526 : x5 = im[s * 9];
3962 1739650526 : x6 = re[s * 13];
3963 1739650526 : x7 = im[s * 13];
3964 :
3965 1739650526 : t0 = ( x0 + x4 );
3966 1739650526 : t2 = ( x0 - x4 );
3967 1739650526 : t1 = ( x1 + x5 );
3968 1739650526 : t3 = ( x1 - x5 );
3969 1739650526 : t4 = ( x2 + x6 );
3970 1739650526 : t7 = ( x2 - x6 );
3971 1739650526 : t5 = ( x7 + x3 );
3972 1739650526 : t6 = ( x7 - x3 );
3973 :
3974 1739650526 : y08 = ( t0 + t4 );
3975 1739650526 : y09 = ( t1 + t5 );
3976 1739650526 : y10 = ( t2 - t6 );
3977 1739650526 : y11 = ( t3 - t7 );
3978 1739650526 : y12 = ( t0 - t4 );
3979 1739650526 : y13 = ( t1 - t5 );
3980 1739650526 : y14 = ( t2 + t6 );
3981 1739650526 : y15 = ( t3 + t7 );
3982 :
3983 1739650526 : x0 = re[s * 2];
3984 1739650526 : x1 = im[s * 2];
3985 1739650526 : x2 = re[s * 6];
3986 1739650526 : x3 = im[s * 6];
3987 1739650526 : x4 = re[s * 10];
3988 1739650526 : x5 = im[s * 10];
3989 1739650526 : x6 = re[s * 14];
3990 1739650526 : x7 = im[s * 14];
3991 :
3992 1739650526 : t0 = ( x0 + x4 );
3993 1739650526 : t2 = ( x0 - x4 );
3994 1739650526 : t1 = ( x1 + x5 );
3995 1739650526 : t3 = ( x1 - x5 );
3996 1739650526 : t4 = ( x2 + x6 );
3997 1739650526 : t7 = ( x2 - x6 );
3998 1739650526 : t5 = ( x7 + x3 );
3999 1739650526 : t6 = ( x7 - x3 );
4000 :
4001 1739650526 : y16 = ( t0 + t4 );
4002 1739650526 : y17 = ( t1 + t5 );
4003 1739650526 : y18 = ( t2 - t6 );
4004 1739650526 : y19 = ( t3 - t7 );
4005 1739650526 : y20 = ( t1 - t5 );
4006 1739650526 : y21 = ( t4 - t0 );
4007 1739650526 : y22 = ( t2 + t6 );
4008 1739650526 : y23 = ( t3 + t7 );
4009 :
4010 1739650526 : x0 = re[s * 3];
4011 1739650526 : x1 = im[s * 3];
4012 1739650526 : x2 = re[s * 7];
4013 1739650526 : x3 = im[s * 7];
4014 1739650526 : x4 = re[s * 11];
4015 1739650526 : x5 = im[s * 11];
4016 1739650526 : x6 = re[s * 15];
4017 1739650526 : x7 = im[s * 15];
4018 :
4019 1739650526 : t0 = ( x0 + x4 );
4020 1739650526 : t2 = ( x0 - x4 );
4021 1739650526 : t1 = ( x1 + x5 );
4022 1739650526 : t3 = ( x1 - x5 );
4023 1739650526 : t4 = ( x2 + x6 );
4024 1739650526 : t7 = ( x2 - x6 );
4025 1739650526 : t5 = ( x7 + x3 );
4026 1739650526 : t6 = ( x7 - x3 );
4027 :
4028 1739650526 : y24 = ( t0 + t4 );
4029 1739650526 : y25 = ( t1 + t5 );
4030 1739650526 : y26 = ( t2 - t6 );
4031 1739650526 : y27 = ( t3 - t7 );
4032 1739650526 : y28 = ( t0 - t4 );
4033 1739650526 : y29 = ( t1 - t5 );
4034 1739650526 : y30 = ( t2 + t6 );
4035 1739650526 : y31 = ( t3 + t7 );
4036 :
4037 1739650526 : x0 = ( y22 * FFT_C162 );
4038 1739650526 : x1 = ( y23 * FFT_C162 );
4039 1739650526 : y22 = ( x0 - x1 );
4040 1739650526 : y23 = ( x0 + x1 );
4041 :
4042 1739650526 : x0 = ( y28 * FFT_C162 );
4043 1739650526 : x1 = ( y29 * FFT_C162 );
4044 1739650526 : y28 = ( x0 - x1 );
4045 1739650526 : y29 = ( x0 + x1 );
4046 :
4047 1739650526 : x0 = ( y12 * FFT_C161 );
4048 1739650526 : x1 = ( y13 * FFT_C161 );
4049 1739650526 : y12 = ( x0 + x1 );
4050 1739650526 : y13 = ( x1 - x0 );
4051 :
4052 1739650526 : x0 = ( y18 * FFT_C161 );
4053 1739650526 : x1 = ( y19 * FFT_C161 );
4054 1739650526 : y18 = ( x0 + x1 );
4055 1739650526 : y19 = ( x1 - x0 );
4056 :
4057 1739650526 : x0 = ( y10 * FFT_C163 );
4058 1739650526 : x1 = ( y11 * FFT_C166 );
4059 1739650526 : x2 = ( y10 * FFT_C166 );
4060 1739650526 : x3 = ( y11 * FFT_C163 );
4061 1739650526 : y10 = ( x0 - x1 );
4062 1739650526 : y11 = ( x2 + x3 );
4063 :
4064 1739650526 : x0 = ( y14 * FFT_C165 );
4065 1739650526 : x1 = ( y15 * FFT_C164 );
4066 1739650526 : x2 = ( y14 * FFT_C164 );
4067 1739650526 : x3 = ( y15 * FFT_C165 );
4068 1739650526 : y14 = ( x0 - x1 );
4069 1739650526 : y15 = ( x2 + x3 );
4070 :
4071 1739650526 : x0 = ( y26 * FFT_C165 );
4072 1739650526 : x1 = ( y27 * FFT_C164 );
4073 1739650526 : x2 = ( y26 * FFT_C164 );
4074 1739650526 : x3 = ( y27 * FFT_C165 );
4075 1739650526 : y26 = ( x0 - x1 );
4076 1739650526 : y27 = ( x2 + x3 );
4077 :
4078 1739650526 : x0 = ( y30 * FFT_C164 );
4079 1739650526 : x1 = ( y31 * FFT_C165 );
4080 1739650526 : x2 = ( y30 * FFT_C165 );
4081 1739650526 : x3 = ( y31 * FFT_C164 );
4082 1739650526 : y30 = ( x0 - x1 );
4083 1739650526 : y31 = ( x2 + x3 );
4084 :
4085 1739650526 : t0 = ( y00 + y16 );
4086 1739650526 : t2 = ( y00 - y16 );
4087 1739650526 : t1 = ( y01 + y17 );
4088 1739650526 : t3 = ( y01 - y17 );
4089 1739650526 : t4 = ( y08 + y24 );
4090 1739650526 : t7 = ( y08 - y24 );
4091 1739650526 : t5 = ( y25 + y09 );
4092 1739650526 : t6 = ( y25 - y09 );
4093 :
4094 1739650526 : re[s * 0] = ( t0 + t4 );
4095 1739650526 : im[s * 0] = ( t1 + t5 );
4096 1739650526 : re[s * 4] = ( t2 - t6 );
4097 1739650526 : im[s * 4] = ( t3 - t7 );
4098 1739650526 : re[s * 8] = ( t0 - t4 );
4099 1739650526 : im[s * 8] = ( t1 - t5 );
4100 1739650526 : re[s * 12] = ( t2 + t6 );
4101 1739650526 : im[s * 12] = ( t3 + t7 );
4102 :
4103 1739650526 : t0 = ( y02 + y18 );
4104 1739650526 : t2 = ( y02 - y18 );
4105 1739650526 : t1 = ( y03 + y19 );
4106 1739650526 : t3 = ( y03 - y19 );
4107 1739650526 : t4 = ( y10 + y26 );
4108 1739650526 : t7 = ( y10 - y26 );
4109 1739650526 : t5 = ( y27 + y11 );
4110 1739650526 : t6 = ( y27 - y11 );
4111 :
4112 1739650526 : re[s * 1] = ( t0 + t4 );
4113 1739650526 : im[s * 1] = ( t1 + t5 );
4114 1739650526 : re[s * 5] = ( t2 - t6 );
4115 1739650526 : im[s * 5] = ( t3 - t7 );
4116 1739650526 : re[s * 9] = ( t0 - t4 );
4117 1739650526 : im[s * 9] = ( t1 - t5 );
4118 1739650526 : re[s * 13] = ( t2 + t6 );
4119 1739650526 : im[s * 13] = ( t3 + t7 );
4120 :
4121 1739650526 : t0 = ( y04 + y20 );
4122 1739650526 : t2 = ( y04 - y20 );
4123 1739650526 : t1 = ( y05 + y21 );
4124 1739650526 : t3 = ( y05 - y21 );
4125 1739650526 : t4 = ( y12 + y28 );
4126 1739650526 : t7 = ( y12 - y28 );
4127 1739650526 : t5 = ( y29 + y13 );
4128 1739650526 : t6 = ( y29 - y13 );
4129 :
4130 1739650526 : re[s * 2] = ( t0 + t4 );
4131 1739650526 : im[s * 2] = ( t1 + t5 );
4132 1739650526 : re[s * 6] = ( t2 - t6 );
4133 1739650526 : im[s * 6] = ( t3 - t7 );
4134 1739650526 : re[s * 10] = ( t0 - t4 );
4135 1739650526 : im[s * 10] = ( t1 - t5 );
4136 1739650526 : re[s * 14] = ( t2 + t6 );
4137 1739650526 : im[s * 14] = ( t3 + t7 );
4138 :
4139 1739650526 : t0 = ( y06 + y22 );
4140 1739650526 : t2 = ( y06 - y22 );
4141 1739650526 : t1 = ( y07 + y23 );
4142 1739650526 : t3 = ( y07 - y23 );
4143 1739650526 : t4 = ( y14 + y30 );
4144 1739650526 : t7 = ( y14 - y30 );
4145 1739650526 : t5 = ( y31 + y15 );
4146 1739650526 : t6 = ( y31 - y15 );
4147 :
4148 1739650526 : re[s * 3] = ( t0 + t4 );
4149 1739650526 : im[s * 3] = ( t1 + t5 );
4150 1739650526 : re[s * 7] = ( t2 - t6 );
4151 1739650526 : im[s * 7] = ( t3 - t7 );
4152 1739650526 : re[s * 11] = ( t0 - t4 );
4153 1739650526 : im[s * 11] = ( t1 - t5 );
4154 1739650526 : re[s * 15] = ( t2 + t6 );
4155 1739650526 : im[s * 15] = ( t3 + t7 );
4156 :
4157 1739650526 : return;
4158 : }
4159 :
4160 1081970958 : static void fft_len20(
4161 : float *re,
4162 : float *im,
4163 : const int16_t s )
4164 : {
4165 : float r1, r2, r3, r4;
4166 : float s1, s2, s3, s4;
4167 : float x0, x1, x2, x3, x4;
4168 : float t, t0, t1, t2, t3, t4, t5, t6, t7;
4169 : float y00, y01, y02, y03, y04, y05, y06, y07, y08, y09;
4170 : float y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
4171 : float y20, y21, y22, y23, y24, y25, y26, y27, y28, y29;
4172 : float y30, y31, y32, y33, y34, y35, y36, y37, y38, y39;
4173 :
4174 1081970958 : x0 = re[s * 0];
4175 1081970958 : x1 = re[s * 16];
4176 1081970958 : x2 = re[s * 12];
4177 1081970958 : x3 = re[s * 8];
4178 1081970958 : x4 = re[s * 4];
4179 :
4180 1081970958 : r1 = ( x1 + x4 );
4181 1081970958 : r4 = ( x1 - x4 );
4182 1081970958 : r3 = ( x2 + x3 );
4183 1081970958 : r2 = ( x2 - x3 );
4184 1081970958 : t = ( ( r1 - r3 ) * FFT_C54 );
4185 1081970958 : r1 = ( r1 + r3 );
4186 1081970958 : y00 = ( x0 + r1 );
4187 1081970958 : r1 = ( y00 + ( ( r1 * FFT_C55 ) ) );
4188 1081970958 : r3 = ( r1 - t );
4189 1081970958 : r1 = ( r1 + t );
4190 1081970958 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4191 1081970958 : r4 = ( t + ( r4 * FFT_C52 ) );
4192 1081970958 : r2 = ( t + ( r2 * FFT_C53 ) );
4193 :
4194 1081970958 : x0 = im[s * 0];
4195 1081970958 : x1 = im[s * 16];
4196 1081970958 : x2 = im[s * 12];
4197 1081970958 : x3 = im[s * 8];
4198 1081970958 : x4 = im[s * 4];
4199 :
4200 1081970958 : s1 = ( x1 + x4 );
4201 1081970958 : s4 = ( x1 - x4 );
4202 1081970958 : s3 = ( x2 + x3 );
4203 1081970958 : s2 = ( x2 - x3 );
4204 1081970958 : t = ( ( s1 - s3 ) * FFT_C54 );
4205 1081970958 : s1 = ( s1 + s3 );
4206 1081970958 : y01 = ( x0 + s1 );
4207 1081970958 : s1 = ( y01 + ( s1 * FFT_C55 ) );
4208 1081970958 : s3 = ( s1 - t );
4209 1081970958 : s1 = ( s1 + t );
4210 1081970958 : t = ( ( s4 + s2 ) * FFT_C51 );
4211 1081970958 : s4 = ( t + ( s4 * FFT_C52 ) );
4212 1081970958 : s2 = ( t + ( s2 * FFT_C53 ) );
4213 :
4214 1081970958 : y08 = ( r1 + s2 );
4215 1081970958 : y32 = ( r1 - s2 );
4216 1081970958 : y16 = ( r3 - s4 );
4217 1081970958 : y24 = ( r3 + s4 );
4218 :
4219 1081970958 : y09 = ( s1 - r2 );
4220 1081970958 : y33 = ( s1 + r2 );
4221 1081970958 : y17 = ( s3 + r4 );
4222 1081970958 : y25 = ( s3 - r4 );
4223 :
4224 1081970958 : x0 = re[s * 5];
4225 1081970958 : x1 = re[s * 1];
4226 1081970958 : x2 = re[s * 17];
4227 1081970958 : x3 = re[s * 13];
4228 1081970958 : x4 = re[s * 9];
4229 :
4230 1081970958 : r1 = ( x1 + x4 );
4231 1081970958 : r4 = ( x1 - x4 );
4232 1081970958 : r3 = ( x2 + x3 );
4233 1081970958 : r2 = ( x2 - x3 );
4234 1081970958 : t = ( ( r1 - r3 ) * FFT_C54 );
4235 1081970958 : r1 = ( r1 + r3 );
4236 1081970958 : y02 = ( x0 + r1 );
4237 1081970958 : r1 = ( y02 + ( ( r1 * FFT_C55 ) ) );
4238 1081970958 : r3 = ( r1 - t );
4239 1081970958 : r1 = ( r1 + t );
4240 1081970958 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4241 1081970958 : r4 = ( t + ( r4 * FFT_C52 ) );
4242 1081970958 : r2 = ( t + ( r2 * FFT_C53 ) );
4243 :
4244 1081970958 : x0 = im[s * 5];
4245 1081970958 : x1 = im[s * 1];
4246 1081970958 : x2 = im[s * 17];
4247 1081970958 : x3 = im[s * 13];
4248 1081970958 : x4 = im[s * 9];
4249 :
4250 1081970958 : s1 = ( x1 + x4 );
4251 1081970958 : s4 = ( x1 - x4 );
4252 1081970958 : s3 = ( x2 + x3 );
4253 1081970958 : s2 = ( x2 - x3 );
4254 1081970958 : t = ( ( s1 - s3 ) * FFT_C54 );
4255 1081970958 : s1 = ( s1 + s3 );
4256 1081970958 : y03 = ( x0 + s1 );
4257 1081970958 : s1 = ( y03 + ( s1 * FFT_C55 ) );
4258 1081970958 : s3 = ( s1 - t );
4259 1081970958 : s1 = ( s1 + t );
4260 1081970958 : t = ( ( s4 + s2 ) * FFT_C51 );
4261 1081970958 : s4 = ( t + ( s4 * FFT_C52 ) );
4262 1081970958 : s2 = ( t + ( s2 * FFT_C53 ) );
4263 :
4264 1081970958 : y10 = ( r1 + s2 );
4265 1081970958 : y34 = ( r1 - s2 );
4266 1081970958 : y18 = ( r3 - s4 );
4267 1081970958 : y26 = ( r3 + s4 );
4268 :
4269 1081970958 : y11 = ( s1 - r2 );
4270 1081970958 : y35 = ( s1 + r2 );
4271 1081970958 : y19 = ( s3 + r4 );
4272 1081970958 : y27 = ( s3 - r4 );
4273 :
4274 1081970958 : x0 = re[s * 10];
4275 1081970958 : x1 = re[s * 6];
4276 1081970958 : x2 = re[s * 2];
4277 1081970958 : x3 = re[s * 18];
4278 1081970958 : x4 = re[s * 14];
4279 :
4280 1081970958 : r1 = ( x1 + x4 );
4281 1081970958 : r4 = ( x1 - x4 );
4282 1081970958 : r3 = ( x2 + x3 );
4283 1081970958 : r2 = ( x2 - x3 );
4284 1081970958 : t = ( ( r1 - r3 ) * FFT_C54 );
4285 1081970958 : r1 = ( r1 + r3 );
4286 1081970958 : y04 = ( x0 + r1 );
4287 1081970958 : r1 = ( y04 + ( ( r1 * FFT_C55 ) ) );
4288 1081970958 : r3 = ( r1 - t );
4289 1081970958 : r1 = ( r1 + t );
4290 1081970958 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4291 1081970958 : r4 = ( t + ( r4 * FFT_C52 ) );
4292 1081970958 : r2 = ( t + ( r2 * FFT_C53 ) );
4293 :
4294 1081970958 : x0 = im[s * 10];
4295 1081970958 : x1 = im[s * 6];
4296 1081970958 : x2 = im[s * 2];
4297 1081970958 : x3 = im[s * 18];
4298 1081970958 : x4 = im[s * 14];
4299 :
4300 1081970958 : s1 = ( x1 + x4 );
4301 1081970958 : s4 = ( x1 - x4 );
4302 1081970958 : s3 = ( x2 + x3 );
4303 1081970958 : s2 = ( x2 - x3 );
4304 1081970958 : t = ( ( s1 - s3 ) * FFT_C54 );
4305 1081970958 : s1 = ( s1 + s3 );
4306 1081970958 : y05 = ( x0 + s1 );
4307 1081970958 : s1 = ( y05 + ( s1 * FFT_C55 ) );
4308 1081970958 : s3 = ( s1 - t );
4309 1081970958 : s1 = ( s1 + t );
4310 1081970958 : t = ( ( s4 + s2 ) * FFT_C51 );
4311 1081970958 : s4 = ( t + ( s4 * FFT_C52 ) );
4312 1081970958 : s2 = ( t + ( s2 * FFT_C53 ) );
4313 :
4314 1081970958 : y12 = ( r1 + s2 );
4315 1081970958 : y36 = ( r1 - s2 );
4316 1081970958 : y20 = ( r3 - s4 );
4317 1081970958 : y28 = ( r3 + s4 );
4318 :
4319 1081970958 : y13 = ( s1 - r2 );
4320 1081970958 : y37 = ( s1 + r2 );
4321 1081970958 : y21 = ( s3 + r4 );
4322 1081970958 : y29 = ( s3 - r4 );
4323 :
4324 1081970958 : x0 = re[s * 15];
4325 1081970958 : x1 = re[s * 11];
4326 1081970958 : x2 = re[s * 7];
4327 1081970958 : x3 = re[s * 3];
4328 1081970958 : x4 = re[s * 19];
4329 :
4330 1081970958 : r1 = ( x1 + x4 );
4331 1081970958 : r4 = ( x1 - x4 );
4332 1081970958 : r3 = ( x2 + x3 );
4333 1081970958 : r2 = ( x2 - x3 );
4334 1081970958 : t = ( ( r1 - r3 ) * FFT_C54 );
4335 1081970958 : r1 = ( r1 + r3 );
4336 1081970958 : y06 = ( x0 + r1 );
4337 1081970958 : r1 = ( y06 + ( ( r1 * FFT_C55 ) ) );
4338 1081970958 : r3 = ( r1 - t );
4339 1081970958 : r1 = ( r1 + t );
4340 1081970958 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4341 1081970958 : r4 = ( t + ( r4 * FFT_C52 ) );
4342 1081970958 : r2 = ( t + ( r2 * FFT_C53 ) );
4343 :
4344 1081970958 : x0 = im[s * 15];
4345 1081970958 : x1 = im[s * 11];
4346 1081970958 : x2 = im[s * 7];
4347 1081970958 : x3 = im[s * 3];
4348 1081970958 : x4 = im[s * 19];
4349 :
4350 1081970958 : s1 = ( x1 + x4 );
4351 1081970958 : s4 = ( x1 - x4 );
4352 1081970958 : s3 = ( x2 + x3 );
4353 1081970958 : s2 = ( x2 - x3 );
4354 1081970958 : t = ( ( s1 - s3 ) * FFT_C54 );
4355 1081970958 : s1 = ( s1 + s3 );
4356 1081970958 : y07 = ( x0 + s1 );
4357 1081970958 : s1 = ( y07 + ( s1 * FFT_C55 ) );
4358 1081970958 : s3 = ( s1 - t );
4359 1081970958 : s1 = ( s1 + t );
4360 1081970958 : t = ( ( s4 + s2 ) * FFT_C51 );
4361 1081970958 : s4 = ( t + ( s4 * FFT_C52 ) );
