Line data Source code
1 : /******************************************************************************************************
2 :
3 : (C) 2022-2025 IVAS codec Public Collaboration with portions copyright Dolby International AB, Ericsson AB,
4 : Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
5 : Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
6 : Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
7 : contributors to this repository. All Rights Reserved.
8 :
9 : This software is protected by copyright law and by international treaties.
10 : The IVAS codec Public Collaboration consisting of Dolby International AB, Ericsson AB,
11 : Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
12 : Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
13 : Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
14 : contributors to this repository retain full ownership rights in their respective contributions in
15 : the software. This notice grants no license of any kind, including but not limited to patent
16 : license, nor is any license granted by implication, estoppel or otherwise.
17 :
18 : Contributors are required to enter into the IVAS codec Public Collaboration agreement before making
19 : contributions.
20 :
21 : This software is provided "AS IS", without any express or implied warranties. The software is in the
22 : development stage. It is intended exclusively for experts who have experience with such software and
23 : solely for the purpose of inspection. All implied warranties of non-infringement, merchantability
24 : and fitness for a particular purpose are hereby disclaimed and excluded.
25 :
26 : Any dispute, controversy or claim arising under or in relation to providing this software shall be
27 : submitted to and settled by the final, binding jurisdiction of the courts of Munich, Germany in
28 : accordance with the laws of the Federal Republic of Germany excluding its conflict of law rules and
29 : the United Nations Convention on Contracts on the International Sales of Goods.
30 :
31 : *******************************************************************************************************/
32 :
33 : /*====================================================================================
34 : EVS Codec 3GPP TS26.443 Nov 04, 2021. Version 12.14.0 / 13.10.0 / 14.6.0 / 15.4.0 / 16.3.0
35 : ====================================================================================*/
36 :
37 : #include <assert.h>
38 : #include <stdint.h>
39 : #include "options.h"
40 : #ifdef DEBUGGING
41 : #include "debug.h"
42 : #endif
43 : #include "prot.h"
44 : #include "stat_enc.h"
45 : #include "stat_dec.h"
46 : #include "rom_com.h"
47 : #include "wmc_auto.h"
48 :
49 :
50 : /*-----------------------------------------------------------------*
51 : * decision_matrix_enc()
52 : *
53 : * Select operating point (combination of technologies) based on input signal properties and command-line parameters:
54 : *
55 : * 7.20 8.00 9.60 13.20 16.40 24.40 32 48 64 96 128
56 : * Mode 1 1 2 1 2 2 1 2 1 2 2
57 : * ----------------------------------------------------------------------------------------------------------------------------------------------------------------