4362 1081970958 : s2 = ( t + ( s2 * FFT_C53 ) );
4363 :
4364 1081970958 : y14 = ( r1 + s2 );
4365 1081970958 : y38 = ( r1 - s2 );
4366 1081970958 : y22 = ( r3 - s4 );
4367 1081970958 : y30 = ( r3 + s4 );
4368 :
4369 1081970958 : y15 = ( s1 - r2 );
4370 1081970958 : y39 = ( s1 + r2 );
4371 1081970958 : y23 = ( s3 + r4 );
4372 1081970958 : y31 = ( s3 - r4 );
4373 :
4374 1081970958 : t0 = ( y00 + y04 );
4375 1081970958 : t2 = ( y00 - y04 );
4376 1081970958 : t1 = ( y01 + y05 );
4377 1081970958 : t3 = ( y01 - y05 );
4378 1081970958 : t4 = ( y02 + y06 );
4379 1081970958 : t7 = ( y02 - y06 );
4380 1081970958 : t5 = ( y07 + y03 );
4381 1081970958 : t6 = ( y07 - y03 );
4382 :
4383 1081970958 : re[s * 0] = ( t0 + t4 );
4384 1081970958 : im[s * 0] = ( t1 + t5 );
4385 1081970958 : re[s * 5] = ( t2 - t6 );
4386 1081970958 : im[s * 5] = ( t3 - t7 );
4387 1081970958 : re[s * 10] = ( t0 - t4 );
4388 1081970958 : im[s * 10] = ( t1 - t5 );
4389 1081970958 : re[s * 15] = ( t2 + t6 );
4390 1081970958 : im[s * 15] = ( t3 + t7 );
4391 :
4392 1081970958 : t0 = ( y08 + y12 );
4393 1081970958 : t2 = ( y08 - y12 );
4394 1081970958 : t1 = ( y09 + y13 );
4395 1081970958 : t3 = ( y09 - y13 );
4396 1081970958 : t4 = ( y10 + y14 );
4397 1081970958 : t7 = ( y10 - y14 );
4398 1081970958 : t5 = ( y15 + y11 );
4399 1081970958 : t6 = ( y15 - y11 );
4400 :
4401 1081970958 : re[s * 4] = ( t0 + t4 );
4402 1081970958 : im[s * 4] = ( t1 + t5 );
4403 1081970958 : re[s * 9] = ( t2 - t6 );
4404 1081970958 : im[s * 9] = ( t3 - t7 );
4405 1081970958 : re[s * 14] = ( t0 - t4 );
4406 1081970958 : im[s * 14] = ( t1 - t5 );
4407 1081970958 : re[s * 19] = ( t2 + t6 );
4408 1081970958 : im[s * 19] = ( t3 + t7 );
4409 :
4410 1081970958 : t0 = ( y16 + y20 );
4411 1081970958 : t2 = ( y16 - y20 );
4412 1081970958 : t1 = ( y17 + y21 );
4413 1081970958 : t3 = ( y17 - y21 );
4414 1081970958 : t4 = ( y18 + y22 );
4415 1081970958 : t7 = ( y18 - y22 );
4416 1081970958 : t5 = ( y23 + y19 );
4417 1081970958 : t6 = ( y23 - y19 );
4418 :
4419 1081970958 : re[s * 8] = ( t0 + t4 );
4420 1081970958 : im[s * 8] = ( t1 + t5 );
4421 1081970958 : re[s * 13] = ( t2 - t6 );
4422 1081970958 : im[s * 13] = ( t3 - t7 );
4423 1081970958 : re[s * 18] = ( t0 - t4 );
4424 1081970958 : im[s * 18] = ( t1 - t5 );
4425 1081970958 : re[s * 3] = ( t2 + t6 );
4426 1081970958 : im[s * 3] = ( t3 + t7 );
4427 :
4428 1081970958 : t0 = ( y24 + y28 );
4429 1081970958 : t2 = ( y24 - y28 );
4430 1081970958 : t1 = ( y25 + y29 );
4431 1081970958 : t3 = ( y25 - y29 );
4432 1081970958 : t4 = ( y26 + y30 );
4433 1081970958 : t7 = ( y26 - y30 );
4434 1081970958 : t5 = ( y31 + y27 );
4435 1081970958 : t6 = ( y31 - y27 );
4436 :
4437 1081970958 : re[s * 12] = ( t0 + t4 );
4438 1081970958 : im[s * 12] = ( t1 + t5 );
4439 1081970958 : re[s * 17] = ( t2 - t6 );
4440 1081970958 : im[s * 17] = ( t3 - t7 );
4441 1081970958 : re[s * 2] = ( t0 - t4 );
4442 1081970958 : im[s * 2] = ( t1 - t5 );
4443 1081970958 : re[s * 7] = ( t2 + t6 );
4444 1081970958 : im[s * 7] = ( t3 + t7 );
4445 :
4446 1081970958 : t0 = ( y32 + y36 );
4447 1081970958 : t2 = ( y32 - y36 );
4448 1081970958 : t1 = ( y33 + y37 );
4449 1081970958 : t3 = ( y33 - y37 );
4450 1081970958 : t4 = ( y34 + y38 );
4451 1081970958 : t7 = ( y34 - y38 );
4452 1081970958 : t5 = ( y39 + y35 );
4453 1081970958 : t6 = ( y39 - y35 );
4454 :
4455 1081970958 : re[s * 16] = ( t0 + t4 );
4456 1081970958 : im[s * 16] = ( t1 + t5 );
4457 1081970958 : re[s * 1] = ( t2 - t6 );
4458 1081970958 : im[s * 1] = ( t3 - t7 );
4459 1081970958 : re[s * 6] = ( t0 - t4 );
4460 1081970958 : im[s * 6] = ( t1 - t5 );
4461 1081970958 : re[s * 11] = ( t2 + t6 );
4462 1081970958 : im[s * 11] = ( t3 + t7 );
4463 :
4464 1081970958 : return;
4465 : }
4466 :
4467 1277385748 : static void fft_len30(
4468 : float *re,
4469 : float *im,
4470 : const int16_t s )
4471 : {
4472 : float t;
4473 : float r1, r2, r3, r4;
4474 : float s1, s2, s3, s4;
4475 : float x00, x01, x02, x03, x04, x05, x06, x07, x08, x09;
4476 : float x10, x11, x12, x13, x14, x15, x16, x17, x18, x19;
4477 : float x20, x21, x22, x23, x24, x25, x26, x27, x28, x29;
4478 :
4479 : float y00, y01, y02, y03, y04, y05, y06, y07, y08, y09;
4480 : float y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
4481 : float y20, y21, y22, y23, y24, y25, y26, y27, y28, y29;
4482 :
4483 : float z00, z01, z02, z03, z04, z05, z06, z07, z08, z09;
4484 : float z10, z11, z12, z13, z14, z15, z16, z17, z18, z19;
4485 : float z20, z21, z22, z23, z24, z25, z26, z27, z28, z29;
4486 : float z30, z31, z32, z33, z34, z35, z36, z37, z38, z39;
4487 : float z40, z41, z42, z43, z44, z45, z46, z47, z48, z49;
4488 : float z50, z51, z52, z53, z54, z55, z56, z57, z58, z59;
4489 :
4490 : float *rel, *reh, *iml, *imh;
4491 :
4492 1277385748 : rel = &re[s * 0];
4493 1277385748 : reh = &re[s * 15];
4494 1277385748 : iml = &im[s * 0];
4495 1277385748 : imh = &im[s * 15];
4496 :
4497 1277385748 : x00 = re[s * 0];
4498 1277385748 : x01 = im[s * 0];
4499 1277385748 : x02 = re[s * 18];
4500 1277385748 : x03 = im[s * 18];
4501 1277385748 : x04 = re[s * 6];
4502 1277385748 : x05 = im[s * 6];
4503 1277385748 : x06 = re[s * 24];
4504 1277385748 : x07 = im[s * 24];
4505 1277385748 : x08 = re[s * 12];
4506 1277385748 : x09 = im[s * 12];
4507 :
4508 1277385748 : x10 = re[s * 20];
4509 1277385748 : x11 = im[s * 20];
4510 1277385748 : x12 = re[s * 8];
4511 1277385748 : x13 = im[s * 8];
4512 1277385748 : x14 = re[s * 26];
4513 1277385748 : x15 = im[s * 26];
4514 1277385748 : x16 = re[s * 14];
4515 1277385748 : x17 = im[s * 14];
4516 1277385748 : x18 = re[s * 2];
4517 1277385748 : x19 = im[s * 2];
4518 :
4519 1277385748 : x20 = re[s * 10];
4520 1277385748 : x21 = im[s * 10];
4521 1277385748 : x22 = re[s * 28];
4522 1277385748 : x23 = im[s * 28];
4523 1277385748 : x24 = re[s * 16];
4524 1277385748 : x25 = im[s * 16];
4525 1277385748 : x26 = re[s * 4];
4526 1277385748 : x27 = im[s * 4];
4527 1277385748 : x28 = re[s * 22];
4528 1277385748 : x29 = im[s * 22];
4529 :
4530 1277385748 : r1 = ( x02 + x08 );
4531 1277385748 : r4 = ( x02 - x08 );
4532 1277385748 : r3 = ( x04 + x06 );
4533 1277385748 : r2 = ( x04 - x06 );
4534 1277385748 : t = ( ( r1 - r3 ) * FFT_C54 );
4535 1277385748 : r1 = ( r1 + r3 );
4536 1277385748 : y00 = ( x00 + r1 );
4537 1277385748 : r1 = ( y00 + ( ( r1 * FFT_C55 ) ) );
4538 1277385748 : r3 = ( r1 - t );
4539 1277385748 : r1 = ( r1 + t );
4540 1277385748 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4541 1277385748 : r4 = ( t + ( r4 * FFT_C52 ) );
4542 1277385748 : r2 = ( t + ( r2 * FFT_C53 ) );
4543 :
4544 1277385748 : s1 = ( x03 + x09 );
4545 1277385748 : s4 = ( x03 - x09 );
4546 1277385748 : s3 = ( x05 + x07 );
4547 1277385748 : s2 = ( x05 - x07 );
4548 1277385748 : t = ( ( s1 - s3 ) * FFT_C54 );
4549 1277385748 : s1 = ( s1 + s3 );
4550 1277385748 : y01 = ( x01 + s1 );
4551 1277385748 : s1 = ( y01 + ( s1 * FFT_C55 ) );
4552 1277385748 : s3 = ( s1 - t );
4553 1277385748 : s1 = ( s1 + t );
4554 1277385748 : t = ( ( s4 + s2 ) * FFT_C51 );
4555 1277385748 : s4 = ( t + ( s4 * FFT_C52 ) );
4556 1277385748 : s2 = ( t + ( s2 * FFT_C53 ) );
4557 :
4558 1277385748 : y02 = ( r1 + s2 );
4559 1277385748 : y08 = ( r1 - s2 );
4560 1277385748 : y04 = ( r3 - s4 );
4561 1277385748 : y06 = ( r3 + s4 );
4562 :
4563 1277385748 : y03 = ( s1 - r2 );
4564 1277385748 : y09 = ( s1 + r2 );
4565 1277385748 : y05 = ( s3 + r4 );
4566 1277385748 : y07 = ( s3 - r4 );
4567 :
4568 1277385748 : r1 = ( x12 + x18 );
4569 1277385748 : r4 = ( x12 - x18 );
4570 1277385748 : r3 = ( x14 + x16 );
4571 1277385748 : r2 = ( x14 - x16 );
4572 1277385748 : t = ( ( r1 - r3 ) * FFT_C54 );
4573 1277385748 : r1 = ( r1 + r3 );
4574 1277385748 : y10 = ( x10 + r1 );
4575 1277385748 : r1 = ( y10 + ( ( r1 * FFT_C55 ) ) );
4576 1277385748 : r3 = ( r1 - t );
4577 1277385748 : r1 = ( r1 + t );
4578 1277385748 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4579 1277385748 : r4 = ( t + ( r4 * FFT_C52 ) );
4580 1277385748 : r2 = ( t + ( r2 * FFT_C53 ) );
4581 :
4582 1277385748 : s1 = ( x13 + x19 );
4583 1277385748 : s4 = ( x13 - x19 );
4584 1277385748 : s3 = ( x15 + x17 );
4585 1277385748 : s2 = ( x15 - x17 );
4586 1277385748 : t = ( ( s1 - s3 ) * FFT_C54 );
4587 1277385748 : s1 = ( s1 + s3 );
4588 1277385748 : y11 = ( x11 + s1 );
4589 1277385748 : s1 = ( y11 + ( s1 * FFT_C55 ) );
4590 1277385748 : s3 = ( s1 - t );
4591 1277385748 : s1 = ( s1 + t );
4592 1277385748 : t = ( ( s4 + s2 ) * FFT_C51 );
4593 1277385748 : s4 = ( t + ( s4 * FFT_C52 ) );
4594 1277385748 : s2 = ( t + ( s2 * FFT_C53 ) );
4595 :
4596 1277385748 : y12 = ( r1 + s2 );
4597 1277385748 : y18 = ( r1 - s2 );
4598 1277385748 : y14 = ( r3 - s4 );
4599 1277385748 : y16 = ( r3 + s4 );
4600 :
4601 1277385748 : y13 = ( s1 - r2 );
4602 1277385748 : y19 = ( s1 + r2 );
4603 1277385748 : y15 = ( s3 + r4 );
4604 1277385748 : y17 = ( s3 - r4 );
4605 :
4606 1277385748 : r1 = ( x22 + x28 );
4607 1277385748 : r4 = ( x22 - x28 );
4608 1277385748 : r3 = ( x24 + x26 );
4609 1277385748 : r2 = ( x24 - x26 );
4610 1277385748 : t = ( ( r1 - r3 ) * FFT_C54 );
4611 1277385748 : r1 = ( r1 + r3 );
4612 1277385748 : y20 = ( x20 + r1 );
4613 1277385748 : r1 = ( y20 + ( ( r1 * FFT_C55 ) ) );
4614 1277385748 : r3 = ( r1 - t );
4615 1277385748 : r1 = ( r1 + t );
4616 1277385748 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4617 1277385748 : r4 = ( t + ( r4 * FFT_C52 ) );
4618 1277385748 : r2 = ( t + ( r2 * FFT_C53 ) );
4619 :
4620 1277385748 : s1 = ( x23 + x29 );
4621 1277385748 : s4 = ( x23 - x29 );
4622 1277385748 : s3 = ( x25 + x27 );
4623 1277385748 : s2 = ( x25 - x27 );
4624 1277385748 : t = ( ( s1 - s3 ) * FFT_C54 );
4625 1277385748 : s1 = ( s1 + s3 );
4626 1277385748 : y21 = ( x21 + s1 );
4627 1277385748 : s1 = ( y21 + ( s1 * FFT_C55 ) );
4628 1277385748 : s3 = ( s1 - t );
4629 1277385748 : s1 = ( s1 + t );
4630 1277385748 : t = ( ( s4 + s2 ) * FFT_C51 );
4631 1277385748 : s4 = ( t + ( s4 * FFT_C52 ) );
4632 1277385748 : s2 = ( t + ( s2 * FFT_C53 ) );
4633 :
4634 1277385748 : y22 = ( r1 + s2 );
4635 1277385748 : y28 = ( r1 - s2 );
4636 1277385748 : y24 = ( r3 - s4 );
4637 1277385748 : y26 = ( r3 + s4 );
4638 :
4639 1277385748 : y23 = ( s1 - r2 );
4640 1277385748 : y29 = ( s1 + r2 );
4641 1277385748 : y25 = ( s3 + r4 );
4642 1277385748 : y27 = ( s3 - r4 );
4643 :
4644 1277385748 : r1 = ( y10 + y20 );
4645 1277385748 : r2 = ( ( y10 - y20 ) * FFT_C31 );
4646 1277385748 : z00 = ( y00 + r1 );
4647 1277385748 : r1 = ( y00 - r1 * 0.5f );
4648 :
4649 1277385748 : s1 = ( y11 + y21 );
4650 1277385748 : s2 = ( ( y11 - y21 ) * FFT_C31 );
4651 1277385748 : z01 = ( y01 + s1 );
4652 1277385748 : s1 = ( y01 - s1 * 0.5f );
4653 :
4654 1277385748 : z20 = ( r1 - s2 );
4655 1277385748 : z10 = ( r1 + s2 );
4656 1277385748 : z21 = ( s1 + r2 );
4657 1277385748 : z11 = ( s1 - r2 );
4658 :
4659 1277385748 : r1 = ( y12 + y22 );
4660 1277385748 : r2 = ( ( y12 - y22 ) * FFT_C31 );
4661 1277385748 : z12 = ( y02 + r1 );
4662 1277385748 : r1 = ( y02 - r1 * 0.5f );
4663 :
4664 1277385748 : s1 = ( y13 + y23 );
4665 1277385748 : s2 = ( ( y13 - y23 ) * FFT_C31 );
4666 1277385748 : z13 = ( y03 + s1 );
4667 1277385748 : s1 = ( y03 - s1 * 0.5f );
4668 :
4669 1277385748 : z02 = ( r1 - s2 );
4670 1277385748 : z22 = ( r1 + s2 );
4671 1277385748 : z03 = ( s1 + r2 );
4672 1277385748 : z23 = ( s1 - r2 );
4673 :
4674 1277385748 : r1 = ( y14 + y24 );
4675 1277385748 : r2 = ( ( y14 - y24 ) * FFT_C31 );
4676 1277385748 : z24 = ( y04 + r1 );
4677 1277385748 : r1 = ( y04 - r1 * 0.5f );
4678 :
4679 1277385748 : s1 = ( y15 + y25 );
4680 1277385748 : s2 = ( ( y15 - y25 ) * FFT_C31 );
4681 1277385748 : z25 = ( y05 + s1 );
4682 1277385748 : s1 = ( y05 - s1 * 0.5f );
4683 :
4684 1277385748 : z14 = ( r1 - s2 );
4685 1277385748 : z04 = ( r1 + s2 );
4686 1277385748 : z15 = ( s1 + r2 );
4687 1277385748 : z05 = ( s1 - r2 );
4688 :
4689 1277385748 : r1 = ( y16 + y26 );
4690 1277385748 : r2 = ( ( y16 - y26 ) * FFT_C31 );
4691 1277385748 : z06 = ( y06 + r1 );
4692 1277385748 : r1 = ( y06 - r1 * 0.5f );
4693 :
4694 1277385748 : s1 = ( y17 + y27 );
4695 1277385748 : s2 = ( ( y17 - y27 ) * FFT_C31 );
4696 1277385748 : z07 = ( y07 + s1 );
4697 1277385748 : s1 = ( y07 - s1 * 0.5f );
4698 :
4699 1277385748 : z26 = ( r1 - s2 );
4700 1277385748 : z16 = ( r1 + s2 );
4701 1277385748 : z27 = ( s1 + r2 );
4702 1277385748 : z17 = ( s1 - r2 );
4703 :
4704 1277385748 : r1 = ( y18 + y28 );
4705 1277385748 : r2 = ( ( y18 - y28 ) * FFT_C31 );
4706 1277385748 : z18 = ( y08 + r1 );
4707 1277385748 : r1 = ( y08 - r1 * 0.5f );
4708 :
4709 1277385748 : s1 = ( y19 + y29 );
4710 1277385748 : s2 = ( ( y19 - y29 ) * FFT_C31 );
4711 1277385748 : z19 = ( y09 + s1 );
4712 1277385748 : s1 = ( y09 - s1 * 0.5f );
4713 :
4714 1277385748 : z08 = ( r1 - s2 );
4715 1277385748 : z28 = ( r1 + s2 );
4716 1277385748 : z09 = ( s1 + r2 );
4717 1277385748 : z29 = ( s1 - r2 );
4718 :
4719 1277385748 : x00 = re[s * 15];
4720 1277385748 : x01 = im[s * 15];
4721 1277385748 : x02 = re[s * 3];
4722 1277385748 : x03 = im[s * 3];
4723 1277385748 : x04 = re[s * 21];
4724 1277385748 : x05 = im[s * 21];
4725 1277385748 : x06 = re[s * 9];
4726 1277385748 : x07 = im[s * 9];
4727 1277385748 : x08 = re[s * 27];
4728 1277385748 : x09 = im[s * 27];
4729 :
4730 1277385748 : x10 = re[s * 5];
4731 1277385748 : x11 = im[s * 5];
4732 1277385748 : x12 = re[s * 23];
4733 1277385748 : x13 = im[s * 23];
4734 1277385748 : x14 = re[s * 11];
4735 1277385748 : x15 = im[s * 11];
4736 1277385748 : x16 = re[s * 29];
4737 1277385748 : x17 = im[s * 29];
4738 1277385748 : x18 = re[s * 17];
4739 1277385748 : x19 = im[s * 17];
4740 :
4741 1277385748 : x20 = re[s * 25];
4742 1277385748 : x21 = im[s * 25];
4743 1277385748 : x22 = re[s * 13];
4744 1277385748 : x23 = im[s * 13];
4745 1277385748 : x24 = re[s * 1];
4746 1277385748 : x25 = im[s * 1];
4747 1277385748 : x26 = re[s * 19];
4748 1277385748 : x27 = im[s * 19];
4749 1277385748 : x28 = re[s * 7];
4750 1277385748 : x29 = im[s * 7];
4751 :
4752 1277385748 : r1 = ( x02 + x08 );
4753 1277385748 : r4 = ( x02 - x08 );
4754 1277385748 : r3 = ( x04 + x06 );
4755 1277385748 : r2 = ( x04 - x06 );