58 : * NB
59 : * speech ACELP@12k8 ACELP@12k8 ACELP@12k8 ACELP@12k8
60 : * audio LR MDCT LR MDCT TCX LR MDCT
61 : * inactive GSC@12k8 GSC@12k8 TCX GSC@12k8
62 : * ----------------------------------------------------------------------------------------------------------------------------------------------------------------
63 : * WB
64 : * speech ACELP@12k8 ACELP@12k8 ACELP@12k8 ACELP@12k8 ACELP@16k ACELP@16k ACELP@16k TCX ACELP@16k TCX TCX
65 : * +0b WB BWE +0b WB BWE +TD WB BWE +TD WB BWE
66 : * audio GSC@12k8 GSC@12k8 TCX LR MDCT TCX TCX HQ TCX HQ TCX TCX
67 : * +0b WB BWE +0b WB BWE +IGF
68 : * inactive GSC@12k8 GSC@12k8 TCX GSC@12k8 TCX TCX AVQ@16k TCX AVQ@16k TCX TCX
69 : * +0b WB BWE +0b WB BWE +IGF +FD WB BWE
70 : * ----------------------------------------------------------------------------------------------------------------------------------------------------------------
71 : * SWB
72 : * speech ACELP@12k8 ACELP@16k ACELP@16k ACELP@16k TCX ACELP@16k TCX TCX
73 : * +TD SWB BWE +TD SWB BWE +TD SWB BWE +TD SWB BWE +IGF +HR SWB BWE
74 : * audio LR MDCT/GSC TCX TCX HQ TCX HQ TCX TCX
75 : * +FD SWB BWE +IGF +IGF +FD SWB BWE +IGF
76 : * inactive GSC@12k8 TCX TCX AVQ@16k TCX AVQ@16k TCX TCX
77 : * +FD SWB BWE +IGF +IGF +FD SWB BWE +IGF +HR SWB BWE
78 : * ----------------------------------------------------------------------------------------------------------------------------------------------------------------
79 : * FB
80 : * speech ACELP@16k ACELP@16k ACELP@16k TCX ACELP@16k TCX TCX
81 : * +TD FB BWE +TD FB BWE +TD FB BWE +IGF +HR FB BWE
82 : * audio TCX TCX HQ TCX HQ TCX TCX
83 : * +IGF +IGF +FD FB BWE +IGF
84 : * inactive TCX TCX AVQ@16k TCX AVQ@16k TCX TCX
85 : * +IGF +IGF +FD FB BWE +IGF +HR FB BWE
86 : * -----------------------------------------------------------------------------------------------------------------------------------------------------------------
87 : *
88 : * Note: the GSC technology is part of the ACELP core as AUDIO coder_type (it is used also at 13.2 for SWB unvoiced noisy speech)
89 : * Note2: FB processing is optional and is activated via "-band FB" option on the encoder command line
90 : * Note3: NB (0-4kHz), WB (0-8kHz), SWB (0-16kHz), FB (0-20kHz)
91 : *
92 : * Signalling of modes (x marks a mode that must be signalled in the bitstream)
93 : *
94 : * 7.20 8.00 9.6 13.2 16.4 24.4 32 48 64
95 : * NB WB SWB FB NB WB SWB FB NB WB SWB FB NB WB SWB FB NB WB SWB FB NB WB SWB FB NB WB SWB FB NB WB SWB FB NB WB SWB FB
96 : * GC, 12k8 x x x x x x x x x x x x x
97 : * UC, 12k8 x x x x x x
98 : * VC, 12k8 x x x x x x x x x x x x x
99 : * TC, 12k8 x x x x x x x x x x x x x
100 : * GC, 16k x x x x x x x x x x x x
101 : * TC, 16k x x x x x x x x x x x x
102 : * AC(GSC) x x x x x x x x x x x x x
103 : * IC x x x x x x x x x x x x x x x x x x x x x x x x x
104 : *
105 : * GC, 12k8, FS x x x x x x x x x x x x x
106 : * GC, 16k, FS x x x x x x x x x x x
107 : * VC, 12k8, FS x x x x x x x
108 : * TC, 12k8, FS x
109 : * TC, 16k, FS x x x x x x x x x x x
110 : *
111 : * LR MDCT x x x x x x x x x x x
112 : *
113 : *-----------------------------------------------------------------*/
114 :
115 55663 : void decision_matrix_enc(
116 : Encoder_State *st, /* i : encoder state structure */
117 : int16_t *hq_core_type /* o : HQ core type */
118 : )
119 : {
120 : /* initialization */
121 55663 : st->core = -1;
122 55663 : st->extl = -1;
123 55663 : st->extl_brate = 0;
124 55663 : *hq_core_type = -1;
125 55663 : st->igf = 0;
126 :
127 : /* SID and FRAME_NO_DATA frames */
128 55663 : if ( st->Opt_DTX_ON && ( st->core_brate == SID_2k40 || st->core_brate == FRAME_NO_DATA ) )
129 : {
130 2028 : st->core = ACELP_CORE;
131 :
132 2028 : if ( st->input_Fs >= 32000 && st->bwidth >= SWB )
133 : {
134 0 : st->extl = SWB_CNG;
135 : }
136 :
137 2028 : st->rf_mode = 0;
138 :
139 2028 : return;
140 : }
141 :
142 53635 : st->core_brate = 0;
143 :
144 : /* SC-VBR */
145 53635 : if ( st->Opt_SC_VBR )
146 : {
147 : /* SC-VBR */
148 2390 : st->core = ACELP_CORE;
149 2390 : st->core_brate = ACELP_7k20;
150 2390 : st->total_brate = ACELP_7k20;
151 :
152 2390 : if ( st->hSC_VBR->ppp_mode == 1 )
153 : {
154 : /* PPP mode */
155 467 : st->core_brate = PPP_NELP_2k80;
156 : }
157 1923 : else if ( ( ( st->coder_type == UNVOICED || st->coder_type == TRANSITION ) && !st->sp_aud_decision1 ) || st->bwidth != NB )
158 : {
159 1262 : if ( st->coder_type == UNVOICED && st->vad_flag == 1 && ( ( st->last_bwidth >= SWB && st->last_Opt_SC_VBR ) || st->last_bwidth < SWB ) && ( st->last_core != HQ_CORE || st->bwidth != NB ) )
160 : {
161 : /* NELP mode */
162 288 : st->hSC_VBR->nelp_mode = 1;
163 288 : st->core_brate = PPP_NELP_2k80;
164 : }
165 974 : else if ( st->coder_type == TRANSITION || ( st->coder_type == UNVOICED && st->hSC_VBR->nelp_mode != 1 ) || ( ( st->coder_type == AUDIO || st->coder_type == INACTIVE ) && st->bwidth != NB ) )
166 : {
167 : /* silence portions */
168 495 : st->core_brate = ACELP_8k00;
169 495 : st->total_brate = ACELP_8k00;
170 : }
171 : }
172 :
173 : /* set inactive coder_type flag in ACELP core to GSC */
174 2390 : st->inactive_coder_type_flag = 1;
175 :
176 2390 : return;
177 : }
178 :
179 : /*---------------------------------------------------------------------*
180 : * NB
181 : *---------------------------------------------------------------------*/
182 :
183 51245 : else if ( st->bwidth == NB )
184 : {
185 4198 : st->core = ACELP_CORE;
186 :
187 : #ifdef DEBUGGING
188 : if ( st->total_brate >= HQCORE_NB_MIN_RATE && ( st->force == FORCE_MUSIC || ( st->force == -1 && st->sp_aud_decision1 == 1 ) ) )
189 : {
190 : st->core = HQ_CORE;
191 : }
192 : #else
193 4198 : if ( st->total_brate >= HQCORE_NB_MIN_RATE && st->sp_aud_decision1 == 1 )
194 : {
195 1072 : st->core = HQ_CORE;
196 : }
197 : #endif
198 : }
199 :
200 : /*---------------------------------------------------------------------*
201 : * WB
202 : *---------------------------------------------------------------------*/
203 :
204 47047 : else if ( st->bwidth == WB )
205 : {
206 11693 : st->core = ACELP_CORE;
207 :
208 : #ifdef DEBUGGING
209 : if ( ( st->total_brate >= HQCORE_WB_MIN_RATE && ( st->force == FORCE_MUSIC || ( st->force == -1 && st->sp_aud_decision1 == 1 ) ) ) || st->total_brate >= HQ_96k )
210 : #else
211 11693 : if ( ( st->total_brate >= HQCORE_WB_MIN_RATE && st->sp_aud_decision1 == 1 ) || st->total_brate >= HQ_96k )