4756 1277385748 : t = ( ( r1 - r3 ) * FFT_C54 );
4757 1277385748 : r1 = ( r1 + r3 );
4758 1277385748 : y00 = ( x00 + r1 );
4759 1277385748 : r1 = ( y00 + ( ( r1 * FFT_C55 ) ) );
4760 1277385748 : r3 = ( r1 - t );
4761 1277385748 : r1 = ( r1 + t );
4762 1277385748 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4763 1277385748 : r4 = ( t + ( r4 * FFT_C52 ) );
4764 1277385748 : r2 = ( t + ( r2 * FFT_C53 ) );
4765 :
4766 1277385748 : s1 = ( x03 + x09 );
4767 1277385748 : s4 = ( x03 - x09 );
4768 1277385748 : s3 = ( x05 + x07 );
4769 1277385748 : s2 = ( x05 - x07 );
4770 1277385748 : t = ( ( s1 - s3 ) * FFT_C54 );
4771 1277385748 : s1 = ( s1 + s3 );
4772 1277385748 : y01 = ( x01 + s1 );
4773 1277385748 : s1 = ( y01 + ( s1 * FFT_C55 ) );
4774 1277385748 : s3 = ( s1 - t );
4775 1277385748 : s1 = ( s1 + t );
4776 1277385748 : t = ( ( s4 + s2 ) * FFT_C51 );
4777 1277385748 : s4 = ( t + ( s4 * FFT_C52 ) );
4778 1277385748 : s2 = ( t + ( s2 * FFT_C53 ) );
4779 :
4780 1277385748 : y02 = ( r1 + s2 );
4781 1277385748 : y08 = ( r1 - s2 );
4782 1277385748 : y04 = ( r3 - s4 );
4783 1277385748 : y06 = ( r3 + s4 );
4784 :
4785 1277385748 : y03 = ( s1 - r2 );
4786 1277385748 : y09 = ( s1 + r2 );
4787 1277385748 : y05 = ( s3 + r4 );
4788 1277385748 : y07 = ( s3 - r4 );
4789 :
4790 1277385748 : r1 = ( x12 + x18 );
4791 1277385748 : r4 = ( x12 - x18 );
4792 1277385748 : r3 = ( x14 + x16 );
4793 1277385748 : r2 = ( x14 - x16 );
4794 1277385748 : t = ( ( r1 - r3 ) * FFT_C54 );
4795 1277385748 : r1 = ( r1 + r3 );
4796 1277385748 : y10 = ( x10 + r1 );
4797 1277385748 : r1 = ( y10 + ( ( r1 * FFT_C55 ) ) );
4798 1277385748 : r3 = ( r1 - t );
4799 1277385748 : r1 = ( r1 + t );
4800 1277385748 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4801 1277385748 : r4 = ( t + ( r4 * FFT_C52 ) );
4802 1277385748 : r2 = ( t + ( r2 * FFT_C53 ) );
4803 :
4804 1277385748 : s1 = ( x13 + x19 );
4805 1277385748 : s4 = ( x13 - x19 );
4806 1277385748 : s3 = ( x15 + x17 );
4807 1277385748 : s2 = ( x15 - x17 );
4808 1277385748 : t = ( ( s1 - s3 ) * FFT_C54 );
4809 1277385748 : s1 = ( s1 + s3 );
4810 1277385748 : y11 = ( x11 + s1 );
4811 1277385748 : s1 = ( y11 + ( s1 * FFT_C55 ) );
4812 1277385748 : s3 = ( s1 - t );
4813 1277385748 : s1 = ( s1 + t );
4814 1277385748 : t = ( ( s4 + s2 ) * FFT_C51 );
4815 1277385748 : s4 = ( t + ( s4 * FFT_C52 ) );
4816 1277385748 : s2 = ( t + ( s2 * FFT_C53 ) );
4817 :
4818 1277385748 : y12 = ( r1 + s2 );
4819 1277385748 : y18 = ( r1 - s2 );
4820 1277385748 : y14 = ( r3 - s4 );
4821 1277385748 : y16 = ( r3 + s4 );
4822 :
4823 1277385748 : y13 = ( s1 - r2 );
4824 1277385748 : y19 = ( s1 + r2 );
4825 1277385748 : y15 = ( s3 + r4 );
4826 1277385748 : y17 = ( s3 - r4 );
4827 :
4828 1277385748 : r1 = ( x22 + x28 );
4829 1277385748 : r4 = ( x22 - x28 );
4830 1277385748 : r3 = ( x24 + x26 );
4831 1277385748 : r2 = ( x24 - x26 );
4832 1277385748 : t = ( ( r1 - r3 ) * FFT_C54 );
4833 1277385748 : r1 = ( r1 + r3 );
4834 1277385748 : y20 = ( x20 + r1 );
4835 1277385748 : r1 = ( y20 + ( ( r1 * FFT_C55 ) ) );
4836 1277385748 : r3 = ( r1 - t );
4837 1277385748 : r1 = ( r1 + t );
4838 1277385748 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4839 1277385748 : r4 = ( t + ( r4 * FFT_C52 ) );
4840 1277385748 : r2 = ( t + ( r2 * FFT_C53 ) );
4841 :
4842 1277385748 : s1 = ( x23 + x29 );
4843 1277385748 : s4 = ( x23 - x29 );
4844 1277385748 : s3 = ( x25 + x27 );
4845 1277385748 : s2 = ( x25 - x27 );
4846 1277385748 : t = ( ( s1 - s3 ) * FFT_C54 );
4847 1277385748 : s1 = ( s1 + s3 );
4848 1277385748 : y21 = ( x21 + s1 );
4849 1277385748 : s1 = ( y21 + ( s1 * FFT_C55 ) );
4850 1277385748 : s3 = ( s1 - t );
4851 1277385748 : s1 = ( s1 + t );
4852 1277385748 : t = ( ( s4 + s2 ) * FFT_C51 );
4853 1277385748 : s4 = ( t + ( s4 * FFT_C52 ) );
4854 1277385748 : s2 = ( t + ( s2 * FFT_C53 ) );
4855 :
4856 1277385748 : y22 = ( r1 + s2 );
4857 1277385748 : y28 = ( r1 - s2 );
4858 1277385748 : y24 = ( r3 - s4 );
4859 1277385748 : y26 = ( r3 + s4 );
4860 :
4861 1277385748 : y23 = ( s1 - r2 );
4862 1277385748 : y29 = ( s1 + r2 );
4863 1277385748 : y25 = ( s3 + r4 );
4864 1277385748 : y27 = ( s3 - r4 );
4865 :
4866 1277385748 : r1 = ( y10 + y20 );
4867 1277385748 : r2 = ( ( y10 - y20 ) * FFT_C31 );
4868 1277385748 : z30 = ( y00 + r1 );
4869 1277385748 : r1 = ( y00 - r1 * 0.5f );
4870 :
4871 1277385748 : s1 = ( y11 + y21 );
4872 1277385748 : s2 = ( ( y11 - y21 ) * FFT_C31 );
4873 1277385748 : z31 = ( y01 + s1 );
4874 1277385748 : s1 = ( y01 - s1 * 0.5f );
4875 :
4876 1277385748 : z50 = ( r1 - s2 );
4877 1277385748 : z40 = ( r1 + s2 );
4878 1277385748 : z51 = ( s1 + r2 );
4879 1277385748 : z41 = ( s1 - r2 );
4880 :
4881 1277385748 : r1 = ( y12 + y22 );
4882 1277385748 : r2 = ( ( y12 - y22 ) * FFT_C31 );
4883 1277385748 : z42 = ( y02 + r1 );
4884 1277385748 : r1 = ( y02 - r1 * 0.5f );
4885 :
4886 1277385748 : s1 = ( y13 + y23 );
4887 1277385748 : s2 = ( ( y13 - y23 ) * FFT_C31 );
4888 1277385748 : z43 = ( y03 + s1 );
4889 1277385748 : s1 = ( y03 - s1 * 0.5f );
4890 :
4891 1277385748 : z32 = ( r1 - s2 );
4892 1277385748 : z52 = ( r1 + s2 );
4893 1277385748 : z33 = ( s1 + r2 );
4894 1277385748 : z53 = ( s1 - r2 );
4895 :
4896 1277385748 : r1 = ( y14 + y24 );
4897 1277385748 : r2 = ( ( y14 - y24 ) * FFT_C31 );
4898 1277385748 : z54 = ( y04 + r1 );
4899 1277385748 : r1 = ( y04 - r1 * 0.5f );
4900 :
4901 1277385748 : s1 = ( y15 + y25 );
4902 1277385748 : s2 = ( ( y15 - y25 ) * FFT_C31 );
4903 1277385748 : z55 = ( y05 + s1 );
4904 1277385748 : s1 = ( y05 - s1 * 0.5f );
4905 :
4906 1277385748 : z44 = ( r1 - s2 );
4907 1277385748 : z34 = ( r1 + s2 );
4908 1277385748 : z45 = ( s1 + r2 );
4909 1277385748 : z35 = ( s1 - r2 );
4910 :
4911 1277385748 : r1 = ( y16 + y26 );
4912 1277385748 : r2 = ( ( y16 - y26 ) * FFT_C31 );
4913 1277385748 : z36 = ( y06 + r1 );
4914 1277385748 : r1 = ( y06 - r1 * 0.5f );
4915 :
4916 1277385748 : s1 = ( y17 + y27 );
4917 1277385748 : s2 = ( ( y17 - y27 ) * FFT_C31 );
4918 1277385748 : z37 = ( y07 + s1 );
4919 1277385748 : s1 = ( y07 - s1 * 0.5f );
4920 :
4921 1277385748 : z56 = ( r1 - s2 );
4922 1277385748 : z46 = ( r1 + s2 );
4923 1277385748 : z57 = ( s1 + r2 );
4924 1277385748 : z47 = ( s1 - r2 );
4925 :
4926 1277385748 : r1 = ( y18 + y28 );
4927 1277385748 : r2 = ( ( y18 - y28 ) * FFT_C31 );
4928 1277385748 : z48 = ( y08 + r1 );
4929 1277385748 : r1 = ( y08 - r1 * 0.5f );
4930 :
4931 1277385748 : s1 = ( y19 + y29 );
4932 1277385748 : s2 = ( ( y19 - y29 ) * FFT_C31 );
4933 1277385748 : z49 = ( y09 + s1 );
4934 1277385748 : s1 = ( y09 - s1 * 0.5f );
4935 :
4936 1277385748 : z38 = ( r1 - s2 );
4937 1277385748 : z58 = ( r1 + s2 );
4938 1277385748 : z39 = ( s1 + r2 );
4939 1277385748 : z59 = ( s1 - r2 );
4940 :
4941 1277385748 : r1 = z00;
4942 1277385748 : r2 = z30;
4943 1277385748 : r3 = z01;
4944 1277385748 : r4 = z31;
4945 1277385748 : *rel = ( r1 + r2 );
4946 1277385748 : *reh = ( r1 - r2 );
4947 1277385748 : *iml = ( r3 + r4 );
4948 1277385748 : *imh = ( r3 - r4 );
4949 1277385748 : rel += s, reh += s, iml += s;
4950 1277385748 : imh += s;
4951 :
4952 1277385748 : r1 = z16;
4953 1277385748 : r2 = z46;
4954 1277385748 : r3 = z17;
4955 1277385748 : r4 = z47;
4956 1277385748 : *reh = ( r1 + r2 );
4957 1277385748 : *rel = ( r1 - r2 );
4958 1277385748 : *imh = ( r3 + r4 );
4959 1277385748 : *iml = ( r3 - r4 );
4960 1277385748 : rel += s, reh += s, iml += s;
4961 1277385748 : imh += s;
4962 :
4963 1277385748 : r1 = z02;
4964 1277385748 : r2 = z32;
4965 1277385748 : r3 = z03;
4966 1277385748 : r4 = z33;
4967 1277385748 : *rel = ( r1 + r2 );
4968 1277385748 : *reh = ( r1 - r2 );
4969 1277385748 : *iml = ( r3 + r4 );
4970 1277385748 : *imh = ( r3 - r4 );
4971 1277385748 : rel += s, reh += s, iml += s;
4972 1277385748 : imh += s;
4973 :
4974 1277385748 : r1 = z18;
4975 1277385748 : r2 = z48;
4976 1277385748 : r3 = z19;
4977 1277385748 : r4 = z49;
4978 1277385748 : *reh = ( r1 + r2 );
4979 1277385748 : *rel = ( r1 - r2 );
4980 1277385748 : *imh = ( r3 + r4 );
4981 1277385748 : *iml = ( r3 - r4 );
4982 1277385748 : rel += s, reh += s, iml += s;
4983 1277385748 : imh += s;
4984 :
4985 1277385748 : r1 = z04;
4986 1277385748 : r2 = z34;
4987 1277385748 : r3 = z05;
4988 1277385748 : r4 = z35;
4989 1277385748 : *rel = ( r1 + r2 );
4990 1277385748 : *reh = ( r1 - r2 );
4991 1277385748 : *iml = ( r3 + r4 );
4992 1277385748 : *imh = ( r3 - r4 );
4993 1277385748 : rel += s, reh += s, iml += s;
4994 1277385748 : imh += s;
4995 :
4996 1277385748 : r1 = z20;
4997 1277385748 : r2 = z50;
4998 1277385748 : r3 = z21;
4999 1277385748 : r4 = z51;
5000 1277385748 : *reh = ( r1 + r2 );
5001 1277385748 : *rel = ( r1 - r2 );
5002 1277385748 : *imh = ( r3 + r4 );
5003 1277385748 : *iml = ( r3 - r4 );
5004 1277385748 : rel += s, reh += s, iml += s;
5005 1277385748 : imh += s;
5006 :
5007 1277385748 : r1 = z06;
5008 1277385748 : r2 = z36;
5009 1277385748 : r3 = z07;
5010 1277385748 : r4 = z37;
5011 1277385748 : *rel = ( r1 + r2 );
5012 1277385748 : *reh = ( r1 - r2 );
5013 1277385748 : *iml = ( r3 + r4 );
5014 1277385748 : *imh = ( r3 - r4 );
5015 1277385748 : rel += s, reh += s, iml += s;
5016 1277385748 : imh += s;
5017 :
5018 1277385748 : r1 = z22;
5019 1277385748 : r2 = z52;
5020 1277385748 : r3 = z23;
5021 1277385748 : r4 = z53;
5022 1277385748 : *reh = ( r1 + r2 );
5023 1277385748 : *rel = ( r1 - r2 );
5024 1277385748 : *imh = ( r3 + r4 );
5025 1277385748 : *iml = ( r3 - r4 );
5026 1277385748 : rel += s, reh += s, iml += s;
5027 1277385748 : imh += s;
5028 :
5029 1277385748 : r1 = z08;
5030 1277385748 : r2 = z38;
5031 1277385748 : r3 = z09;
5032 1277385748 : r4 = z39;
5033 1277385748 : *rel = ( r1 + r2 );
5034 1277385748 : *reh = ( r1 - r2 );
5035 1277385748 : *iml = ( r3 + r4 );
5036 1277385748 : *imh = ( r3 - r4 );
5037 1277385748 : rel += s, reh += s, iml += s;
5038 1277385748 : imh += s;
5039 :
5040 1277385748 : r1 = z24;
5041 1277385748 : r2 = z54;
5042 1277385748 : r3 = z25;
5043 1277385748 : r4 = z55;
5044 1277385748 : *reh = ( r1 + r2 );
5045 1277385748 : *rel = ( r1 - r2 );
5046 1277385748 : *imh = ( r3 + r4 );
5047 1277385748 : *iml = ( r3 - r4 );
5048 1277385748 : rel += s, reh += s, iml += s;
5049 1277385748 : imh += s;
5050 :
5051 1277385748 : r1 = z10;
5052 1277385748 : r2 = z40;
5053 1277385748 : r3 = z11;
5054 1277385748 : r4 = z41;
5055 1277385748 : *rel = ( r1 + r2 );
5056 1277385748 : *reh = ( r1 - r2 );
5057 1277385748 : *iml = ( r3 + r4 );
5058 1277385748 : *imh = ( r3 - r4 );
5059 1277385748 : rel += s, reh += s, iml += s;
5060 1277385748 : imh += s;
5061 :
5062 1277385748 : r1 = z26;
5063 1277385748 : r2 = z56;
5064 1277385748 : r3 = z27;
5065 1277385748 : r4 = z57;
5066 1277385748 : *reh = ( r1 + r2 );
5067 1277385748 : *rel = ( r1 - r2 );
5068 1277385748 : *imh = ( r3 + r4 );
5069 1277385748 : *iml = ( r3 - r4 );
5070 1277385748 : rel += s, reh += s, iml += s;
5071 1277385748 : imh += s;
5072 :
5073 1277385748 : r1 = z12;
5074 1277385748 : r2 = z42;
5075 1277385748 : r3 = z13;
5076 1277385748 : r4 = z43;
5077 1277385748 : *rel = ( r1 + r2 );
5078 1277385748 : *reh = ( r1 - r2 );
5079 1277385748 : *iml = ( r3 + r4 );
5080 1277385748 : *imh = ( r3 - r4 );
5081 1277385748 : rel += s, reh += s, iml += s;
5082 1277385748 : imh += s;
5083 :
5084 1277385748 : r1 = z28;
5085 1277385748 : r2 = z58;
5086 1277385748 : r3 = z29;
5087 1277385748 : r4 = z59;
5088 1277385748 : *reh = ( r1 + r2 );
5089 1277385748 : *rel = ( r1 - r2 );
5090 1277385748 : *imh = ( r3 + r4 );
5091 1277385748 : *iml = ( r3 - r4 );
5092 1277385748 : rel += s, reh += s, iml += s;
5093 1277385748 : imh += s;
5094 :
5095 1277385748 : r1 = z14;
5096 1277385748 : r2 = z44;
5097 1277385748 : r3 = z15;
5098 1277385748 : r4 = z45;
5099 1277385748 : *rel = ( r1 + r2 );
5100 1277385748 : *reh = ( r1 - r2 );
5101 1277385748 : *iml = ( r3 + r4 );
5102 1277385748 : *imh = ( r3 - r4 );
5103 1277385748 : rel += s, reh += s, iml += s;
5104 1277385748 : imh += s;
5105 :
5106 1277385748 : return;
5107 : }
5108 :
5109 436828894 : static void fft_len32(
5110 : float *re,
5111 : float *im,
5112 : const int16_t s )
5113 : {
5114 : float as, bs;
5115 : float x00, x01, x02, x03, x04, x05, x06, x07;
5116 : float x08, x09, x10, x11, x12, x13, x14, x15;
5117 : float t00, t01, t02, t03, t04, t05, t06, t07;
5118 : float t08, t09, t10, t11, t12, t13, t14, t15;
5119 : float s00, s01, s02, s03, s04, s05, s06, s07;
5120 : float s08, s09, s10, s11, s12, s13, s14, s15;
5121 :
5122 : float y00, y01, y02, y03, y04, y05, y06, y07;
5123 : float y08, y09, y10, y11, y12, y13, y14, y15;
5124 : float y16, y17, y18, y19, y20, y21, y22, y23;
5125 : float y24, y25, y26, y27, y28, y29, y30, y31;
5126 : float y32, y33, y34, y35, y36, y37, y38, y39;
5127 : float y40, y41, y42, y43, y44, y45, y46, y47;
5128 : float y48, y49, y50, y51, y52, y53, y54, y55;
5129 : float y56, y57, y58, y59, y60, y61, y62, y63;
5130 :
5131 436828894 : x00 = re[s * 0];
5132 436828894 : x01 = im[s * 0];
5133 436828894 : x02 = re[s * 4];
5134 436828894 : x03 = im[s * 4];
5135 436828894 : x04 = re[s * 8];
5136 436828894 : x05 = im[s * 8];
5137 436828894 : x06 = re[s * 12];
5138 436828894 : x07 = im[s * 12];
5139 436828894 : x08 = re[s * 16];
5140 436828894 : x09 = im[s * 16];
5141 436828894 : x10 = re[s * 20];
5142 436828894 : x11 = im[s * 20];
5143 436828894 : x12 = re[s * 24];
5144 436828894 : x13 = im[s * 24];
5145 436828894 : x14 = re[s * 28];
5146 436828894 : x15 = im[s * 28];
5147 :
5148 436828894 : t00 = ( x00 + x08 );
5149 436828894 : t02 = ( x00 - x08 );
5150 436828894 : t01 = ( x01 + x09 );
5151 436828894 : t03 = ( x01 - x09 );
5152 436828894 : t04 = ( x02 + x10 );
5153 436828894 : t06 = ( x02 - x10 );
5154 436828894 : t05 = ( x03 + x11 );
5155 436828894 : t07 = ( x03 - x11 );
5156 436828894 : t08 = ( x04 + x12 );
5157 436828894 : t10 = ( x04 - x12 );
5158 436828894 : t09 = ( x05 + x13 );
5159 436828894 : t11 = ( x05 - x13 );
5160 436828894 : t12 = ( x06 + x14 );
5161 436828894 : t14 = ( x06 - x14 );
5162 436828894 : t13 = ( x07 + x15 );
5163 436828894 : t15 = ( x07 - x15 );
5164 :
5165 436828894 : s00 = ( t00 + t08 );
5166 436828894 : s04 = ( t00 - t08 );