212 : #endif
213 : {
214 1535 : st->core = HQ_CORE;
215 : }
216 : else
217 : {
218 10158 : if ( st->bwidth == WB && st->total_brate < ACELP_9k60 )
219 : {
220 4798 : st->extl = WB_BWE;
221 : }
222 5360 : else if ( st->bwidth == WB && st->total_brate >= ACELP_9k60 && st->total_brate <= ACELP_16k40 )
223 : {
224 : /* Note: WB BWE is used exceptionally at 13.2 kbps if GSC is selected instead of LR-MDCT */
225 2045 : if ( st->sp_aud_decision1 == 1 || st->coder_type == INACTIVE || ( st->sp_aud_decision1 == 0 && st->sp_aud_decision2 == 1 ) )
226 : {
227 251 : st->extl = WB_BWE;
228 251 : st->extl_brate = WB_BWE_0k35;
229 : }
230 : else
231 : {
232 1794 : st->extl = WB_TBE;
233 1794 : st->extl_brate = WB_TBE_1k05;
234 : }
235 : }
236 : }
237 : }
238 :
239 : /*---------------------------------------------------------------------*
240 : * SWB and FB
241 : *---------------------------------------------------------------------*/
242 :
243 35354 : else if ( st->bwidth == SWB || st->bwidth == FB )
244 : {
245 : #ifdef DEBUGGING
246 : if ( ( st->total_brate >= HQCORE_WB_MIN_RATE && ( st->force == FORCE_MUSIC || ( st->force == -1 && st->sp_aud_decision1 == 1 ) ) ) || st->total_brate >= HQ_96k )
247 : #else
248 35354 : if ( ( st->total_brate >= HQCORE_SWB_MIN_RATE && st->sp_aud_decision1 == 1 ) || st->total_brate >= HQ_96k )
249 : #endif
250 : {
251 11779 : st->core = HQ_CORE;
252 : }
253 : else
254 : {
255 23575 : st->core = ACELP_CORE;
256 :
257 23575 : if ( st->total_brate >= ACELP_13k20 && st->total_brate < ACELP_48k )
258 : {
259 : /* Note: SWB BWE is not used in case of GSC noisy speech */
260 : /* Note: SWB BWE is used exceptionally at 13.2 kbps if GSC is selected instead of LR-MDCT */
261 14503 : if ( ( st->sp_aud_decision1 == 1 || st->coder_type == INACTIVE || ( st->sp_aud_decision1 == 0 && st->sp_aud_decision2 == 1 ) ) && !st->GSC_noisy_speech )
262 : {
263 1374 : st->extl = SWB_BWE;
264 1374 : st->extl_brate = SWB_BWE_1k6;
265 :
266 1374 : if ( st->bwidth == FB && st->total_brate >= ACELP_24k40 )
267 : {
268 0 : st->extl = FB_BWE;
269 0 : st->extl_brate = FB_BWE_1k8;
270 : }
271 : }
272 : else
273 : {
274 13129 : st->extl = SWB_TBE;
275 13129 : st->extl_brate = SWB_TBE_1k6;
276 :
277 13129 : if ( st->total_brate >= ACELP_24k40 )
278 : {
279 2761 : st->extl_brate = SWB_TBE_2k8;
280 : }
281 :
282 13129 : if ( st->bwidth == FB && st->total_brate >= ACELP_24k40 )
283 : {
284 872 : st->extl = FB_TBE;
285 872 : st->extl_brate = FB_TBE_3k0;
286 : }
287 : }
288 : }
289 9072 : else if ( st->total_brate >= ACELP_48k )
290 : {
291 9072 : st->extl = SWB_BWE_HIGHRATE;
292 9072 : st->extl_brate = SWB_BWE_16k;
293 :
294 9072 : if ( st->bwidth == FB )
295 : {
296 889 : st->extl = FB_BWE_HIGHRATE;
297 : }
298 : }
299 : }
300 : }
301 :
302 : /*-----------------------------------------------------------------*
303 : * Set HQ core type
304 : *-----------------------------------------------------------------*/
305 :
306 51245 : if ( st->core == HQ_CORE )
307 : {
308 14386 : *hq_core_type = NORMAL_HQ_CORE;
309 :
310 14386 : if ( ( st->bwidth == SWB || st->bwidth == WB ) && st->total_brate <= LRMDCT_CROSSOVER_POINT )
311 : {