5167 436828894 : s01 = ( t01 + t09 );
5168 436828894 : s05 = ( t01 - t09 );
5169 436828894 : s08 = ( t02 - t11 );
5170 436828894 : s10 = ( t02 + t11 );
5171 436828894 : s09 = ( t03 + t10 );
5172 436828894 : s11 = ( t03 - t10 );
5173 436828894 : s02 = ( t04 + t12 );
5174 436828894 : s07 = ( t04 - t12 );
5175 436828894 : s03 = ( t05 + t13 );
5176 436828894 : s06 = ( t13 - t05 );
5177 436828894 : t01 = ( t06 + t14 );
5178 436828894 : t02 = ( t06 - t14 );
5179 436828894 : t00 = ( t07 + t15 );
5180 436828894 : t03 = ( t07 - t15 );
5181 :
5182 : {
5183 436828894 : s12 = ( ( t00 + t02 ) * FFT_C81 );
5184 436828894 : s14 = ( ( t00 - t02 ) * FFT_C81 );
5185 436828894 : s13 = ( ( t03 - t01 ) * FFT_C81 );
5186 436828894 : s15 = ( ( t01 + t03 ) * FFT_C82 );
5187 : };
5188 :
5189 436828894 : y00 = ( s00 + s02 );
5190 436828894 : y08 = ( s00 - s02 );
5191 436828894 : y01 = ( s01 + s03 );
5192 436828894 : y09 = ( s01 - s03 );
5193 436828894 : y04 = ( s04 - s06 );
5194 436828894 : y12 = ( s04 + s06 );
5195 436828894 : y05 = ( s05 - s07 );
5196 436828894 : y13 = ( s05 + s07 );
5197 436828894 : y06 = ( s08 + s14 );
5198 436828894 : y14 = ( s08 - s14 );
5199 436828894 : y07 = ( s09 + s15 );
5200 436828894 : y15 = ( s09 - s15 );
5201 436828894 : y02 = ( s10 + s12 );
5202 436828894 : y10 = ( s10 - s12 );
5203 436828894 : y03 = ( s11 + s13 );
5204 436828894 : y11 = ( s11 - s13 );
5205 :
5206 436828894 : x00 = re[s * 1];
5207 436828894 : x01 = im[s * 1];
5208 436828894 : x02 = re[s * 5];
5209 436828894 : x03 = im[s * 5];
5210 436828894 : x04 = re[s * 9];
5211 436828894 : x05 = im[s * 9];
5212 436828894 : x06 = re[s * 13];
5213 436828894 : x07 = im[s * 13];
5214 436828894 : x08 = re[s * 17];
5215 436828894 : x09 = im[s * 17];
5216 436828894 : x10 = re[s * 21];
5217 436828894 : x11 = im[s * 21];
5218 436828894 : x12 = re[s * 25];
5219 436828894 : x13 = im[s * 25];
5220 436828894 : x14 = re[s * 29];
5221 436828894 : x15 = im[s * 29];
5222 :
5223 436828894 : t00 = ( x00 + x08 );
5224 436828894 : t02 = ( x00 - x08 );
5225 436828894 : t01 = ( x01 + x09 );
5226 436828894 : t03 = ( x01 - x09 );
5227 436828894 : t04 = ( x02 + x10 );
5228 436828894 : t06 = ( x02 - x10 );
5229 436828894 : t05 = ( x03 + x11 );
5230 436828894 : t07 = ( x03 - x11 );
5231 436828894 : t08 = ( x04 + x12 );
5232 436828894 : t10 = ( x04 - x12 );
5233 436828894 : t09 = ( x05 + x13 );
5234 436828894 : t11 = ( x05 - x13 );
5235 436828894 : t12 = ( x06 + x14 );
5236 436828894 : t14 = ( x06 - x14 );
5237 436828894 : t13 = ( x07 + x15 );
5238 436828894 : t15 = ( x07 - x15 );
5239 :
5240 436828894 : s00 = ( t00 + t08 );
5241 436828894 : s04 = ( t00 - t08 );
5242 436828894 : s01 = ( t01 + t09 );
5243 436828894 : s05 = ( t01 - t09 );
5244 436828894 : s08 = ( t02 - t11 );
5245 436828894 : s10 = ( t02 + t11 );
5246 436828894 : s09 = ( t03 + t10 );
5247 436828894 : s11 = ( t03 - t10 );
5248 436828894 : s02 = ( t04 + t12 );
5249 436828894 : s07 = ( t04 - t12 );
5250 436828894 : s03 = ( t05 + t13 );
5251 436828894 : s06 = ( t13 - t05 );
5252 436828894 : t01 = ( t06 + t14 );
5253 436828894 : t02 = ( t06 - t14 );
5254 436828894 : t00 = ( t07 + t15 );
5255 436828894 : t03 = ( t07 - t15 );
5256 :
5257 : {
5258 436828894 : s12 = ( ( t00 + t02 ) * FFT_C81 );
5259 436828894 : s14 = ( ( t00 - t02 ) * FFT_C81 );
5260 436828894 : s13 = ( ( t03 - t01 ) * FFT_C81 );
5261 436828894 : s15 = ( ( t01 + t03 ) * FFT_C82 );
5262 : };
5263 :
5264 436828894 : y16 = ( s00 + s02 );
5265 436828894 : y24 = ( s00 - s02 );
5266 436828894 : y17 = ( s01 + s03 );
5267 436828894 : y25 = ( s01 - s03 );
5268 436828894 : y20 = ( s04 - s06 );
5269 436828894 : y28 = ( s04 + s06 );
5270 436828894 : y21 = ( s05 - s07 );
5271 436828894 : y29 = ( s05 + s07 );
5272 436828894 : y22 = ( s08 + s14 );
5273 436828894 : y30 = ( s08 - s14 );
5274 436828894 : y23 = ( s09 + s15 );
5275 436828894 : y31 = ( s09 - s15 );
5276 436828894 : y18 = ( s10 + s12 );
5277 436828894 : y26 = ( s10 - s12 );
5278 436828894 : y19 = ( s11 + s13 );
5279 436828894 : y27 = ( s11 - s13 );
5280 :
5281 436828894 : x00 = re[s * 2];
5282 436828894 : x01 = im[s * 2];
5283 436828894 : x02 = re[s * 6];
5284 436828894 : x03 = im[s * 6];
5285 436828894 : x04 = re[s * 10];
5286 436828894 : x05 = im[s * 10];
5287 436828894 : x06 = re[s * 14];
5288 436828894 : x07 = im[s * 14];
5289 436828894 : x08 = re[s * 18];
5290 436828894 : x09 = im[s * 18];
5291 436828894 : x10 = re[s * 22];
5292 436828894 : x11 = im[s * 22];
5293 436828894 : x12 = re[s * 26];
5294 436828894 : x13 = im[s * 26];
5295 436828894 : x14 = re[s * 30];
5296 436828894 : x15 = im[s * 30];
5297 :
5298 436828894 : t00 = ( x00 + x08 );
5299 436828894 : t02 = ( x00 - x08 );
5300 436828894 : t01 = ( x01 + x09 );
5301 436828894 : t03 = ( x01 - x09 );
5302 436828894 : t04 = ( x02 + x10 );
5303 436828894 : t06 = ( x02 - x10 );
5304 436828894 : t05 = ( x03 + x11 );
5305 436828894 : t07 = ( x03 - x11 );
5306 436828894 : t08 = ( x04 + x12 );
5307 436828894 : t10 = ( x04 - x12 );
5308 436828894 : t09 = ( x05 + x13 );
5309 436828894 : t11 = ( x05 - x13 );
5310 436828894 : t12 = ( x06 + x14 );
5311 436828894 : t14 = ( x06 - x14 );
5312 436828894 : t13 = ( x07 + x15 );
5313 436828894 : t15 = ( x07 - x15 );
5314 :
5315 436828894 : s00 = ( t00 + t08 );
5316 436828894 : s04 = ( t00 - t08 );
5317 436828894 : s01 = ( t01 + t09 );
5318 436828894 : s05 = ( t01 - t09 );
5319 436828894 : s08 = ( t02 - t11 );
5320 436828894 : s10 = ( t02 + t11 );
5321 436828894 : s09 = ( t03 + t10 );
5322 436828894 : s11 = ( t03 - t10 );
5323 436828894 : s02 = ( t04 + t12 );
5324 436828894 : s07 = ( t04 - t12 );
5325 436828894 : s03 = ( t05 + t13 );
5326 436828894 : s06 = ( t13 - t05 );
5327 436828894 : t01 = ( t06 + t14 );
5328 436828894 : t02 = ( t06 - t14 );
5329 436828894 : t00 = ( t07 + t15 );
5330 436828894 : t03 = ( t07 - t15 );
5331 :
5332 : {
5333 436828894 : s12 = ( ( t00 + t02 ) * FFT_C81 );
5334 436828894 : s14 = ( ( t00 - t02 ) * FFT_C81 );
5335 436828894 : s13 = ( ( t03 - t01 ) * FFT_C81 );
5336 436828894 : s15 = ( ( t01 + t03 ) * FFT_C82 );
5337 : };
5338 :
5339 436828894 : y32 = ( s00 + s02 );
5340 436828894 : y40 = ( s00 - s02 );
5341 436828894 : y33 = ( s01 + s03 );
5342 436828894 : y41 = ( s01 - s03 );
5343 436828894 : y36 = ( s04 - s06 );
5344 436828894 : y44 = ( s04 + s06 );
5345 436828894 : y37 = ( s05 - s07 );
5346 436828894 : y45 = ( s05 + s07 );
5347 436828894 : y38 = ( s08 + s14 );
5348 436828894 : y46 = ( s08 - s14 );
5349 436828894 : y39 = ( s09 + s15 );
5350 436828894 : y47 = ( s09 - s15 );
5351 436828894 : y34 = ( s10 + s12 );
5352 436828894 : y42 = ( s10 - s12 );
5353 436828894 : y35 = ( s11 + s13 );
5354 436828894 : y43 = ( s11 - s13 );
5355 :
5356 436828894 : x00 = re[s * 3];
5357 436828894 : x01 = im[s * 3];
5358 436828894 : x02 = re[s * 7];
5359 436828894 : x03 = im[s * 7];
5360 436828894 : x04 = re[s * 11];
5361 436828894 : x05 = im[s * 11];
5362 436828894 : x06 = re[s * 15];
5363 436828894 : x07 = im[s * 15];
5364 436828894 : x08 = re[s * 19];
5365 436828894 : x09 = im[s * 19];
5366 436828894 : x10 = re[s * 23];
5367 436828894 : x11 = im[s * 23];
5368 436828894 : x12 = re[s * 27];
5369 436828894 : x13 = im[s * 27];
5370 436828894 : x14 = re[s * 31];
5371 436828894 : x15 = im[s * 31];
5372 :
5373 436828894 : t00 = ( x00 + x08 );
5374 436828894 : t02 = ( x00 - x08 );
5375 436828894 : t01 = ( x01 + x09 );
5376 436828894 : t03 = ( x01 - x09 );
5377 436828894 : t04 = ( x02 + x10 );
5378 436828894 : t06 = ( x02 - x10 );
5379 436828894 : t05 = ( x03 + x11 );
5380 436828894 : t07 = ( x03 - x11 );
5381 436828894 : t08 = ( x04 + x12 );
5382 436828894 : t10 = ( x04 - x12 );
5383 436828894 : t09 = ( x05 + x13 );
5384 436828894 : t11 = ( x05 - x13 );
5385 436828894 : t12 = ( x06 + x14 );
5386 436828894 : t14 = ( x06 - x14 );
5387 436828894 : t13 = ( x07 + x15 );
5388 436828894 : t15 = ( x07 - x15 );
5389 :
5390 436828894 : s00 = ( t00 + t08 );
5391 436828894 : s04 = ( t00 - t08 );
5392 436828894 : s01 = ( t01 + t09 );
5393 436828894 : s05 = ( t01 - t09 );
5394 436828894 : s08 = ( t02 - t11 );
5395 436828894 : s10 = ( t02 + t11 );
5396 436828894 : s09 = ( t03 + t10 );
5397 436828894 : s11 = ( t03 - t10 );
5398 436828894 : s02 = ( t04 + t12 );
5399 436828894 : s07 = ( t04 - t12 );
5400 436828894 : s03 = ( t05 + t13 );
5401 436828894 : s06 = ( t13 - t05 );
5402 436828894 : t01 = ( t06 + t14 );
5403 436828894 : t02 = ( t06 - t14 );
5404 436828894 : t00 = ( t07 + t15 );
5405 436828894 : t03 = ( t07 - t15 );
5406 :
5407 : {
5408 436828894 : s12 = ( ( t00 + t02 ) * FFT_C81 );
5409 436828894 : s14 = ( ( t00 - t02 ) * FFT_C81 );
5410 436828894 : s13 = ( ( t03 - t01 ) * FFT_C81 );
5411 436828894 : s15 = ( ( t01 + t03 ) * FFT_C82 );
5412 : };
5413 :
5414 436828894 : y48 = ( s00 + s02 );
5415 436828894 : y56 = ( s00 - s02 );
5416 436828894 : y49 = ( s01 + s03 );
5417 436828894 : y57 = ( s01 - s03 );
5418 436828894 : y52 = ( s04 - s06 );
5419 436828894 : y60 = ( s04 + s06 );
5420 436828894 : y53 = ( s05 - s07 );
5421 436828894 : y61 = ( s05 + s07 );
5422 436828894 : y54 = ( s08 + s14 );
5423 436828894 : y62 = ( s08 - s14 );
5424 436828894 : y55 = ( s09 + s15 );
5425 436828894 : y63 = ( s09 - s15 );
5426 436828894 : y50 = ( s10 + s12 );
5427 436828894 : y58 = ( s10 - s12 );
5428 436828894 : y51 = ( s11 + s13 );
5429 436828894 : y59 = ( s11 - s13 );
5430 :
5431 :
5432 : {
5433 436828894 : as = y18;
5434 436828894 : bs = y19;
5435 436828894 : y18 = ( ( as * FFT_RotVector_32[2 * 0 + 0] ) - ( bs * FFT_RotVector_32[2 * 0 + 1] ) );
5436 436828894 : y19 = ( ( as * FFT_RotVector_32[2 * 0 + 1] ) + ( bs * FFT_RotVector_32[2 * 0 + 0] ) );
5437 : };
5438 : {
5439 436828894 : as = y20;
5440 436828894 : bs = y21;
5441 436828894 : y20 = ( ( as * FFT_RotVector_32[2 * 1 + 0] ) - ( bs * FFT_RotVector_32[2 * 1 + 1] ) );
5442 436828894 : y21 = ( ( as * FFT_RotVector_32[2 * 1 + 1] ) + ( bs * FFT_RotVector_32[2 * 1 + 0] ) );
5443 : };
5444 : {
5445 436828894 : as = y22;
5446 436828894 : bs = y23;
5447 436828894 : y22 = ( ( as * FFT_RotVector_32[2 * 2 + 0] ) - ( bs * FFT_RotVector_32[2 * 2 + 1] ) );
5448 436828894 : y23 = ( ( as * FFT_RotVector_32[2 * 2 + 1] ) + ( bs * FFT_RotVector_32[2 * 2 + 0] ) );
5449 : };
5450 : {
5451 436828894 : as = y24;
5452 436828894 : bs = y25;
5453 436828894 : y24 = ( ( as * FFT_RotVector_32[2 * 3 + 0] ) - ( bs * FFT_RotVector_32[2 * 3 + 1] ) );
5454 436828894 : y25 = ( ( as * FFT_RotVector_32[2 * 3 + 1] ) + ( bs * FFT_RotVector_32[2 * 3 + 0] ) );
5455 : };
5456 : {
5457 436828894 : as = y26;
5458 436828894 : bs = y27;
5459 436828894 : y26 = ( ( as * FFT_RotVector_32[2 * 4 + 0] ) - ( bs * FFT_RotVector_32[2 * 4 + 1] ) );
5460 436828894 : y27 = ( ( as * FFT_RotVector_32[2 * 4 + 1] ) + ( bs * FFT_RotVector_32[2 * 4 + 0] ) );
5461 : };
5462 : {
5463 436828894 : as = y28;
5464 436828894 : bs = y29;
5465 436828894 : y28 = ( ( as * FFT_RotVector_32[2 * 5 + 0] ) - ( bs * FFT_RotVector_32[2 * 5 + 1] ) );
5466 436828894 : y29 = ( ( as * FFT_RotVector_32[2 * 5 + 1] ) + ( bs * FFT_RotVector_32[2 * 5 + 0] ) );
5467 : };
5468 : {
5469 436828894 : as = y30;
5470 436828894 : bs = y31;
5471 436828894 : y30 = ( ( as * FFT_RotVector_32[2 * 6 + 0] ) - ( bs * FFT_RotVector_32[2 * 6 + 1] ) );
5472 436828894 : y31 = ( ( as * FFT_RotVector_32[2 * 6 + 1] ) + ( bs * FFT_RotVector_32[2 * 6 + 0] ) );
5473 : };
5474 : {
5475 436828894 : as = y34;
5476 436828894 : bs = y35;
5477 436828894 : y34 = ( ( as * FFT_RotVector_32[2 * 7 + 0] ) - ( bs * FFT_RotVector_32[2 * 7 + 1] ) );
5478 436828894 : y35 = ( ( as * FFT_RotVector_32[2 * 7 + 1] ) + ( bs * FFT_RotVector_32[2 * 7 + 0] ) );
5479 : };
5480 : {
5481 436828894 : as = y36;
5482 436828894 : bs = y37;
5483 436828894 : y36 = ( ( as * FFT_RotVector_32[2 * 8 + 0] ) - ( bs * FFT_RotVector_32[2 * 8 + 1] ) );
5484 436828894 : y37 = ( ( as * FFT_RotVector_32[2 * 8 + 1] ) + ( bs * FFT_RotVector_32[2 * 8 + 0] ) );
5485 : };
5486 : {
5487 436828894 : as = y38;
5488 436828894 : bs = y39;
5489 436828894 : y38 = ( ( as * FFT_RotVector_32[2 * 9 + 0] ) - ( bs * FFT_RotVector_32[2 * 9 + 1] ) );
5490 436828894 : y39 = ( ( as * FFT_RotVector_32[2 * 9 + 1] ) + ( bs * FFT_RotVector_32[2 * 9 + 0] ) );
5491 : };
5492 : {
5493 436828894 : as = y42;
5494 436828894 : bs = y43;
5495 436828894 : y42 = ( ( as * FFT_RotVector_32[2 * 10 + 0] ) - ( bs * FFT_RotVector_32[2 * 10 + 1] ) );
5496 436828894 : y43 = ( ( as * FFT_RotVector_32[2 * 10 + 1] ) + ( bs * FFT_RotVector_32[2 * 10 + 0] ) );
5497 : };
5498 : {
5499 436828894 : as = y44;
5500 436828894 : bs = y45;
5501 436828894 : y44 = ( ( as * FFT_RotVector_32[2 * 11 + 0] ) - ( bs * FFT_RotVector_32[2 * 11 + 1] ) );
5502 436828894 : y45 = ( ( as * FFT_RotVector_32[2 * 11 + 1] ) + ( bs * FFT_RotVector_32[2 * 11 + 0] ) );
5503 : };
5504 : {
5505 436828894 : as = y46;
5506 436828894 : bs = y47;
5507 436828894 : y46 = ( ( as * FFT_RotVector_32[2 * 12 + 0] ) - ( bs * FFT_RotVector_32[2 * 12 + 1] ) );
5508 436828894 : y47 = ( ( as * FFT_RotVector_32[2 * 12 + 1] ) + ( bs * FFT_RotVector_32[2 * 12 + 0] ) );
5509 : };
5510 : {
5511 436828894 : as = y50;
5512 436828894 : bs = y51;
5513 436828894 : y50 = ( ( as * FFT_RotVector_32[2 * 13 + 0] ) - ( bs * FFT_RotVector_32[2 * 13 + 1] ) );
5514 436828894 : y51 = ( ( as * FFT_RotVector_32[2 * 13 + 1] ) + ( bs * FFT_RotVector_32[2 * 13 + 0] ) );
5515 : };
5516 : {
5517 436828894 : as = y52;
5518 436828894 : bs = y53;
5519 436828894 : y52 = ( ( as * FFT_RotVector_32[2 * 14 + 0] ) - ( bs * FFT_RotVector_32[2 * 14 + 1] ) );
5520 436828894 : y53 = ( ( as * FFT_RotVector_32[2 * 14 + 1] ) + ( bs * FFT_RotVector_32[2 * 14 + 0] ) );
5521 : };
5522 : {
5523 436828894 : as = y54;
5524 436828894 : bs = y55;
5525 436828894 : y54 = ( ( as * FFT_RotVector_32[2 * 15 + 0] ) - ( bs * FFT_RotVector_32[2 * 15 + 1] ) );
5526 436828894 : y55 = ( ( as * FFT_RotVector_32[2 * 15 + 1] ) + ( bs * FFT_RotVector_32[2 * 15 + 0] ) );
5527 : };
5528 : {
5529 436828894 : as = y56;
5530 436828894 : bs = y57;
5531 436828894 : y56 = ( ( as * FFT_RotVector_32[2 * 16 + 0] ) - ( bs * FFT_RotVector_32[2 * 16 + 1] ) );
5532 436828894 : y57 = ( ( as * FFT_RotVector_32[2 * 16 + 1] ) + ( bs * FFT_RotVector_32[2 * 16 + 0] ) );
5533 : };
5534 : {
5535 436828894 : as = y58;
5536 436828894 : bs = y59;
5537 436828894 : y58 = ( ( as * FFT_RotVector_32[2 * 17 + 0] ) - ( bs * FFT_RotVector_32[2 * 17 + 1] ) );
5538 436828894 : y59 = ( ( as * FFT_RotVector_32[2 * 17 + 1] ) + ( bs * FFT_RotVector_32[2 * 17 + 0] ) );
5539 : };
5540 : {
5541 436828894 : as = y60;
5542 436828894 : bs = y61;
5543 436828894 : y60 = ( ( as * FFT_RotVector_32[2 * 18 + 0] ) - ( bs * FFT_RotVector_32[2 * 18 + 1] ) );
5544 436828894 : y61 = ( ( as * FFT_RotVector_32[2 * 18 + 1] ) + ( bs * FFT_RotVector_32[2 * 18 + 0] ) );
5545 : };
5546 : {
5547 436828894 : as = y62;
5548 436828894 : bs = y63;
5549 436828894 : y62 = ( ( as * FFT_RotVector_32[2 * 19 + 0] ) - ( bs * FFT_RotVector_32[2 * 19 + 1] ) );
5550 436828894 : y63 = ( ( as * FFT_RotVector_32[2 * 19 + 1] ) + ( bs * FFT_RotVector_32[2 * 19 + 0] ) );
5551 : };
5552 :
5553 436828894 : t00 = ( y00 + y32 );
5554 436828894 : t02 = ( y00 - y32 );
5555 436828894 : t01 = ( y01 + y33 );
5556 436828894 : t03 = ( y01 - y33 );
5557 436828894 : t04 = ( y16 + y48 );
5558 436828894 : t07 = ( y16 - y48 );
5559 436828894 : t05 = ( y49 + y17 );
5560 436828894 : t06 = ( y49 - y17 );
5561 :
5562 436828894 : re[s * 0] = ( t00 + t04 );
5563 436828894 : im[s * 0] = ( t01 + t05 );
5564 436828894 : re[s * 8] = ( t02 - t06 );
5565 436828894 : im[s * 8] = ( t03 - t07 );
5566 436828894 : re[s * 16] = ( t00 - t04 );
5567 436828894 : im[s * 16] = ( t01 - t05 );
5568 436828894 : re[s * 24] = ( t02 + t06 );
5569 436828894 : im[s * 24] = ( t03 + t07 );
5570 :
5571 436828894 : t00 = ( y02 + y34 );
5572 436828894 : t02 = ( y02 - y34 );
5573 436828894 : t01 = ( y03 + y35 );
5574 436828894 : t03 = ( y03 - y35 );
5575 436828894 : t04 = ( y18 + y50 );
5576 436828894 : t07 = ( y18 - y50 );
5577 436828894 : t05 = ( y51 + y19 );
5578 436828894 : t06 = ( y51 - y19 );
5579 :
5580 436828894 : re[s * 1] = ( t00 + t04 );
5581 436828894 : im[s * 1] = ( t01 + t05 );
5582 436828894 : re[s * 9] = ( t02 - t06 );
5583 436828894 : im[s * 9] = ( t03 - t07 );
5584 436828894 : re[s * 17] = ( t00 - t04 );
5585 436828894 : im[s * 17] = ( t01 - t05 );
5586 436828894 : re[s * 25] = ( t02 + t06 );
5587 436828894 : im[s * 25] = ( t03 + t07 );
5588 :
5589 436828894 : t00 = ( y04 + y36 );
5590 436828894 : t02 = ( y04 - y36 );
5591 436828894 : t01 = ( y05 + y37 );
5592 436828894 : t03 = ( y05 - y37 );
5593 436828894 : t04 = ( y20 + y52 );
5594 436828894 : t07 = ( y20 - y52 );
5595 436828894 : t05 = ( y53 + y21 );
5596 436828894 : t06 = ( y53 - y21 );
5597 :
5598 436828894 : re[s * 2] = ( t00 + t04 );
5599 436828894 : im[s * 2] = ( t01 + t05 );
5600 436828894 : re[s * 10] = ( t02 - t06 );
5601 436828894 : im[s * 10] = ( t03 - t07 );
5602 436828894 : re[s * 18] = ( t00 - t04 );
5603 436828894 : im[s * 18] = ( t01 - t05 );
5604 436828894 : re[s * 26] = ( t02 + t06 );
5605 436828894 : im[s * 26] = ( t03 + t07 );
5606 :
5607 436828894 : t00 = ( y06 + y38 );
5608 436828894 : t02 = ( y06 - y38 );
5609 436828894 : t01 = ( y07 + y39 );
5610 436828894 : t03 = ( y07 - y39 );
5611 436828894 : t04 = ( y22 + y54 );
5612 436828894 : t07 = ( y22 - y54 );
5613 436828894 : t05 = ( y55 + y23 );
5614 436828894 : t06 = ( y55 - y23 );
5615 :
5616 436828894 : re[s * 3] = ( t00 + t04 );
5617 436828894 : im[s * 3] = ( t01 + t05 );
5618 436828894 : re[s * 11] = ( t02 - t06 );
5619 436828894 : im[s * 11] = ( t03 - t07 );
5620 436828894 : re[s * 19] = ( t00 - t04 );
5621 436828894 : im[s * 19] = ( t01 - t05 );
5622 436828894 : re[s * 27] = ( t02 + t06 );
5623 436828894 : im[s * 27] = ( t03 + t07 );
5624 :
5625 436828894 : t00 = ( y08 + y41 );
5626 436828894 : t02 = ( y08 - y41 );
5627 436828894 : t01 = ( y09 - y40 );
5628 436828894 : t03 = ( y09 + y40 );
5629 436828894 : t04 = ( y24 + y56 );
5630 436828894 : t07 = ( y24 - y56 );
5631 436828894 : t05 = ( y57 + y25 );
5632 436828894 : t06 = ( y57 - y25 );
5633 :
5634 436828894 : re[s * 4] = ( t00 + t04 );
5635 436828894 : im[s * 4] = ( t01 + t05 );
5636 436828894 : re[s * 12] = ( t02 - t06 );
5637 436828894 : im[s * 12] = ( t03 - t07 );
5638 436828894 : re[s * 20] = ( t00 - t04 );
5639 436828894 : im[s * 20] = ( t01 - t05 );
5640 436828894 : re[s * 28] = ( t02 + t06 );
5641 436828894 : im[s * 28] = ( t03 + t07 );
5642 :
5643 436828894 : t00 = ( y10 + y42 );
5644 436828894 : t02 = ( y10 - y42 );
5645 436828894 : t01 = ( y11 + y43 );
5646 436828894 : t03 = ( y11 - y43 );
5647 436828894 : t04 = ( y26 + y58 );
5648 436828894 : t07 = ( y26 - y58 );
5649 436828894 : t05 = ( y59 + y27 );
5650 436828894 : t06 = ( y59 - y27 );
5651 :
5652 436828894 : re[s * 5] = ( t00 + t04 );
5653 436828894 : im[s * 5] = ( t01 + t05 );
5654 436828894 : re[s * 13] = ( t02 - t06 );
5655 436828894 : im[s * 13] = ( t03 - t07 );
5656 436828894 : re[s * 21] = ( t00 - t04 );
5657 436828894 : im[s * 21] = ( t01 - t05 );
5658 436828894 : re[s * 29] = ( t02 + t06 );
5659 436828894 : im[s * 29] = ( t03 + t07 );
5660 :
5661 436828894 : t00 = ( y12 + y44 );
5662 436828894 : t02 = ( y12 - y44 );
5663 436828894 : t01 = ( y13 + y45 );
5664 436828894 : t03 = ( y13 - y45 );
5665 436828894 : t04 = ( y28 + y60 );
5666 436828894 : t07 = ( y28 - y60 );
5667 436828894 : t05 = ( y61 + y29 );
5668 436828894 : t06 = ( y61 - y29 );
5669 :
5670 436828894 : re[s * 6] = ( t00 + t04 );
5671 436828894 : im[s * 6] = ( t01 + t05 );
5672 436828894 : re[s * 14] = ( t02 - t06 );
5673 436828894 : im[s * 14] = ( t03 - t07 );
5674 436828894 : re[s * 22] = ( t00 - t04 );
5675 436828894 : im[s * 22] = ( t01 - t05 );
5676 436828894 : re[s * 30] = ( t02 + t06 );
5677 436828894 : im[s * 30] = ( t03 + t07 );
5678 :
5679 436828894 : t00 = ( y14 + y46 );
5680 436828894 : t02 = ( y14 - y46 );
5681 436828894 : t01 = ( y15 + y47 );
5682 436828894 : t03 = ( y15 - y47 );
5683 436828894 : t04 = ( y30 + y62 );
5684 436828894 : t07 = ( y30 - y62 );
5685 436828894 : t05 = ( y63 + y31 );
5686 436828894 : t06 = ( y63 - y31 );
5687 :
5688 436828894 : re[s * 7] = ( t00 + t04 );
5689 436828894 : im[s * 7] = ( t01 + t05 );
5690 436828894 : re[s * 15] = ( t02 - t06 );
5691 436828894 : im[s * 15] = ( t03 - t07 );
5692 436828894 : re[s * 23] = ( t00 - t04 );
5693 436828894 : im[s * 23] = ( t01 - t05 );
5694 436828894 : re[s * 31] = ( t02 + t06 );
5695 436828894 : im[s * 31] = ( t03 + t07 );
5696 :
5697 436828894 : return;
5698 : }
5699 :
5700 222665623 : static void fft_lenN(
5701 : float *re,
5702 : float *im,
5703 : const float *W,
5704 : const int16_t len,
5705 : const int16_t dim1,
5706 : const int16_t dim2,
5707 : const int16_t sx,
5708 : const int16_t sc,
5709 : const int16_t Woff )
5710 : {
5711 : int16_t i, j;
5712 : float x[L_FRAME_MAX * 2];
5713 :
5714 2883017087 : for ( i = 0; i < dim2; i++ )
5715 : {
5716 67828853224 : for ( j = 0; j < dim1; j++ )
5717 : {
5718 65168501760 : x[2 * i * dim1 + 2 * j] = re[sx * i + sx * j * dim2];
5719 65168501760 : x[2 * i * dim1 + 2 * j + 1] = im[sx * i + sx * j * dim2];
5720 : }
5721 : }
5722 :
5723 222665623 : switch ( dim1 )
5724 : {
5725 776559 : case 5:
5726 6989031 : for ( i = 0; i < dim2; i++ )
5727 : {
5728 6212472 : fft_len5( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5729 : }
5730 776559 : break;
5731 :
5732 512969 : case 8:
5733 4616721 : for ( i = 0; i < dim2; i++ )
5734 : {
5735 4103752 : fft_len8( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5736 : }
5737 512969 : break;
5738 :
5739 11530905 : case 10:
5740 103778145 : for ( i = 0; i < dim2; i++ )
5741 : {
5742 92247240 : fft_len10( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5743 : }
5744 11530905 : break;
5745 :
5746 7761918 : case 15:
5747 69857262 : for ( i = 0; i < dim2; i++ )
5748 : {
5749 62095344 : fft_len15( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5750 : }
5751 7761918 : break;
5752 :
5753 9410442 : case 16:
5754 84693978 : for ( i = 0; i < dim2; i++ )
5755 : {
5756 75283536 : fft_len16( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5757 : }
5758 9410442 : break;
5759 :
5760 82001940 : case 20:
5761 1153014448 : for ( i = 0; i < dim2; i++ )
5762 : {
5763 1071012508 : fft_len20( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5764 : }
5765 82001940 : break;
5766 :
5767 101669532 : case 30:
5768 1379055280 : for ( i = 0; i < dim2; i++ )
5769 : {
5770 1277385748 : fft_len30( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5771 : }
5772 101669532 : break;
5773 :
5774 9001358 : case 32:
5775 81012222 : for ( i = 0; i < dim2; i++ )
5776 : {
5777 72010864 : fft_len32( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5778 : }
5779 9001358 : break;
5780 : }
5781 :
5782 222665623 : switch ( dim2 )
5783 : {
5784 :
5785 141859831 : case 8:
5786 : {
5787 : float x00, x01, x02, x03, x04, x05, x06, x07, x08, x09, x10, x11, x12, x13, x14, x15;
5788 : float t00, t01, t02, t03, t04, t05, t06, t07, t08, t09, t10, t11, t12, t13, t14, t15;
5789 : float s00, s01, s02, s03, s04, s05, s06, s07, s08, s09, s10, s11, s12, s13, s14, s15;
5790 :
5791 141859831 : if ( dim1 == 30 || dim1 == 20 || dim1 == 15 || dim1 == 10 || dim1 == 5 )
5792 : {
5793 2999159727 : for ( i = 0; i < dim1; i++ )
5794 : {
5795 : {
5796 2876224665 : x00 = x[2 * i + 2 * 0 * dim1];
5797 2876224665 : x01 = x[2 * i + 2 * 0 * dim1 + 1];
5798 : };
5799 2876224665 : if ( i == 0 )
5800 : {
5801 : {
5802 122935062 : x02 = x[2 * i + 2 * 1 * dim1];
5803 122935062 : x03 = x[2 * i + 2 * 1 * dim1 + 1];
5804 : };
5805 : {
5806 122935062 : x04 = x[2 * i + 2 * 2 * dim1];
5807 122935062 : x05 = x[2 * i + 2 * 2 * dim1 + 1];
5808 : };
5809 : {
5810 122935062 : x06 = x[2 * i + 2 * 3 * dim1];
5811 122935062 : x07 = x[2 * i + 2 * 3 * dim1 + 1];
5812 : };
5813 : {
5814 122935062 : x08 = x[2 * i + 2 * 4 * dim1];
5815 122935062 : x09 = x[2 * i + 2 * 4 * dim1 + 1];
5816 : };
5817 : {
5818 122935062 : x10 = x[2 * i + 2 * 5 * dim1];
5819 122935062 : x11 = x[2 * i + 2 * 5 * dim1 + 1];
5820 : };
5821 : {
5822 122935062 : x12 = x[2 * i + 2 * 6 * dim1];
5823 122935062 : x13 = x[2 * i + 2 * 6 * dim1 + 1];
5824 : };
5825 : {
5826 122935062 : x14 = x[2 * i + 2 * 7 * dim1];
5827 122935062 : x15 = x[2 * i + 2 * 7 * dim1 + 1];
5828 : };
5829 : }
5830 : else
5831 : {
5832 : {
5833 2753289603 : x02 = ( x[2 * i + 2 * 1 * dim1] * W[sc * i + sc * 1 * dim1 * 2 - Woff] ) - ( x[2 * i + 2 * 1 * dim1 + 1] * W[sc * i + sc * 1 * dim1 * 2 + 1 - Woff] );
5834 2753289603 : x03 = ( x[2 * i + 2 * 1 * dim1] * W[sc * i + sc * 1 * dim1 * 2 + 1 - Woff] ) + ( x[2 * i + 2 * 1 * dim1 + 1] * W[sc * i + sc * 1 * dim1 * 2 - Woff] );
5835 : };
5836 : {
5837 2753289603 : x04 = ( x[2 * i + 2 * 2 * dim1] * W[sc * i + sc * 2 * dim1 * 2 - Woff] ) - ( x[2 * i + 2 * 2 * dim1 + 1] * W[sc * i + sc * 2 * dim1 * 2 + 1 - Woff] );
5838 2753289603 : x05 = ( x[2 * i + 2 * 2 * dim1] * W[sc * i + sc * 2 * dim1 * 2 + 1 - Woff] ) + ( x[2 * i + 2 * 2 * dim1 + 1] * W[sc * i + sc * 2 * dim1 * 2 - Woff] );
5839 : };
5840 : {
5841 2753289603 : x06 = ( x[2 * i + 2 * 3 * dim1] * W[sc * i + sc * 3 * dim1 * 2 - Woff] ) - ( x[2 * i + 2 * 3 * dim1 + 1] * W[sc * i + sc * 3 * dim1 * 2 + 1 - Woff] );
5842 2753289603 : x07 = ( x[2 * i + 2 * 3 * dim1] * W[sc * i + sc * 3 * dim1 * 2 + 1 - Woff] ) + ( x[2 * i + 2 * 3 * dim1 + 1] * W[sc * i + sc * 3 * dim1 * 2 - Woff] );
5843 : };
5844 : {
5845 2753289603 : x08 = ( x[2 * i + 2 * 4 * dim1] * W[sc * i + sc * 4 * dim1 * 2 - Woff] ) - ( x[2 * i + 2 * 4 * dim1 + 1] * W[sc * i + sc * 4 * dim1 * 2 + 1 - Woff] );
5846 2753289603 : x09 = ( x[2 * i + 2 * 4 * dim1] * W[sc * i + sc * 4 * dim1 * 2 + 1 - Woff] ) + ( x[2 * i + 2 * 4 * dim1 + 1] * W[sc * i + sc * 4 * dim1 * 2 - Woff] );
5847 : };
5848 : {
5849 2753289603 : x10 = ( x[2 * i + 2 * 5 * dim1] * W[sc * i + sc * 5 * dim1 * 2 - Woff] ) - ( x[2 * i + 2 * 5 * dim1 + 1] * W[sc * i + sc * 5 * dim1 * 2 + 1 - Woff] );
5850 2753289603 : x11 = ( x[2 * i + 2 * 5 * dim1] * W[sc * i + sc * 5 * dim1 * 2 + 1 - Woff] ) + ( x[2 * i + 2 * 5 * dim1 + 1] * W[sc * i + sc * 5 * dim1 * 2 - Woff] );
5851 : };
5852 : {
5853 2753289603 : x12 = ( x[2 * i + 2 * 6 * dim1] * W[sc * i + sc * 6 * dim1 * 2 - Woff] ) - ( x[2 * i + 2 * 6 * dim1 + 1] * W[sc * i + sc * 6 * dim1 * 2 + 1 - Woff] );
5854 2753289603 : x13 = ( x[2 * i + 2 * 6 * dim1] * W[sc * i + sc * 6 * dim1 * 2 + 1 - Woff] ) + ( x[2 * i + 2 * 6 * dim1 + 1] * W[sc * i + sc * 6 * dim1 * 2 - Woff] );
5855 : };
5856 : {
5857 2753289603 : x14 = ( x[2 * i + 2 * 7 * dim1] * W[sc * i + sc * 7 * dim1 * 2 - Woff] ) - ( x[2 * i + 2 * 7 * dim1 + 1] * W[sc * i + sc * 7 * dim1 * 2 + 1 - Woff] );
5858 2753289603 : x15 = ( x[2 * i + 2 * 7 * dim1] * W[sc * i + sc * 7 * dim1 * 2 + 1 - Woff] ) + ( x[2 * i + 2 * 7 * dim1 + 1] * W[sc * i + sc * 7 * dim1 * 2 - Woff] );
5859 : };
5860 : }
5861 :
5862 2876224665 : t00 = ( x00 + x08 );
5863 2876224665 : t02 = ( x00 - x08 );
5864 2876224665 : t01 = ( x01 + x09 );
5865 2876224665 : t03 = ( x01 - x09 );
5866 2876224665 : t04 = ( x02 + x10 );
5867 2876224665 : t06 = ( x02 - x10 );
5868 2876224665 : t05 = ( x03 + x11 );
5869 2876224665 : t07 = ( x03 - x11 );
5870 2876224665 : t08 = ( x04 + x12 );
5871 2876224665 : t10 = ( x04 - x12 );
5872 2876224665 : t09 = ( x05 + x13 );
5873 2876224665 : t11 = ( x05 - x13 );
5874 2876224665 : t12 = ( x06 + x14 );
5875 2876224665 : t14 = ( x06 - x14 );
5876 2876224665 : t13 = ( x07 + x15 );
5877 2876224665 : t15 = ( x07 - x15 );
5878 :
5879 2876224665 : s00 = ( t00 + t08 );
5880 2876224665 : s04 = ( t00 - t08 );
5881 2876224665 : s01 = ( t01 + t09 );
5882 2876224665 : s05 = ( t01 - t09 );
5883 2876224665 : s08 = ( t02 - t11 );
5884 2876224665 : s10 = ( t02 + t11 );
5885 2876224665 : s09 = ( t03 + t10 );
5886 2876224665 : s11 = ( t03 - t10 );
5887 2876224665 : s02 = ( t04 + t12 );
5888 2876224665 : s07 = ( t04 - t12 );
5889 2876224665 : s03 = ( t05 + t13 );
5890 2876224665 : s06 = ( t13 - t05 );
5891 :
5892 2876224665 : t01 = ( t06 + t14 );
5893 2876224665 : t02 = ( t06 - t14 );
5894 2876224665 : t00 = ( t07 + t15 );
5895 2876224665 : t03 = ( t07 - t15 );
5896 :
5897 2876224665 : s12 = ( ( t00 + t02 ) * FFT_C81 );
5898 2876224665 : s14 = ( ( t00 - t02 ) * FFT_C81 );
5899 2876224665 : s13 = ( ( t03 - t01 ) * FFT_C81 );