312 : /* note that FB (bitrate >= 24400 bps) is always coded with NORMAL_HQ_CORE */
313 6098 : *hq_core_type = LOW_RATE_HQ_CORE;
314 : }
315 8288 : else if ( st->bwidth == NB )
316 : {
317 1072 : *hq_core_type = LOW_RATE_HQ_CORE;
318 : }
319 : }
320 :
321 : /* set core bitrate */
322 51245 : st->core_brate = st->total_brate - st->extl_brate;
323 :
324 51245 : if ( st->ini_frame == 0 )
325 : {
326 : /* avoid switching in the very first frame */
327 95 : st->last_core = st->core;
328 95 : st->last_core_brate = st->core_brate;
329 95 : st->last_extl = st->extl;
330 : }
331 :
332 : /*-----------------------------------------------------------------*
333 : * set inactive coder_type flag in ACELP core
334 : *-----------------------------------------------------------------*/
335 :
336 51245 : st->inactive_coder_type_flag = 0; /* AVQ by default */
337 51245 : if ( st->total_brate <= MAX_GSC_INACTIVE_BRATE )
338 : {
339 28881 : st->inactive_coder_type_flag = 1; /* GSC */
340 : }
341 :
342 51245 : return;
343 : }
344 :
345 :
346 : /*---------------------------------------------------------------------*
347 : * signaling_mode1_tcx20_enc()
348 : *
349 : * write MODE1 TCX20 signaling information into the bitstream
350 : *---------------------------------------------------------------------*/
351 :
352 10796 : int16_t signaling_mode1_tcx20_enc(
353 : Encoder_State *st, /* i/o: encoder state structure */
354 : const int16_t push /* i : flag to push indice */
355 : )
356 : {
357 : int16_t num_bits;
358 : int16_t nBits, idx, start_idx;
359 10796 : BSTR_ENC_HANDLE hBstr = st->hBstr;
360 :
361 10796 : assert( st->core == TCX_20_CORE );
362 :
363 10796 : num_bits = 0;
364 :
365 : /* Use ACELP signaling for LR MDCT */
366 10796 : if ( st->total_brate <= ACELP_16k40 )
367 : {
368 : /* find the section in the ACELP signaling table corresponding to bitrate */
369 10544 : idx = 0;
370 369040 : while ( acelp_sig_tbl[idx] != st->total_brate )
371 : {
372 358496 : idx++;
373 : }
374 :
375 : /* retrieve the number of bits for signaling */
376 10544 : nBits = (int16_t) acelp_sig_tbl[++idx];
377 :
378 : /* retrieve the signaling index */
379 10544 : start_idx = ++idx;
380 334434 : while ( acelp_sig_tbl[idx] != SIG2IND( LR_MDCT, st->bwidth, 0, 0 ) )
381 : {
382 323890 : idx++;
383 : }
384 :
385 10544 : num_bits += nBits;
386 10544 : if ( push )
387 : {
388 5272 : push_indice( hBstr, IND_ACELP_SIGNALLING, idx - start_idx, nBits );
389 : }
390 :
391 : /* HQ/TCX core switching flag */
392 10544 : ++num_bits;
393 10544 : if ( push )
394 : {
395 5272 : push_indice( hBstr, IND_MDCT_CORE, 1, 1 );
396 : }
397 : }
398 : else
399 : {
400 252 : if ( st->core_brate <= ACELP_64k )
401 : {
402 : /* write ACELP/HQ core indication flag */
403 252 : ++num_bits;
404 252 : if ( push )
405 : {
406 126 : push_indice( hBstr, IND_CORE, 1, 1 );
407 : }
408 : }
409 :
410 : /* HQ/TCX core switching flag */
411 252 : ++num_bits;
412 252 : if ( push )
413 : {
414 126 : push_indice( hBstr, IND_MDCT_CORE, 1, 1 );
415 : }
416 :
417 252 : num_bits += 2;
418 252 : if ( push )
419 : {
420 : /* write band-width (needed for different I/O sampling rate support) */
421 126 : if ( st->bwidth == NB )
422 : {