5900 2876224665 : s15 = ( ( t01 + t03 ) * FFT_C82 );
5901 :
5902 2876224665 : re[sx * i + sx * 0 * dim1] = ( s00 + s02 );
5903 2876224665 : im[sx * i + sx * 0 * dim1] = ( s01 + s03 );
5904 2876224665 : re[sx * i + sx * 1 * dim1] = ( s10 + s12 );
5905 2876224665 : im[sx * i + sx * 1 * dim1] = ( s11 + s13 );
5906 2876224665 : re[sx * i + sx * 2 * dim1] = ( s04 - s06 );
5907 2876224665 : im[sx * i + sx * 2 * dim1] = ( s05 - s07 );
5908 2876224665 : re[sx * i + sx * 3 * dim1] = ( s08 + s14 );
5909 2876224665 : im[sx * i + sx * 3 * dim1] = ( s09 + s15 );
5910 2876224665 : re[sx * i + sx * 4 * dim1] = ( s00 - s02 );
5911 2876224665 : im[sx * i + sx * 4 * dim1] = ( s01 - s03 );
5912 2876224665 : re[sx * i + sx * 5 * dim1] = ( s10 - s12 );
5913 2876224665 : im[sx * i + sx * 5 * dim1] = ( s11 - s13 );
5914 2876224665 : re[sx * i + sx * 6 * dim1] = ( s04 + s06 );
5915 2876224665 : im[sx * i + sx * 6 * dim1] = ( s05 + s07 );
5916 2876224665 : re[sx * i + sx * 7 * dim1] = ( s08 - s14 );
5917 2876224665 : im[sx * i + sx * 7 * dim1] = ( s09 - s15 );
5918 : }
5919 : }
5920 : else
5921 : {
5922 461639049 : for ( i = 0; i < dim1; i++ )
5923 : {
5924 : {
5925 442714280 : x00 = x[2 * i + 2 * 0 * dim1];
5926 442714280 : x01 = x[2 * i + 2 * 0 * dim1 + 1];
5927 : };
5928 442714280 : if ( i == 0 )
5929 : {
5930 : {
5931 18924769 : x02 = x[2 * i + 2 * 1 * dim1];
5932 18924769 : x03 = x[2 * i + 2 * 1 * dim1 + 1];
5933 : };
5934 : {
5935 18924769 : x04 = x[2 * i + 2 * 2 * dim1];
5936 18924769 : x05 = x[2 * i + 2 * 2 * dim1 + 1];
5937 : };
5938 : {
5939 18924769 : x06 = x[2 * i + 2 * 3 * dim1];
5940 18924769 : x07 = x[2 * i + 2 * 3 * dim1 + 1];
5941 : };
5942 : {
5943 18924769 : x08 = x[2 * i + 2 * 4 * dim1];
5944 18924769 : x09 = x[2 * i + 2 * 4 * dim1 + 1];
5945 : };
5946 : {
5947 18924769 : x10 = x[2 * i + 2 * 5 * dim1];
5948 18924769 : x11 = x[2 * i + 2 * 5 * dim1 + 1];
5949 : };
5950 : {
5951 18924769 : x12 = x[2 * i + 2 * 6 * dim1];
5952 18924769 : x13 = x[2 * i + 2 * 6 * dim1 + 1];
5953 : };
5954 : {
5955 18924769 : x14 = x[2 * i + 2 * 7 * dim1];
5956 18924769 : x15 = x[2 * i + 2 * 7 * dim1 + 1];
5957 : };
5958 : }
5959 : else
5960 : {
5961 : {
5962 423789511 : x02 = ( x[2 * i + 2 * 1 * dim1] * W[sc * i + sc * 1 * dim1 - Woff] ) - ( x[2 * i + 2 * 1 * dim1 + 1] * W[sc * i + sc * 1 * dim1 + 1 - Woff] );
5963 423789511 : x03 = ( x[2 * i + 2 * 1 * dim1] * W[sc * i + sc * 1 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * 1 * dim1 + 1] * W[sc * i + sc * 1 * dim1 - Woff] );
5964 : };
5965 : {
5966 423789511 : x04 = ( x[2 * i + 2 * 2 * dim1] * W[sc * i + sc * 2 * dim1 - Woff] ) - ( x[2 * i + 2 * 2 * dim1 + 1] * W[sc * i + sc * 2 * dim1 + 1 - Woff] );
5967 423789511 : x05 = ( x[2 * i + 2 * 2 * dim1] * W[sc * i + sc * 2 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * 2 * dim1 + 1] * W[sc * i + sc * 2 * dim1 - Woff] );
5968 : };
5969 : {
5970 423789511 : x06 = ( x[2 * i + 2 * 3 * dim1] * W[sc * i + sc * 3 * dim1 - Woff] ) - ( x[2 * i + 2 * 3 * dim1 + 1] * W[sc * i + sc * 3 * dim1 + 1 - Woff] );
5971 423789511 : x07 = ( x[2 * i + 2 * 3 * dim1] * W[sc * i + sc * 3 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * 3 * dim1 + 1] * W[sc * i + sc * 3 * dim1 - Woff] );
5972 : };
5973 : {
5974 423789511 : x08 = ( x[2 * i + 2 * 4 * dim1] * W[sc * i + sc * 4 * dim1 - Woff] ) - ( x[2 * i + 2 * 4 * dim1 + 1] * W[sc * i + sc * 4 * dim1 + 1 - Woff] );
5975 423789511 : x09 = ( x[2 * i + 2 * 4 * dim1] * W[sc * i + sc * 4 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * 4 * dim1 + 1] * W[sc * i + sc * 4 * dim1 - Woff] );
5976 : };
5977 : {
5978 423789511 : x10 = ( x[2 * i + 2 * 5 * dim1] * W[sc * i + sc * 5 * dim1 - Woff] ) - ( x[2 * i + 2 * 5 * dim1 + 1] * W[sc * i + sc * 5 * dim1 + 1 - Woff] );
5979 423789511 : x11 = ( x[2 * i + 2 * 5 * dim1] * W[sc * i + sc * 5 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * 5 * dim1 + 1] * W[sc * i + sc * 5 * dim1 - Woff] );
5980 : };
5981 : {
5982 423789511 : x12 = ( x[2 * i + 2 * 6 * dim1] * W[sc * i + sc * 6 * dim1 - Woff] ) - ( x[2 * i + 2 * 6 * dim1 + 1] * W[sc * i + sc * 6 * dim1 + 1 - Woff] );
5983 423789511 : x13 = ( x[2 * i + 2 * 6 * dim1] * W[sc * i + sc * 6 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * 6 * dim1 + 1] * W[sc * i + sc * 6 * dim1 - Woff] );
5984 : };
5985 : {
5986 423789511 : x14 = ( x[2 * i + 2 * 7 * dim1] * W[sc * i + sc * 7 * dim1 - Woff] ) - ( x[2 * i + 2 * 7 * dim1 + 1] * W[sc * i + sc * 7 * dim1 + 1 - Woff] );
5987 423789511 : x15 = ( x[2 * i + 2 * 7 * dim1] * W[sc * i + sc * 7 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * 7 * dim1 + 1] * W[sc * i + sc * 7 * dim1 - Woff] );
5988 : };
5989 : }
5990 :
5991 442714280 : t00 = ( x00 + x08 );
5992 442714280 : t02 = ( x00 - x08 );
5993 442714280 : t01 = ( x01 + x09 );
5994 442714280 : t03 = ( x01 - x09 );
5995 442714280 : t04 = ( x02 + x10 );
5996 442714280 : t06 = ( x02 - x10 );
5997 442714280 : t05 = ( x03 + x11 );
5998 442714280 : t07 = ( x03 - x11 );
5999 442714280 : t08 = ( x04 + x12 );
6000 442714280 : t10 = ( x04 - x12 );
6001 442714280 : t09 = ( x05 + x13 );
6002 442714280 : t11 = ( x05 - x13 );
6003 442714280 : t12 = ( x06 + x14 );
6004 442714280 : t14 = ( x06 - x14 );
6005 442714280 : t13 = ( x07 + x15 );
6006 442714280 : t15 = ( x07 - x15 );
6007 :
6008 442714280 : s00 = ( t00 + t08 );
6009 442714280 : s04 = ( t00 - t08 );
6010 442714280 : s01 = ( t01 + t09 );
6011 442714280 : s05 = ( t01 - t09 );
6012 442714280 : s08 = ( t02 - t11 );
6013 442714280 : s10 = ( t02 + t11 );
6014 442714280 : s09 = ( t03 + t10 );
6015 442714280 : s11 = ( t03 - t10 );
6016 442714280 : s02 = ( t04 + t12 );
6017 442714280 : s07 = ( t04 - t12 );
6018 442714280 : s03 = ( t05 + t13 );
6019 442714280 : s06 = ( t13 - t05 );
6020 :
6021 442714280 : t01 = ( t06 + t14 );
6022 442714280 : t02 = ( t06 - t14 );
6023 442714280 : t00 = ( t07 + t15 );
6024 442714280 : t03 = ( t07 - t15 );
6025 :
6026 442714280 : s12 = ( ( t00 + t02 ) * FFT_C81 );
6027 442714280 : s14 = ( ( t00 - t02 ) * FFT_C81 );
6028 442714280 : s13 = ( ( t03 - t01 ) * FFT_C81 );
6029 442714280 : s15 = ( ( t01 + t03 ) * FFT_C82 );
6030 :
6031 442714280 : re[sx * i + sx * 0 * dim1] = ( s00 + s02 );
6032 442714280 : im[sx * i + sx * 0 * dim1] = ( s01 + s03 );
6033 442714280 : re[sx * i + sx * 1 * dim1] = ( s10 + s12 );
6034 442714280 : im[sx * i + sx * 1 * dim1] = ( s11 + s13 );
6035 442714280 : re[sx * i + sx * 2 * dim1] = ( s04 - s06 );
6036 442714280 : im[sx * i + sx * 2 * dim1] = ( s05 - s07 );
6037 442714280 : re[sx * i + sx * 3 * dim1] = ( s08 + s14 );
6038 442714280 : im[sx * i + sx * 3 * dim1] = ( s09 + s15 );
6039 442714280 : re[sx * i + sx * 4 * dim1] = ( s00 - s02 );
6040 442714280 : im[sx * i + sx * 4 * dim1] = ( s01 - s03 );
6041 442714280 : re[sx * i + sx * 5 * dim1] = ( s10 - s12 );
6042 442714280 : im[sx * i + sx * 5 * dim1] = ( s11 - s13 );
6043 442714280 : re[sx * i + sx * 6 * dim1] = ( s04 + s06 );
6044 442714280 : im[sx * i + sx * 6 * dim1] = ( s05 + s07 );
6045 442714280 : re[sx * i + sx * 7 * dim1] = ( s08 - s14 );
6046 442714280 : im[sx * i + sx * 7 * dim1] = ( s09 - s15 );
6047 : }
6048 : }
6049 141859831 : break;
6050 : }
6051 :
6052 468862 : case 10:
6053 : {
6054 : float y[2 * 10];
6055 5157482 : for ( j = 0; j < dim2; j++ )
6056 : {
6057 : {
6058 4688620 : y[2 * j] = x[2 * 0 + 2 * j * dim1];
6059 4688620 : y[2 * j + 1] = x[2 * 0 + 2 * j * dim1 + 1];
6060 : };
6061 : }
6062 468862 : fft_len10( &y[0], &y[1], 2 );
6063 5157482 : for ( j = 0; j < dim2; j++ )
6064 : {
6065 4688620 : re[sx * 0 + sx * j * dim1] = y[2 * j];
6066 4688620 : im[sx * 0 + sx * j * dim1] = y[2 * j + 1];
6067 : }
6068 :
6069 9377240 : for ( i = 1; i < dim1; i++ )
6070 : {
6071 : {
6072 8908378 : y[2 * ( 0 + 0 )] = x[2 * i + 2 * ( 0 + 0 ) * dim1];
6073 8908378 : y[2 * ( 0 + 0 ) + 1] = x[2 * i + 2 * ( 0 + 0 ) * dim1 + 1];
6074 : }
6075 :
6076 89083780 : for ( j = 1; j < dim2; j++ )
6077 : {
6078 : {
6079 80175402 : y[2 * ( j + 0 )] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + sc * j * dim1 - Woff] ) - ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + sc * j * dim1 + 1 - Woff] );
6080 80175402 : y[2 * ( j + 0 ) + 1] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + sc * j * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + sc * j * dim1 - Woff] );
6081 : }
6082 : }
6083 8908378 : fft_len10( &y[0], &y[1], 2 );
6084 97992158 : for ( j = 0; j < dim2; j++ )
6085 : {
6086 89083780 : re[sx * i + sx * j * dim1] = y[2 * j];
6087 89083780 : im[sx * i + sx * j * dim1] = y[2 * j + 1];
6088 : }
6089 : }
6090 468862 : break;
6091 : }
6092 :
6093 65321679 : case 16:
6094 : {
6095 : float y[2 * 16];
6096 1110468543 : for ( j = 0; j < dim2; j++ )
6097 : {
6098 : {
6099 1045146864 : y[2 * j] = x[2 * 0 + 2 * j * dim1];
6100 1045146864 : y[2 * j + 1] = x[2 * 0 + 2 * j * dim1 + 1];
6101 : };
6102 : }
6103 65321679 : fft_len16( &y[0], &y[1], 2 );
6104 1110468543 : for ( j = 0; j < dim2; j++ )
6105 : {
6106 1045146864 : re[sx * 0 + sx * j * dim1] = y[2 * j];
6107 1045146864 : im[sx * 0 + sx * j * dim1] = y[2 * j + 1];
6108 : }
6109 :
6110 1664366990 : for ( i = 1; i < dim1; i++ )
6111 : {
6112 : {
6113 1599045311 : y[2 * ( 0 + 0 )] = x[2 * i + 2 * ( 0 + 0 ) * dim1];
6114 1599045311 : y[2 * ( 0 + 0 ) + 1] = x[2 * i + 2 * ( 0 + 0 ) * dim1 + 1];
6115 : }
6116 :
6117 25584724976 : for ( j = 1; j < dim2; j++ )
6118 : {
6119 : {
6120 23985679665 : y[2 * ( j + 0 )] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + sc * j * dim1 - Woff] ) - ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + sc * j * dim1 + 1 - Woff] );
6121 23985679665 : y[2 * ( j + 0 ) + 1] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + sc * j * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + sc * j * dim1 - Woff] );
6122 : }
6123 : }
6124 1599045311 : fft_len16( &y[0], &y[1], 2 );
6125 27183770287 : for ( j = 0; j < dim2; j++ )
6126 : {
6127 25584724976 : re[sx * i + sx * j * dim1] = y[2 * j];
6128 25584724976 : im[sx * i + sx * j * dim1] = y[2 * j + 1];
6129 : }
6130 : }
6131 65321679 : break;
6132 : }
6133 :
6134 404225 : case 20:
6135 : {
6136 : float y[2 * 20];
6137 8488725 : for ( j = 0; j < dim2; j++ )
6138 : {
6139 : {
6140 8084500 : y[2 * j] = x[2 * 0 + 2 * j * dim1];
6141 8084500 : y[2 * j + 1] = x[2 * 0 + 2 * j * dim1 + 1];
6142 : };
6143 : }
6144 404225 : fft_len20( &y[0], &y[1], 2 );
6145 8488725 : for ( j = 0; j < dim2; j++ )
6146 : {
6147 8084500 : re[sx * 0 + sx * j * dim1] = y[2 * j];
6148 8084500 : im[sx * 0 + sx * j * dim1] = y[2 * j + 1];
6149 : }
6150 :
6151 10958450 : for ( i = 1; i < dim1; i++ )
6152 : {
6153 : {
6154 10554225 : y[2 * ( 0 + 0 )] = x[2 * i + 2 * ( 0 + 0 ) * dim1];
6155 10554225 : y[2 * ( 0 + 0 ) + 1] = x[2 * i + 2 * ( 0 + 0 ) * dim1 + 1];
6156 : }
6157 : {
6158 10554225 : y[2 * ( 0 + 1 )] = ( x[2 * i + 2 * ( 0 + 1 ) * dim1] * W[len + sc * i + 0 * dim1 - Woff] ) - ( x[2 * i + 2 * ( 0 + 1 ) * dim1 + 1] * W[len + sc * i + 0 * dim1 + 1 - Woff] );
6159 10554225 : y[2 * ( 0 + 1 ) + 1] = ( x[2 * i + 2 * ( 0 + 1 ) * dim1] * W[len + sc * i + 0 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( 0 + 1 ) * dim1 + 1] * W[len + sc * i + 0 * dim1 - Woff] );
6160 : }
6161 :
6162 105542250 : for ( j = 2; j < dim2; j = j + 2 )
6163 : {
6164 : {
6165 94988025 : y[2 * ( j + 0 )] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + j * dim1 - Woff] ) - ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + j * dim1 + 1 - Woff] );
6166 94988025 : y[2 * ( j + 0 ) + 1] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + j * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + j * dim1 - Woff] );
6167 : }
6168 : {
6169 94988025 : y[2 * ( j + 1 )] = ( x[2 * i + 2 * ( j + 1 ) * dim1] * W[len + sc * i + j * dim1 - Woff] ) - ( x[2 * i + 2 * ( j + 1 ) * dim1 + 1] * W[len + sc * i + j * dim1 + 1 - Woff] );
6170 94988025 : y[2 * ( j + 1 ) + 1] = ( x[2 * i + 2 * ( j + 1 ) * dim1] * W[len + sc * i + j * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( j + 1 ) * dim1 + 1] * W[len + sc * i + j * dim1 - Woff] );
6171 : }
6172 : }
6173 10554225 : fft_len20( &y[0], &y[1], 2 );
6174 221638725 : for ( j = 0; j < dim2; j++ )
6175 : {
6176 211084500 : re[sx * i + sx * j * dim1] = y[2 * j];
6177 211084500 : im[sx * i + sx * j * dim1] = y[2 * j + 1];
6178 : }
6179 : }
6180 404225 : break;
6181 : }
6182 :
6183 14611026 : case 32:
6184 : {
6185 : float y[2 * 32];
6186 482163858 : for ( j = 0; j < dim2; j++ )
6187 : {
6188 : {
6189 467552832 : y[2 * j] = x[2 * 0 + 2 * j * dim1];
6190 467552832 : y[2 * j + 1] = x[2 * 0 + 2 * j * dim1 + 1];
6191 : };
6192 : }
6193 14611026 : fft_len32( &y[0], &y[1], 2 );
6194 482163858 : for ( j = 0; j < dim2; j++ )
6195 : {
6196 467552832 : re[sx * 0 + sx * j * dim1] = y[2 * j];
6197 467552832 : im[sx * 0 + sx * j * dim1] = y[2 * j + 1];
6198 : }
6199 :
6200 364818030 : for ( i = 1; i < dim1; i++ )
6201 : {
6202 : {
6203 350207004 : y[2 * ( 0 + 0 )] = x[2 * i + 2 * ( 0 + 0 ) * dim1];
6204 350207004 : y[2 * ( 0 + 0 ) + 1] = x[2 * i + 2 * ( 0 + 0 ) * dim1 + 1];
6205 : }
6206 : {
6207 350207004 : y[2 * ( 0 + 1 )] = ( x[2 * i + 2 * ( 0 + 1 ) * dim1] * W[len + sc * i + 0 * dim1 - Woff] ) - ( x[2 * i + 2 * ( 0 + 1 ) * dim1 + 1] * W[len + sc * i + 0 * dim1 + 1 - Woff] );
6208 350207004 : y[2 * ( 0 + 1 ) + 1] = ( x[2 * i + 2 * ( 0 + 1 ) * dim1] * W[len + sc * i + 0 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( 0 + 1 ) * dim1 + 1] * W[len + sc * i + 0 * dim1 - Woff] );
6209 : }
6210 :
6211 5603312064 : for ( j = 2; j < dim2; j = j + 2 )
6212 : {
6213 : {
6214 5253105060 : y[2 * ( j + 0 )] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + j * dim1 - Woff] ) - ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + j * dim1 + 1 - Woff] );
6215 5253105060 : y[2 * ( j + 0 ) + 1] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + j * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + j * dim1 - Woff] );
6216 : }
6217 : {
6218 5253105060 : y[2 * ( j + 1 )] = ( x[2 * i + 2 * ( j + 1 ) * dim1] * W[len + sc * i + j * dim1 - Woff] ) - ( x[2 * i + 2 * ( j + 1 ) * dim1 + 1] * W[len + sc * i + j * dim1 + 1 - Woff] );
6219 5253105060 : y[2 * ( j + 1 ) + 1] = ( x[2 * i + 2 * ( j + 1 ) * dim1] * W[len + sc * i + j * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( j + 1 ) * dim1 + 1] * W[len + sc * i + j * dim1 - Woff] );
6220 : }
6221 : }
6222 350207004 : fft_len32( &y[0], &y[1], 2 );
6223 11556831132 : for ( j = 0; j < dim2; j++ )
6224 : {
6225 11206624128 : re[sx * i + sx * j * dim1] = y[2 * j];
6226 11206624128 : im[sx * i + sx * j * dim1] = y[2 * j + 1];
6227 : }
6228 : }
6229 14611026 : break;
6230 : }
6231 : }
6232 :
6233 222665623 : return;
6234 : }
6235 :
6236 :
6237 : /*-----------------------------------------------------------------*
6238 : * fft()
6239 : *
6240 : * Complex-value FFT
6241 : *-----------------------------------------------------------------*/
6242 :
6243 222665623 : void fft(
6244 : float *re, /* i/o: real part */
6245 : float *im, /* i/o: imag part */
6246 : const int16_t length, /* i : length of fft */
6247 : const int16_t s /* i : sign */
6248 : )
6249 : {
6250 222665623 : switch ( length )
6251 : {
6252 0 : case 20:
6253 0 : fft_len20( re, im, s );
6254 0 : break;
6255 776559 : case 40:
6256 776559 : fft_lenN( re, im, FFT_RotVector_640, 640, 5, 8, s, 8, 40 );
6257 776559 : break;
6258 512969 : case 64:
6259 512969 : fft_lenN( re, im, FFT_RotVector_256, 256, 8, 8, s, 8, 64 );
6260 512969 : break;
6261 11530905 : case 80:
6262 11530905 : fft_lenN( re, im, FFT_RotVector_640, 640, 10, 8, s, 4, 40 );
6263 11530905 : break;
6264 0 : case 100:
6265 0 : fft_lenN( re, im, FFT_RotVector_400, 400, 10, 10, s, 4, 40 );
6266 0 : break;
6267 7761918 : case 120:
6268 7761918 : fft_lenN( re, im, FFT_RotVector_960, 960, 15, 8, s, 4, 60 );
6269 7761918 : break;
6270 9410442 : case 128:
6271 9410442 : fft_lenN( re, im, FFT_RotVector_256, 256, 16, 8, s, 4, 64 );
6272 9410442 : break;
6273 44536635 : case 160:
6274 44536635 : fft_lenN( re, im, FFT_RotVector_640, 640, 20, 8, s, 2, 40 );
6275 44536635 : break;
6276 468862 : case 200:
6277 468862 : fft_lenN( re, im, FFT_RotVector_400, 400, 20, 10, s, 2, 40 );
6278 468862 : break;
6279 58329045 : case 240:
6280 58329045 : fft_lenN( re, im, FFT_RotVector_960, 960, 30, 8, s, 2, 60 );
6281 58329045 : break;
6282 9001358 : case 256:
6283 9001358 : fft_lenN( re, im, FFT_RotVector_256, 256, 32, 8, s, 2, 64 );
6284 9001358 : break;
6285 29528338 : case 320:
6286 29528338 : fft_lenN( re, im, FFT_RotVector_640, 640, 20, 16, s, 2, 40 );
6287 29528338 : break;
6288 116830 : case 400:
6289 116830 : fft_lenN( re, im, FFT_RotVector_400, 400, 20, 20, s, 2, 40 );
6290 116830 : break;
6291 35793341 : case 480:
6292 35793341 : fft_lenN( re, im, FFT_RotVector_960, 960, 30, 16, s, 2, 60 );
6293 35793341 : break;
6294 287395 : case 600:
6295 287395 : fft_lenN( re, im, FFT_RotVector_600, 600, 30, 20, s, 2, 60 );
6296 287395 : break;
6297 7351275 : case 640:
6298 7351275 : fft_lenN( re, im, FFT_RotVector_640, 640, 20, 32, s, 2, 40 );
6299 7351275 : break;
6300 7259751 : case 960:
6301 7259751 : fft_lenN( re, im, FFT_RotVector_960, 960, 30, 32, s, 2, 60 );
6302 7259751 : break;
6303 0 : default:
6304 0 : assert( !"fft length is not supported!" );
6305 : }
6306 :
6307 222665623 : return;
6308 : }
6309 :
6310 :
6311 : /*-----------------------------------------------------------------*
6312 : * rfft()
6313 : *
6314 : * Real-value FFT
6315 : *-----------------------------------------------------------------*/
6316 :
6317 14834059 : void rfft(
6318 : float *x, /* i/o: values */
6319 : const float *w, /* i : window */
6320 : const int16_t length, /* i : length of fft */
6321 : const int16_t isign /* i : sign */
6322 : )
6323 : {
6324 : int16_t i, sizeOfFft2, sizeOfFft4;
6325 : float tmp, t1, t2, t3, t4, s1, s2;
6326 :
6327 14834059 : sizeOfFft2 = length >> 1;
6328 14834059 : sizeOfFft4 = length >> 2;
6329 14834059 : s1 = 1.f / (float) sizeOfFft2;
6330 14834059 : s2 = -1.f / (float) sizeOfFft2;
6331 :
6332 14834059 : switch ( isign )
6333 : {
6334 :
6335 6890660 : case -1:
6336 :
6337 6890660 : fft( x, x + 1, sizeOfFft2, 2 );
6338 :
6339 6890660 : tmp = x[0] + x[1];
6340 6890660 : x[1] = x[0] - x[1];
6341 6890660 : x[0] = tmp;
6342 :
6343 1196794308 : for ( i = 1; i <= sizeOfFft4; i++ )
6344 : {
6345 1189903648 : t1 = x[2 * i] - x[length - 2 * i];
6346 1189903648 : t2 = x[2 * i + 1] + x[length - 2 * i + 1];
6347 1189903648 : t3 = w[i] * t1 - w[i + sizeOfFft4] * t2;
6348 1189903648 : t4 = w[i + sizeOfFft4] * t1 + w[i] * t2;
6349 1189903648 : t1 = x[2 * i] + x[length - 2 * i];
6350 1189903648 : t2 = x[2 * i + 1] - x[length - 2 * i + 1];
6351 :
6352 1189903648 : x[2 * i] = ( t1 - t3 ) * 0.5f;
6353 1189903648 : x[2 * i + 1] = ( t2 - t4 ) * 0.5f;
6354 1189903648 : x[length - 2 * i] = ( t1 + t3 ) * 0.5f;
6355 1189903648 : x[length - 2 * i + 1] = -( t2 + t4 ) * 0.5f;
6356 : }
6357 :
6358 6890660 : break;
6359 :
6360 7943399 : case +1:
6361 :
6362 7943399 : tmp = ( x[0] + x[1] ) * 0.5f;
6363 7943399 : x[1] = ( x[1] - x[0] ) * 0.5f;
6364 7943399 : x[0] = tmp;
6365 :
6366 1590956511 : for ( i = 1; i <= sizeOfFft4; i++ )
6367 : {
6368 1583013112 : t1 = x[2 * i] - x[length - 2 * i];
6369 1583013112 : t2 = x[2 * i + 1] + x[length - 2 * i + 1];
6370 1583013112 : t3 = w[i] * t1 + w[i + sizeOfFft4] * t2;
6371 1583013112 : t4 = -w[i + sizeOfFft4] * t1 + w[i] * t2;
6372 1583013112 : t1 = x[2 * i] + x[length - 2 * i];
6373 1583013112 : t2 = x[2 * i + 1] - x[length - 2 * i + 1];
6374 :
6375 1583013112 : x[2 * i] = ( t1 - t3 ) * 0.5f;
6376 1583013112 : x[2 * i + 1] = ( t4 - t2 ) * 0.5f;
6377 1583013112 : x[length - 2 * i] = ( t1 + t3 ) * 0.5f;
6378 1583013112 : x[length - 2 * i + 1] = ( t2 + t4 ) * 0.5f;
6379 : }
6380 :
6381 7943399 : fft( x, x + 1, sizeOfFft2, 2 );
6382 :
6383 3173969623 : for ( i = 0; i < length; i += 2 )
6384 : {
6385 3166026224 : x[i] *= s1;
6386 3166026224 : x[i + 1] *= s2;
6387 : }
6388 :
6389 7943399 : break;
6390 : }
6391 :
6392 14834059 : return;
6393 : }
6394 :
6395 :
6396 : #define WMC_TOOL_SKIP
6397 :
6398 : #define SCALEFACTOR8 ( 4 )
6399 : #define SCALEFACTOR64 ( 7 )
6400 : #define SCALEFACTORN2 ( 3 )
6401 :
6402 : #define SHC( x ) ( (Word16) x )
6403 : #define FFTC( x ) WORD322WORD16( (Word32) x )
6404 :
6405 : #define C81_FX ( FFTC( 0x5a82799a ) ) /* FL2WORD32( 7.071067811865475e-1) */
6406 : #define C82_FX ( FFTC( 0xa57d8666 ) ) /* FL2WORD32(-7.071067811865475e-1) */
6407 :
6408 : #define cplxMpy4_8_0( re, im, a, b, c, d ) \
6409 : re = L_shr( L_sub( Mpy_32_16( a, c ), Mpy_32_16( b, d ) ), 1 ); \
6410 : im = L_shr( L_add( Mpy_32_16( a, d ), Mpy_32_16( b, c ) ), 1 );
6411 :
6412 : #define cplxMpy4_8_1( re, im, a, b ) \
6413 : re = L_shr( a, 1 ); \
6414 : im = L_shr( b, 1 );
6415 :
6416 :
6417 : /**
6418 : * \brief Twiddle factors are unscaled
6419 : */
6420 : static const Word16 RotVector_256[2 * ( 256 - 32 )] = {
6421 : SHC( 0x7fff ), SHC( 0x0000 ), SHC( 0x7ff6 ), SHC( 0xfcdc ), SHC( 0x7fd9 ), SHC( 0xf9b8 ), SHC( 0x7fa7 ), SHC( 0xf695 ),
6422 : SHC( 0x7f62 ), SHC( 0xf374 ), SHC( 0x7f0a ), SHC( 0xf055 ), SHC( 0x7e9d ), SHC( 0xed38 ), SHC( 0x7e1e ), SHC( 0xea1e ),
6423 : SHC( 0x7d8a ), SHC( 0xe707 ), SHC( 0x7ce4 ), SHC( 0xe3f4 ), SHC( 0x7c2a ), SHC( 0xe0e6 ), SHC( 0x7b5d ), SHC( 0xdddc ),
6424 : SHC( 0x7a7d ), SHC( 0xdad8 ), SHC( 0x798a ), SHC( 0xd7d9 ), SHC( 0x7885 ), SHC( 0xd4e1 ), SHC( 0x776c ), SHC( 0xd1ef ),
6425 : SHC( 0x7642 ), SHC( 0xcf04 ), SHC( 0x7505 ), SHC( 0xcc21 ), SHC( 0x73b6 ), SHC( 0xc946 ), SHC( 0x7255 ), SHC( 0xc673 ),
6426 : SHC( 0x70e3 ), SHC( 0xc3a9 ), SHC( 0x6f5f ), SHC( 0xc0e9 ), SHC( 0x6dca ), SHC( 0xbe32 ), SHC( 0x6c24 ), SHC( 0xbb85 ),
6427 : SHC( 0x6a6e ), SHC( 0xb8e3 ), SHC( 0x68a7 ), SHC( 0xb64c ), SHC( 0x66d0 ), SHC( 0xb3c0 ), SHC( 0x64e9 ), SHC( 0xb140 ),
6428 : SHC( 0x62f2 ), SHC( 0xaecc ), SHC( 0x60ec ), SHC( 0xac65 ), SHC( 0x5ed7 ), SHC( 0xaa0a ), SHC( 0x5cb4 ), SHC( 0xa7bd ),
6429 : SHC( 0x7fff ), SHC( 0x0000 ), SHC( 0x7fd9 ), SHC( 0xf9b8 ), SHC( 0x7f62 ), SHC( 0xf374 ), SHC( 0x7e9d ), SHC( 0xed38 ),
6430 : SHC( 0x7d8a ), SHC( 0xe707 ), SHC( 0x7c2a ), SHC( 0xe0e6 ), SHC( 0x7a7d ), SHC( 0xdad8 ), SHC( 0x7885 ), SHC( 0xd4e1 ),
6431 : SHC( 0x7642 ), SHC( 0xcf04 ), SHC( 0x73b6 ), SHC( 0xc946 ), SHC( 0x70e3 ), SHC( 0xc3a9 ), SHC( 0x6dca ), SHC( 0xbe32 ),
6432 : SHC( 0x6a6e ), SHC( 0xb8e3 ), SHC( 0x66d0 ), SHC( 0xb3c0 ), SHC( 0x62f2 ), SHC( 0xaecc ), SHC( 0x5ed7 ), SHC( 0xaa0a ),
6433 : SHC( 0x5a82 ), SHC( 0xa57e ), SHC( 0x55f6 ), SHC( 0xa129 ), SHC( 0x5134 ), SHC( 0x9d0e ), SHC( 0x4c40 ), SHC( 0x9930 ),
6434 : SHC( 0x471d ), SHC( 0x9592 ), SHC( 0x41ce ), SHC( 0x9236 ), SHC( 0x3c57 ), SHC( 0x8f1d ), SHC( 0x36ba ), SHC( 0x8c4a ),
6435 : SHC( 0x30fc ), SHC( 0x89be ), SHC( 0x2b1f ), SHC( 0x877b ), SHC( 0x2528 ), SHC( 0x8583 ), SHC( 0x1f1a ), SHC( 0x83d6 ),
6436 : SHC( 0x18f9 ), SHC( 0x8276 ), SHC( 0x12c8 ), SHC( 0x8163 ), SHC( 0x0c8c ), SHC( 0x809e ), SHC( 0x0648 ), SHC( 0x8027 ),
6437 : SHC( 0x7fff ), SHC( 0x0000 ), SHC( 0x7fa7 ), SHC( 0xf695 ), SHC( 0x7e9d ), SHC( 0xed38 ), SHC( 0x7ce4 ), SHC( 0xe3f4 ),
6438 : SHC( 0x7a7d ), SHC( 0xdad8 ), SHC( 0x776c ), SHC( 0xd1ef ), SHC( 0x73b6 ), SHC( 0xc946 ), SHC( 0x6f5f ), SHC( 0xc0e9 ),
6439 : SHC( 0x6a6e ), SHC( 0xb8e3 ), SHC( 0x64e9 ), SHC( 0xb140 ), SHC( 0x5ed7 ), SHC( 0xaa0a ), SHC( 0x5843 ), SHC( 0xa34c ),
6440 : SHC( 0x5134 ), SHC( 0x9d0e ), SHC( 0x49b4 ), SHC( 0x9759 ), SHC( 0x41ce ), SHC( 0x9236 ), SHC( 0x398d ), SHC( 0x8dab ),
6441 : SHC( 0x30fc ), SHC( 0x89be ), SHC( 0x2827 ), SHC( 0x8676 ), SHC( 0x1f1a ), SHC( 0x83d6 ), SHC( 0x15e2 ), SHC( 0x81e2 ),
6442 : SHC( 0x0c8c ), SHC( 0x809e ), SHC( 0x0324 ), SHC( 0x800a ), SHC( 0xf9b8 ), SHC( 0x8027 ), SHC( 0xf055 ), SHC( 0x80f6 ),
6443 : SHC( 0xe707 ), SHC( 0x8276 ), SHC( 0xdddc ), SHC( 0x84a3 ), SHC( 0xd4e1 ), SHC( 0x877b ), SHC( 0xcc21 ), SHC( 0x8afb ),
6444 : SHC( 0xc3a9 ), SHC( 0x8f1d ), SHC( 0xbb85 ), SHC( 0x93dc ), SHC( 0xb3c0 ), SHC( 0x9930 ), SHC( 0xac65 ), SHC( 0x9f14 ),
6445 : SHC( 0x7fff ), SHC( 0x0000 ), SHC( 0x7f62 ), SHC( 0xf374 ), SHC( 0x7d8a ), SHC( 0xe707 ), SHC( 0x7a7d ), SHC( 0xdad8 ),
6446 : SHC( 0x7642 ), SHC( 0xcf04 ), SHC( 0x70e3 ), SHC( 0xc3a9 ), SHC( 0x6a6e ), SHC( 0xb8e3 ), SHC( 0x62f2 ), SHC( 0xaecc ),
6447 : SHC( 0x5a82 ), SHC( 0xa57e ), SHC( 0x5134 ), SHC( 0x9d0e ), SHC( 0x471d ), SHC( 0x9592 ), SHC( 0x3c57 ), SHC( 0x8f1d ),
6448 : SHC( 0x30fc ), SHC( 0x89be ), SHC( 0x2528 ), SHC( 0x8583 ), SHC( 0x18f9 ), SHC( 0x8276 ), SHC( 0x0c8c ), SHC( 0x809e ),
6449 : SHC( 0x0000 ), SHC( 0x8000 ), SHC( 0xf374 ), SHC( 0x809e ), SHC( 0xe707 ), SHC( 0x8276 ), SHC( 0xdad8 ), SHC( 0x8583 ),
6450 : SHC( 0xcf04 ), SHC( 0x89be ), SHC( 0xc3a9 ), SHC( 0x8f1d ), SHC( 0xb8e3 ), SHC( 0x9592 ), SHC( 0xaecc ), SHC( 0x9d0e ),
6451 : SHC( 0xa57e ), SHC( 0xa57e ), SHC( 0x9d0e ), SHC( 0xaecc ), SHC( 0x9592 ), SHC( 0xb8e3 ), SHC( 0x8f1d ), SHC( 0xc3a9 ),
6452 : SHC( 0x89be ), SHC( 0xcf04 ), SHC( 0x8583 ), SHC( 0xdad8 ), SHC( 0x8276 ), SHC( 0xe707 ), SHC( 0x809e ), SHC( 0xf374 ),
6453 : SHC( 0x7fff ), SHC( 0x0000 ), SHC( 0x7f0a ), SHC( 0xf055 ), SHC( 0x7c2a ), SHC( 0xe0e6 ), SHC( 0x776c ), SHC( 0xd1ef ),
6454 : SHC( 0x70e3 ), SHC( 0xc3a9 ), SHC( 0x68a7 ), SHC( 0xb64c ), SHC( 0x5ed7 ), SHC( 0xaa0a ), SHC( 0x539b ), SHC( 0x9f14 ),
6455 : SHC( 0x471d ), SHC( 0x9592 ), SHC( 0x398d ), SHC( 0x8dab ), SHC( 0x2b1f ), SHC( 0x877b ), SHC( 0x1c0c ), SHC( 0x831c ),
6456 : SHC( 0x0c8c ), SHC( 0x809e ), SHC( 0xfcdc ), SHC( 0x800a ), SHC( 0xed38 ), SHC( 0x8163 ), SHC( 0xdddc ), SHC( 0x84a3 ),
6457 : SHC( 0xcf04 ), SHC( 0x89be ), SHC( 0xc0e9 ), SHC( 0x90a1 ), SHC( 0xb3c0 ), SHC( 0x9930 ), SHC( 0xa7bd ), SHC( 0xa34c ),
6458 : SHC( 0x9d0e ), SHC( 0xaecc ), SHC( 0x93dc ), SHC( 0xbb85 ), SHC( 0x8c4a ), SHC( 0xc946 ), SHC( 0x8676 ), SHC( 0xd7d9 ),
6459 : SHC( 0x8276 ), SHC( 0xe707 ), SHC( 0x8059 ), SHC( 0xf695 ), SHC( 0x8027 ), SHC( 0x0648 ), SHC( 0x81e2 ), SHC( 0x15e2 ),
6460 : SHC( 0x8583 ), SHC( 0x2528 ), SHC( 0x8afb ), SHC( 0x33df ), SHC( 0x9236 ), SHC( 0x41ce ), SHC( 0x9b17 ), SHC( 0x4ec0 ),
6461 : SHC( 0x7fff ), SHC( 0x0000 ), SHC( 0x7e9d ), SHC( 0xed38 ), SHC( 0x7a7d ), SHC( 0xdad8 ), SHC( 0x73b6 ), SHC( 0xc946 ),
6462 : SHC( 0x6a6e ), SHC( 0xb8e3 ), SHC( 0x5ed7 ), SHC( 0xaa0a ), SHC( 0x5134 ), SHC( 0x9d0e ), SHC( 0x41ce ), SHC( 0x9236 ),
6463 : SHC( 0x30fc ), SHC( 0x89be ), SHC( 0x1f1a ), SHC( 0x83d6 ), SHC( 0x0c8c ), SHC( 0x809e ), SHC( 0xf9b8 ), SHC( 0x8027 ),
6464 : SHC( 0xe707 ), SHC( 0x8276 ), SHC( 0xd4e1 ), SHC( 0x877b ), SHC( 0xc3a9 ), SHC( 0x8f1d ), SHC( 0xb3c0 ), SHC( 0x9930 ),
6465 : SHC( 0xa57e ), SHC( 0xa57e ), SHC( 0x9930 ), SHC( 0xb3c0 ), SHC( 0x8f1d ), SHC( 0xc3a9 ), SHC( 0x877b ), SHC( 0xd4e1 ),
6466 : SHC( 0x8276 ), SHC( 0xe707 ), SHC( 0x8027 ), SHC( 0xf9b8 ), SHC( 0x809e ), SHC( 0x0c8c ), SHC( 0x83d6 ), SHC( 0x1f1a ),
6467 : SHC( 0x89be ), SHC( 0x30fc ), SHC( 0x9236 ), SHC( 0x41ce ), SHC( 0x9d0e ), SHC( 0x5134 ), SHC( 0xaa0a ), SHC( 0x5ed7 ),
6468 : SHC( 0xb8e3 ), SHC( 0x6a6e ), SHC( 0xc946 ), SHC( 0x73b6 ), SHC( 0xdad8 ), SHC( 0x7a7d ), SHC( 0xed38 ), SHC( 0x7e9d ),
6469 : SHC( 0x7fff ), SHC( 0x0000 ), SHC( 0x7e1e ), SHC( 0xea1e ), SHC( 0x7885 ), SHC( 0xd4e1 ), SHC( 0x6f5f ), SHC( 0xc0e9 ),
6470 : SHC( 0x62f2 ), SHC( 0xaecc ), SHC( 0x539b ), SHC( 0x9f14 ), SHC( 0x41ce ), SHC( 0x9236 ), SHC( 0x2e11 ), SHC( 0x8894 ),
6471 : SHC( 0x18f9 ), SHC( 0x8276 ), SHC( 0x0324 ), SHC( 0x800a ), SHC( 0xed38 ), SHC( 0x8163 ), SHC( 0xd7d9 ), SHC( 0x8676 ),
6472 : SHC( 0xc3a9 ), SHC( 0x8f1d ), SHC( 0xb140 ), SHC( 0x9b17 ), SHC( 0xa129 ), SHC( 0xaa0a ), SHC( 0x93dc ), SHC( 0xbb85 ),
6473 : SHC( 0x89be ), SHC( 0xcf04 ), SHC( 0x831c ), SHC( 0xe3f4 ), SHC( 0x8027 ), SHC( 0xf9b8 ), SHC( 0x80f6 ), SHC( 0x0fab ),
6474 : SHC( 0x8583 ), SHC( 0x2528 ), SHC( 0x8dab ), SHC( 0x398d ), SHC( 0x9930 ), SHC( 0x4c40 ), SHC( 0xa7bd ), SHC( 0x5cb4 ),
6475 : SHC( 0xb8e3 ), SHC( 0x6a6e ), SHC( 0xcc21 ), SHC( 0x7505 ), SHC( 0xe0e6 ), SHC( 0x7c2a ), SHC( 0xf695 ), SHC( 0x7fa7 ),
6476 : SHC( 0x0c8c ), SHC( 0x7f62 ), SHC( 0x2224 ), SHC( 0x7b5d ), SHC( 0x36ba ), SHC( 0x73b6 ), SHC( 0x49b4 ), SHC( 0x68a7 )
6477 : };
6478 :
6479 : /*-----------------------------------------------------------------*
6480 : * BASOP_fft8()
6481 : *
6482 : * Function performs a complex 8-point FFT
6483 : * The FFT is performed inplace. The result of the FFT
6484 : * is scaled by SCALEFACTOR8 bits.