423 0 : push_indice( hBstr, IND_HQ_BWIDTH, 0, 2 );
424 : }
425 126 : else if ( st->bwidth == WB )
426 : {
427 0 : push_indice( hBstr, IND_HQ_BWIDTH, 1, 2 );
428 : }
429 126 : else if ( st->bwidth == SWB )
430 : {
431 103 : push_indice( hBstr, IND_HQ_BWIDTH, 2, 2 );
432 : }
433 : else /* st->bwidth == FB */
434 : {
435 23 : push_indice( hBstr, IND_HQ_BWIDTH, 3, 2 );
436 : }
437 : }
438 : }
439 :
440 10796 : return num_bits;
441 : }
442 :
443 :
444 : /*---------------------------------------------------------------------*
445 : * signaling_enc()
446 : *
447 : * write signaling information into the bitstream
448 : *---------------------------------------------------------------------*/
449 :
450 51557 : void signaling_enc(
451 : Encoder_State *st /* i : encoder state structure */
452 : )
453 : {
454 : int16_t nBits, idx, start_idx;
455 : int32_t total_brate_temp;
456 : int16_t sig;
457 51557 : BSTR_ENC_HANDLE hBstr = st->hBstr;
458 :
459 51557 : if ( st->mdct_sw == MODE2 )
460 : {
461 :
462 935 : assert( !st->tcxonly );
463 935 : assert( st->core == HQ_CORE );
464 :
465 935 : push_next_indice( hBstr, 1, 1 ); /* TCX */
466 935 : push_next_indice( hBstr, 1, 1 ); /* HQ_CORE */
467 :
468 : /* write ACELP->HQ core switching flag */
469 935 : if ( st->last_core == ACELP_CORE || st->last_core == AMR_WB_CORE )
470 : {
471 68 : push_indice( hBstr, IND_HQ_SWITCHING_FLG, 1, 1 );
472 :
473 : /* write ACELP L_frame info */
474 68 : if ( st->last_L_frame == L_FRAME )
475 : {
476 0 : push_indice( hBstr, IND_LAST_L_FRAME, 0, 1 );
477 : }
478 : else
479 : {
480 68 : push_indice( hBstr, IND_LAST_L_FRAME, 1, 1 );
481 : }
482 : }
483 : else
484 : {
485 867 : push_indice( hBstr, IND_HQ_SWITCHING_FLG, 0, 1 );
486 : }
487 :
488 935 : return;
489 : }
490 :
491 50622 : if ( st->core == ACELP_CORE )
492 : {
493 : int16_t ppp_mode, nelp_mode;
494 :
495 41634 : if ( st->Opt_SC_VBR )
496 : {
497 2747 : ppp_mode = st->hSC_VBR->ppp_mode;
498 2747 : nelp_mode = st->hSC_VBR->nelp_mode;
499 : }
500 : else
501 : {
502 38887 : ppp_mode = 0;
503 38887 : nelp_mode = 0;
504 : }
505 :
506 41634 : if ( ppp_mode == 1 || nelp_mode == 1 )
507 : {
508 : /* 1 bit to distinguish between 2.8kbps PPP/NELP frame and SID frame */
509 755 : push_indice( hBstr, IND_CORE, 0, 1 );
510 :
511 : /* SC-VBR: 0 - PPP_NB, 1 - PPP_WB, 2 - NELP_NB, 3 - NELP_WB */
512 755 : if ( st->coder_type == VOICED && st->bwidth == NB && ppp_mode == 1 )
513 : {
514 198 : push_indice( hBstr, IND_PPP_NELP_MODE, 0, 2 );
515 : }
516 557 : else if ( st->coder_type == VOICED && st->bwidth != NB && ppp_mode == 1 )
517 : {
518 269 : push_indice( hBstr, IND_PPP_NELP_MODE, 1, 2 );
519 : }
520 288 : else if ( st->coder_type == UNVOICED && st->bwidth == NB && nelp_mode == 1 )
521 : {
522 160 : push_indice( hBstr, IND_PPP_NELP_MODE, 2, 2 );
523 : }
524 128 : else if ( st->coder_type == UNVOICED && st->bwidth != NB && nelp_mode == 1 )
525 : {
526 128 : push_indice( hBstr, IND_PPP_NELP_MODE, 3, 2 );
527 : }
528 : }
529 40879 : else if ( st->core_brate != SID_2k40 && st->core_brate != FRAME_NO_DATA )
530 : {
531 : /* write the ACELP/HQ core selection bit */
532 38851 : if ( st->total_brate >= ACELP_24k40 )
533 : {
534 15148 : push_indice( hBstr, IND_CORE, 0, 1 );