6485 : *
6486 : * WOPS with 32x16 bit multiplications: 108 cycles
6487 : *-----------------------------------------------------------------*/
6488 :
6489 10161456 : static void BASOP_fft8(
6490 : Word32 *re,
6491 : Word32 *im,
6492 : Word16 s )
6493 : {
6494 : Word32 x00, x01, x02, x03, x04, x05, x06, x07;
6495 : Word32 x08, x09, x10, x11, x12, x13, x14, x15;
6496 : Word32 t00, t01, t02, t03, t04, t05, t06, t07;
6497 : Word32 t08, t09, t10, t11, t12, t13, t14, t15;
6498 : Word32 s00, s01, s02, s03, s04, s05, s06, s07;
6499 : Word32 s08, s09, s10, s11, s12, s13, s14, s15;
6500 :
6501 :
6502 : /* Pre-additions */
6503 :
6504 10161456 : x00 = L_shr( re[s * 0], SCALEFACTOR8 );
6505 10161456 : x01 = L_shr( im[s * 0], SCALEFACTOR8 );
6506 10161456 : x02 = L_shr( re[s * 1], SCALEFACTOR8 );
6507 10161456 : x03 = L_shr( im[s * 1], SCALEFACTOR8 );
6508 10161456 : x04 = L_shr( re[s * 2], SCALEFACTOR8 );
6509 10161456 : x05 = L_shr( im[s * 2], SCALEFACTOR8 );
6510 10161456 : x06 = L_shr( re[s * 3], SCALEFACTOR8 );
6511 10161456 : x07 = L_shr( im[s * 3], SCALEFACTOR8 );
6512 10161456 : x08 = L_shr( re[s * 4], SCALEFACTOR8 );
6513 10161456 : x09 = L_shr( im[s * 4], SCALEFACTOR8 );
6514 10161456 : x10 = L_shr( re[s * 5], SCALEFACTOR8 );
6515 10161456 : x11 = L_shr( im[s * 5], SCALEFACTOR8 );
6516 10161456 : x12 = L_shr( re[s * 6], SCALEFACTOR8 );
6517 10161456 : x13 = L_shr( im[s * 6], SCALEFACTOR8 );
6518 10161456 : x14 = L_shr( re[s * 7], SCALEFACTOR8 );
6519 10161456 : x15 = L_shr( im[s * 7], SCALEFACTOR8 );
6520 :
6521 10161456 : t00 = L_add( x00, x08 );
6522 10161456 : t02 = L_sub( x00, x08 );
6523 10161456 : t01 = L_add( x01, x09 );
6524 10161456 : t03 = L_sub( x01, x09 );
6525 10161456 : t04 = L_add( x02, x10 );
6526 10161456 : t06 = L_sub( x02, x10 );
6527 10161456 : t05 = L_add( x03, x11 );
6528 10161456 : t07 = L_sub( x03, x11 );
6529 10161456 : t08 = L_add( x04, x12 );
6530 10161456 : t10 = L_sub( x04, x12 );
6531 10161456 : t09 = L_add( x05, x13 );
6532 10161456 : t11 = L_sub( x05, x13 );
6533 10161456 : t12 = L_add( x06, x14 );
6534 10161456 : t14 = L_sub( x06, x14 );
6535 10161456 : t13 = L_add( x07, x15 );
6536 10161456 : t15 = L_sub( x07, x15 );
6537 :
6538 : /* Pre-additions and core multiplications */
6539 :
6540 10161456 : s00 = L_add( t00, t08 );
6541 10161456 : s04 = L_sub( t00, t08 );
6542 10161456 : s01 = L_add( t01, t09 );
6543 10161456 : s05 = L_sub( t01, t09 );
6544 10161456 : s08 = L_sub( t02, t11 );
6545 10161456 : s10 = L_add( t02, t11 );
6546 10161456 : s09 = L_add( t03, t10 );
6547 10161456 : s11 = L_sub( t03, t10 );
6548 10161456 : s02 = L_add( t04, t12 );
6549 10161456 : s07 = L_sub( t04, t12 );
6550 10161456 : s03 = L_add( t05, t13 );
6551 10161456 : s06 = L_sub( t13, t05 );
6552 :
6553 10161456 : t01 = L_add( t06, t14 );
6554 10161456 : t02 = L_sub( t06, t14 );
6555 10161456 : t00 = L_add( t07, t15 );
6556 10161456 : t03 = L_sub( t07, t15 );
6557 :
6558 10161456 : s12 = Mpy_32_16( L_add( t00, t02 ), C81_FX );
6559 10161456 : s14 = Mpy_32_16( L_sub( t00, t02 ), C81_FX );
6560 10161456 : s13 = Mpy_32_16( L_sub( t03, t01 ), C81_FX );
6561 10161456 : s15 = Mpy_32_16( L_add( t01, t03 ), C82_FX );
6562 :
6563 : /* Post-additions */
6564 :
6565 10161456 : re[s * 0] = L_add( s00, s02 );
6566 10161456 : move32();
6567 10161456 : re[s * 4] = L_sub( s00, s02 );
6568 10161456 : move32();
6569 10161456 : im[s * 0] = L_add( s01, s03 );
6570 10161456 : move32();
6571 10161456 : im[s * 4] = L_sub( s01, s03 );
6572 10161456 : move32();
6573 10161456 : re[s * 2] = L_sub( s04, s06 );
6574 10161456 : move32();
6575 10161456 : re[s * 6] = L_add( s04, s06 );
6576 10161456 : move32();
6577 10161456 : im[s * 2] = L_sub( s05, s07 );
6578 10161456 : move32();
6579 10161456 : im[s * 6] = L_add( s05, s07 );
6580 10161456 : move32();
6581 10161456 : re[s * 3] = L_add( s08, s14 );
6582 10161456 : move32();
6583 10161456 : re[s * 7] = L_sub( s08, s14 );
6584 10161456 : move32();
6585 10161456 : im[s * 3] = L_add( s09, s15 );
6586 10161456 : move32();
6587 10161456 : im[s * 7] = L_sub( s09, s15 );
6588 10161456 : move32();
6589 10161456 : re[s * 1] = L_add( s10, s12 );
6590 10161456 : move32();
6591 10161456 : re[s * 5] = L_sub( s10, s12 );
6592 10161456 : move32();
6593 10161456 : im[s * 1] = L_add( s11, s13 );
6594 10161456 : move32();
6595 10161456 : im[s * 5] = L_sub( s11, s13 );
6596 10161456 : move32();
6597 :
6598 10161456 : return;
6599 : }
6600 :
6601 :
6602 : /*-----------------------------------------------------------------*
6603 : * fftN2()
6604 : *
6605 : * Combined FFT
6606 : *-----------------------------------------------------------------*/
6607 :
6608 1270182 : static void BASOP_fftN2(
6609 : Word32 *re, /* i/o: real part */
6610 : Word32 *im, /* i/o: imag part */
6611 : const Word16 *W, /* i : rotation factor */
6612 : Word16 dim1, /* i : length of fft1 */
6613 : Word16 dim2, /* i : length of fft2 */
6614 : Word16 sx, /* i : stride real and imag part */
6615 : Word16 sc, /* i : stride phase rotation coefficients */
6616 : Word32 *x, /* tmp: 32-bit workbuffer */
6617 : Word16 Woff /* i : offset for addressing the rotation vector table */
6618 : )
6619 : {
6620 : Word16 i, j;
6621 : Word32 x00, x01, x02, x03, x04, x05, x06, x07, x08, x09, x10, x11, x12, x13, x14, x15;
6622 : Word32 t00, t01, t02, t03, t04, t05, t06, t07, t08, t09, t10, t11, t12, t13, t14, t15;
6623 : Word32 s00, s01, s02, s03, s04, s05, s06, s07, s08, s09, s10, s11, s12, s13, s14, s15;
6624 :
6625 11431638 : FOR( i = 0; i < dim2; i++ )
6626 : {
6627 91453104 : FOR( j = 0; j < dim1; j++ )
6628 : {
6629 81291648 : x[2 * i * dim1 + 2 * j] = re[sx * i + sx * j * dim2];
6630 81291648 : move32();
6631 81291648 : x[2 * i * dim1 + 2 * j + 1] = im[sx * i + sx * j * dim2];
6632 81291648 : move32();
6633 : }
6634 : }
6635 :
6636 : /* dim1 == 8 */
6637 11431638 : FOR( i = 0; i < dim2; i++ )
6638 : {
6639 10161456 : BASOP_fft8( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
6640 : }
6641 :
6642 : /* dim2 == 8 */
6643 11431638 : FOR( i = 0; i < dim1; i++ )
6644 : {
6645 10161456 : cplxMpy4_8_1( x00, x01, x[2 * i + 2 * 0 * dim1], x[2 * i + 2 * 0 * dim1 + 1] );
6646 :
6647 10161456 : IF( i == 0 )
6648 : {
6649 1270182 : cplxMpy4_8_1( x02, x03, x[2 * i + 2 * 1 * dim1], x[2 * i + 2 * 1 * dim1 + 1] );
6650 1270182 : cplxMpy4_8_1( x04, x05, x[2 * i + 2 * 2 * dim1], x[2 * i + 2 * 2 * dim1 + 1] );
6651 1270182 : cplxMpy4_8_1( x06, x07, x[2 * i + 2 * 3 * dim1], x[2 * i + 2 * 3 * dim1 + 1] );
6652 1270182 : cplxMpy4_8_1( x08, x09, x[2 * i + 2 * 4 * dim1], x[2 * i + 2 * 4 * dim1 + 1] );
6653 1270182 : cplxMpy4_8_1( x10, x11, x[2 * i + 2 * 5 * dim1], x[2 * i + 2 * 5 * dim1 + 1] );
6654 1270182 : cplxMpy4_8_1( x12, x13, x[2 * i + 2 * 6 * dim1], x[2 * i + 2 * 6 * dim1 + 1] );
6655 1270182 : cplxMpy4_8_1( x14, x15, x[2 * i + 2 * 7 * dim1], x[2 * i + 2 * 7 * dim1 + 1] );
6656 : }
6657 : ELSE
6658 : {
6659 8891274 : cplxMpy4_8_0( x02, x03, x[2 * i + 2 * 1 * dim1], x[2 * i + 2 * 1 * dim1 + 1], W[sc * i + sc * 1 * dim1 - Woff], W[sc * i + sc * 1 * dim1 + 1 - Woff] );
6660 8891274 : cplxMpy4_8_0( x04, x05, x[2 * i + 2 * 2 * dim1], x[2 * i + 2 * 2 * dim1 + 1], W[sc * i + sc * 2 * dim1 - Woff], W[sc * i + sc * 2 * dim1 + 1 - Woff] );
6661 8891274 : cplxMpy4_8_0( x06, x07, x[2 * i + 2 * 3 * dim1], x[2 * i + 2 * 3 * dim1 + 1], W[sc * i + sc * 3 * dim1 - Woff], W[sc * i + sc * 3 * dim1 + 1 - Woff] );
6662 8891274 : cplxMpy4_8_0( x08, x09, x[2 * i + 2 * 4 * dim1], x[2 * i + 2 * 4 * dim1 + 1], W[sc * i + sc * 4 * dim1 - Woff], W[sc * i + sc * 4 * dim1 + 1 - Woff] );
6663 8891274 : cplxMpy4_8_0( x10, x11, x[2 * i + 2 * 5 * dim1], x[2 * i + 2 * 5 * dim1 + 1], W[sc * i + sc * 5 * dim1 - Woff], W[sc * i + sc * 5 * dim1 + 1 - Woff] );
6664 8891274 : cplxMpy4_8_0( x12, x13, x[2 * i + 2 * 6 * dim1], x[2 * i + 2 * 6 * dim1 + 1], W[sc * i + sc * 6 * dim1 - Woff], W[sc * i + sc * 6 * dim1 + 1 - Woff] );
6665 8891274 : cplxMpy4_8_0( x14, x15, x[2 * i + 2 * 7 * dim1], x[2 * i + 2 * 7 * dim1 + 1], W[sc * i + sc * 7 * dim1 - Woff], W[sc * i + sc * 7 * dim1 + 1 - Woff] );
6666 : }
6667 10161456 : t00 = L_shr( L_add( x00, x08 ), SCALEFACTORN2 - 1 );
6668 10161456 : t02 = L_shr( L_sub( x00, x08 ), SCALEFACTORN2 - 1 );
6669 10161456 : t01 = L_shr( L_add( x01, x09 ), SCALEFACTORN2 - 1 );
6670 10161456 : t03 = L_shr( L_sub( x01, x09 ), SCALEFACTORN2 - 1 );
6671 10161456 : t04 = L_shr( L_add( x02, x10 ), SCALEFACTORN2 - 1 );
6672 10161456 : t06 = L_sub( x02, x10 );
6673 10161456 : t05 = L_shr( L_add( x03, x11 ), SCALEFACTORN2 - 1 );
6674 10161456 : t07 = L_sub( x03, x11 );
6675 10161456 : t08 = L_shr( L_add( x04, x12 ), SCALEFACTORN2 - 1 );
6676 10161456 : t10 = L_shr( L_sub( x04, x12 ), SCALEFACTORN2 - 1 );
6677 10161456 : t09 = L_shr( L_add( x05, x13 ), SCALEFACTORN2 - 1 );
6678 10161456 : t11 = L_shr( L_sub( x05, x13 ), SCALEFACTORN2 - 1 );
6679 10161456 : t12 = L_shr( L_add( x06, x14 ), SCALEFACTORN2 - 1 );
6680 10161456 : t14 = L_sub( x06, x14 );
6681 10161456 : t13 = L_shr( L_add( x07, x15 ), SCALEFACTORN2 - 1 );
6682 10161456 : t15 = L_sub( x07, x15 );
6683 :
6684 10161456 : s00 = L_add( t00, t08 );
6685 10161456 : s04 = L_sub( t00, t08 );
6686 10161456 : s01 = L_add( t01, t09 );
6687 10161456 : s05 = L_sub( t01, t09 );
6688 10161456 : s08 = L_sub( t02, t11 );
6689 10161456 : s10 = L_add( t02, t11 );
6690 10161456 : s09 = L_add( t03, t10 );
6691 10161456 : s11 = L_sub( t03, t10 );
6692 10161456 : s02 = L_add( t04, t12 );
6693 10161456 : s07 = L_sub( t04, t12 );
6694 10161456 : s03 = L_add( t05, t13 );
6695 10161456 : s06 = L_sub( t13, t05 );
6696 :
6697 10161456 : t01 = L_shr( L_add( t06, t14 ), SCALEFACTORN2 - 1 );
6698 10161456 : t02 = L_shr( L_sub( t06, t14 ), SCALEFACTORN2 - 1 );
6699 10161456 : t00 = L_shr( L_add( t07, t15 ), SCALEFACTORN2 - 1 );
6700 10161456 : t03 = L_shr( L_sub( t07, t15 ), SCALEFACTORN2 - 1 );
6701 :
6702 10161456 : s12 = Mpy_32_16( L_add( t00, t02 ), C81_FX );
6703 10161456 : s14 = Mpy_32_16( L_sub( t00, t02 ), C81_FX );
6704 10161456 : s13 = Mpy_32_16( L_sub( t03, t01 ), C81_FX );
6705 10161456 : s15 = Mpy_32_16( L_add( t01, t03 ), C82_FX );
6706 :
6707 10161456 : re[sx * i + sx * 0 * dim1] = L_add( s00, s02 );
6708 10161456 : move32();
6709 10161456 : im[sx * i + sx * 0 * dim1] = L_add( s01, s03 );
6710 10161456 : move32();
6711 10161456 : re[sx * i + sx * 1 * dim1] = L_add( s10, s12 );
6712 10161456 : move32();
6713 10161456 : im[sx * i + sx * 1 * dim1] = L_add( s11, s13 );
6714 10161456 : move32();
6715 10161456 : re[sx * i + sx * 2 * dim1] = L_sub( s04, s06 );
6716 10161456 : move32();
6717 10161456 : im[sx * i + sx * 2 * dim1] = L_sub( s05, s07 );
6718 10161456 : move32();
6719 10161456 : re[sx * i + sx * 3 * dim1] = L_add( s08, s14 );
6720 10161456 : move32();
6721 10161456 : im[sx * i + sx * 3 * dim1] = L_add( s09, s15 );
6722 10161456 : move32();
6723 10161456 : re[sx * i + sx * 4 * dim1] = L_sub( s00, s02 );
6724 10161456 : move32();
6725 10161456 : im[sx * i + sx * 4 * dim1] = L_sub( s01, s03 );
6726 10161456 : move32();
6727 10161456 : re[sx * i + sx * 5 * dim1] = L_sub( s10, s12 );
6728 10161456 : move32();
6729 10161456 : im[sx * i + sx * 5 * dim1] = L_sub( s11, s13 );
6730 10161456 : move32();
6731 10161456 : re[sx * i + sx * 6 * dim1] = L_add( s04, s06 );
6732 10161456 : move32();
6733 10161456 : im[sx * i + sx * 6 * dim1] = L_add( s05, s07 );
6734 10161456 : move32();
6735 10161456 : re[sx * i + sx * 7 * dim1] = L_sub( s08, s14 );
6736 10161456 : move32();
6737 10161456 : im[sx * i + sx * 7 * dim1] = L_sub( s09, s15 );
6738 10161456 : move32();
6739 : }
6740 :
6741 1270182 : return;
6742 : }
6743 :
6744 :
6745 : /*-----------------------------------------------------------------*
6746 : * BASOP_cfft()
6747 : *
6748 : * Complex valued FFT
6749 : *-----------------------------------------------------------------*/
6750 :
6751 1270182 : void BASOP_cfft(
6752 : Word32 *re, /* i/o: real part */
6753 : Word32 *im, /* i/o: imag part */
6754 : Word16 s, /* i : stride real and imag part */
6755 : Word16 *scale /* i : scalefactor */
6756 : )
6757 : {
6758 : Word32 x[2 * 64];
6759 :
6760 : /* FFT for len = FDNS_NPTS */
6761 1270182 : BASOP_fftN2( re, im, RotVector_256, 8, 8, s, 8, x, 64 );
6762 1270182 : s = add( *scale, SCALEFACTOR64 );
6763 :
6764 1270182 : *scale = s;
6765 1270182 : move16();
6766 :
6767 1270182 : return;
6768 : }
6769 :
6770 : #undef WMC_TOOL_SKIP
|