535 : }
536 :
537 : /* find the section in the ACELP signaling table corresponding to bitrate */
538 38851 : idx = 0;
539 201612 : while ( idx < MAX_ACELP_SIG )
540 : {
541 201612 : if ( st->total_brate <= brate_tbl[idx] )
542 : {
543 38851 : break;
544 : }
545 162761 : idx++;
546 : }
547 38851 : total_brate_temp = brate_tbl[idx];
548 :
549 38851 : idx = 0;
550 1838981 : while ( acelp_sig_tbl[idx] != total_brate_temp )
551 : {
552 1800130 : idx++;
553 : }
554 :
555 : /* retrieve the number of bits for signaling */
556 38851 : nBits = (int16_t) acelp_sig_tbl[++idx];
557 :
558 : /* retrieve the signaling index */
559 38851 : start_idx = ++idx;
560 38851 : if ( st->element_mode == IVAS_CPE_TD && st->bwidth == SWB && st->total_brate <= ACELP_9k60 )
561 : {
562 : /* patch to signal SWB as NB in Stereo */
563 0 : sig = SIG2IND( st->coder_type, NB, st->sharpFlag, st->rf_mode );
564 : }
565 : else
566 : {
567 38851 : sig = SIG2IND( st->coder_type, st->bwidth, st->sharpFlag, st->rf_mode );
568 : }
569 :
570 290893 : while ( acelp_sig_tbl[idx] != sig )
571 : {
572 252042 : idx++;
573 : }
574 :
575 38851 : push_indice( hBstr, IND_ACELP_SIGNALLING, idx - start_idx, nBits );
576 : }
577 :
578 : /* write extension layer flag to distinguish between TBE (0) and BWE (1) */
579 41634 : if ( st->extl_brate > 0 )
580 : {
581 25620 : if ( st->extl == WB_TBE || st->extl == SWB_TBE || st->extl == FB_TBE )
582 : {
583 14923 : push_indice( hBstr, IND_BWE_FLAG, 0, 1 );
584 : }
585 10697 : else if ( st->extl == WB_BWE || st->extl == SWB_BWE || st->extl == FB_BWE )
586 : {
587 1625 : push_indice( hBstr, IND_BWE_FLAG, 1, 1 );
588 : }
589 : }
590 : }
591 : else /* HQ core */
592 : {
593 : /* write ACELP->HQ core switching flag */
594 8988 : if ( st->last_core == ACELP_CORE || st->last_core == AMR_WB_CORE )
595 : {
596 261 : push_indice( hBstr, IND_HQ_SWITCHING_FLG, 1, 1 );
597 :
598 : /* write ACELP L_frame info */
599 261 : if ( st->last_L_frame == L_FRAME )
600 : {
601 69 : push_indice( hBstr, IND_LAST_L_FRAME, 0, 1 );
602 : }
603 : else
604 : {
605 192 : push_indice( hBstr, IND_LAST_L_FRAME, 1, 1 );
606 : }
607 : }
608 : else
609 : {
610 8727 : push_indice( hBstr, IND_HQ_SWITCHING_FLG, 0, 1 );
611 : }
612 :
613 : /* HQ/TCX core switching flag */
614 8988 : push_indice( hBstr, IND_MDCT_CORE, 0, 1 );
615 :
616 : /* Use ACELP signaling for LR MDCT */
617 8988 : if ( st->total_brate <= ACELP_16k40 )
618 : {
619 : /* find the section in the ACELP signaling table corresponding to bitrate */
620 1898 : idx = 0;
621 56774 : while ( acelp_sig_tbl[idx] != st->total_brate )
622 : {
623 54876 : idx++;
624 : }
625 :
626 : /* retrieve the number of bits for signaling */
627 1898 : nBits = (int16_t) acelp_sig_tbl[++idx];
628 :
629 : /* retrieve the signaling index */
630 1898 : start_idx = ++idx;
631 55677 : while ( acelp_sig_tbl[idx] != SIG2IND( LR_MDCT, st->bwidth, 0, 0 ) )
632 : {
633 53779 : idx++;
634 : }
635 :
636 1898 : push_indice( hBstr, IND_ACELP_SIGNALLING, idx - start_idx, nBits );
637 : }
638 : else
639 : {
640 7090 : if ( st->core_brate <= ACELP_64k )
641 : {
642 : /* write ACELP/HQ core indication flag */
643 7090 : push_indice( hBstr, IND_CORE, 1, 1 );
644 : }
645 :
646 : /* write band-width (needed for different I/O sampling rate support) */
647 7090 : if ( st->bwidth == NB )
648 : {
649 0 : push_indice( hBstr, IND_HQ_BWIDTH, 0, 2 );
650 : }
651 7090 : else if ( st->bwidth == WB )
652 : {
653 1408 : push_indice( hBstr, IND_HQ_BWIDTH, 1, 2 );
654 : }
655 5682 : else if ( st->bwidth == SWB )
656 : {
657 5046 : push_indice( hBstr, IND_HQ_BWIDTH, 2, 2 );
658 : }
659 : else /* st->bwidth == FB */
660 : {
661 636 : push_indice( hBstr, IND_HQ_BWIDTH, 3, 2 );
662 : }
663 : }
664 : }
665 :
666 50622 : return;
667 : }
668 :
669 : /*---------------------------------------------------------------------*
670 : * signaling_enc_rf()
671 : *
672 : * write channel-aware signaling information into the bitstream
673 : *---------------------------------------------------------------------*/
674 :
675 15619367 : void signaling_enc_rf(
676 : Encoder_State *st /* i/o: encoder state structure */
677 : )
678 : {
679 : int16_t i, sfr;
680 15619367 : RF_ENC_HANDLE hRF = st->hRF;
681 :
682 : /* write partial copy into bitstream */
683 15619367 : if ( st->rf_mode == 1 )
684 : {
685 1600 : enc_prm_rf( st, hRF->rf_indx_frametype[st->rf_fec_offset], st->rf_fec_offset );
686 1600 : hRF->rf_indx_tbeGainFr[0] = hRF->RF_bwe_gainFr_ind;
687 : }
688 :
689 15619367 : if ( hRF != NULL )
690 : {
691 : /* Shift the RF indices such that the partial copy associated with
692 : (n-fec_offset)th frame is included in the bitstream in nth frame. */
693 200636 : for ( i = st->rf_fec_offset; i >= 0; i-- )
694 : {
695 : /* RF frame type */
696 103718 : hRF->rf_indx_frametype[i + 1] = hRF->rf_indx_frametype[i];
697 :
698 : /* RF target bits buffer */
699 103718 : hRF->rf_targetbits_buff[i + 1] = hRF->rf_targetbits_buff[i];
700 :
701 : /* lsf indx */
702 103718 : hRF->rf_indx_lsf[i + 1][0] = hRF->rf_indx_lsf[i][0];
703 103718 : hRF->rf_indx_lsf[i + 1][1] = hRF->rf_indx_lsf[i][1];
704 103718 : hRF->rf_indx_lsf[i + 1][2] = hRF->rf_indx_lsf[i][2];
705 :
706 : /* ES pred energy */
707 103718 : hRF->rf_indx_EsPred[i + 1] = hRF->rf_indx_EsPred[i];
708 :
709 : /* LTF mode, sfr params: pitch, fcb and gain */
710 549290 : for ( sfr = 0; sfr < st->nb_subfr; sfr++ )
711 : {
712 445572 : hRF->rf_indx_ltfMode[i + 1][sfr] = hRF->rf_indx_ltfMode[i][sfr];
713 445572 : hRF->rf_indx_pitch[i + 1][sfr] = hRF->rf_indx_pitch[i][sfr];
714 445572 : hRF->rf_indx_fcb[i + 1][sfr] = hRF->rf_indx_fcb[i][sfr];
715 445572 : hRF->rf_indx_gain[i + 1][sfr] = hRF->rf_indx_gain[i][sfr];
716 : }
717 :
718 : /* shift the nelp indices */
719 103718 : hRF->rf_indx_nelp_iG1[i + 1] = hRF->rf_indx_nelp_iG1[i];
720 103718 : hRF->rf_indx_nelp_iG2[i + 1][0] = hRF->rf_indx_nelp_iG2[i][0];
721 103718 : hRF->rf_indx_nelp_iG2[i + 1][1] = hRF->rf_indx_nelp_iG2[i][1];
722 103718 : hRF->rf_indx_nelp_fid[i + 1] = hRF->rf_indx_nelp_fid[i];
723 :
724 : /* tbe gain Fr shift */
725 103718 : hRF->rf_indx_tbeGainFr[i + 1] = hRF->rf_indx_tbeGainFr[i];
726 103718 : hRF->rf_clas[i + 1] = hRF->rf_clas[i];
727 103718 : hRF->rf_gain_tcx[i + 1] = hRF->rf_gain_tcx[i];
728 103718 : hRF->rf_tcxltp_param[i + 1] = hRF->rf_tcxltp_param[i];
729 : }
730 : }
731 :
732 15619367 : return;
733 : }
|