Line data Source code
1 : /******************************************************************************************************
2 :
3 : (C) 2022-2025 IVAS codec Public Collaboration with portions copyright Dolby International AB, Ericsson AB,
4 : Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
5 : Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
6 : Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
7 : contributors to this repository. All Rights Reserved.
8 :
9 : This software is protected by copyright law and by international treaties.
10 : The IVAS codec Public Collaboration consisting of Dolby International AB, Ericsson AB,
11 : Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
12 : Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
13 : Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
14 : contributors to this repository retain full ownership rights in their respective contributions in
15 : the software. This notice grants no license of any kind, including but not limited to patent
16 : license, nor is any license granted by implication, estoppel or otherwise.
17 :
18 : Contributors are required to enter into the IVAS codec Public Collaboration agreement before making
19 : contributions.
20 :
21 : This software is provided "AS IS", without any express or implied warranties. The software is in the
22 : development stage. It is intended exclusively for experts who have experience with such software and
23 : solely for the purpose of inspection. All implied warranties of non-infringement, merchantability
24 : and fitness for a particular purpose are hereby disclaimed and excluded.
25 :
26 : Any dispute, controversy or claim arising under or in relation to providing this software shall be
27 : submitted to and settled by the final, binding jurisdiction of the courts of Munich, Germany in
28 : accordance with the laws of the Federal Republic of Germany excluding its conflict of law rules and
29 : the United Nations Convention on Contracts on the International Sales of Goods.
30 :
31 : *******************************************************************************************************/
32 :
33 : /*====================================================================================
34 : EVS Codec 3GPP TS26.443 Nov 04, 2021. Version 12.14.0 / 13.10.0 / 14.6.0 / 15.4.0 / 16.3.0
35 : ====================================================================================*/
36 :
37 : #include <assert.h>
38 : #include <stdint.h>
39 : #include "options.h"
40 : #ifdef DEBUGGING
41 : #include "debug.h"
42 : #endif
43 : #include "prot.h"
44 : #include "stat_enc.h"
45 : #include "stat_dec.h"
46 : #include "rom_com.h"
47 : #include "wmc_auto.h"
48 :
49 :
50 : /*-----------------------------------------------------------------*
51 : * decision_matrix_enc()
52 : *
53 : * Select operating point (combination of technologies) based on input signal properties and command-line parameters:
54 : *
55 : * 7.20 8.00 9.60 13.20 16.40 24.40 32 48 64 96 128
56 : * Mode 1 1 2 1 2 2 1 2 1 2 2
57 : * ----------------------------------------------------------------------------------------------------------------------------------------------------------------
58 : * NB
59 : * speech ACELP@12k8 ACELP@12k8 ACELP@12k8 ACELP@12k8
60 : * audio LR MDCT LR MDCT TCX LR MDCT
61 : * inactive GSC@12k8 GSC@12k8 TCX GSC@12k8
62 : * ----------------------------------------------------------------------------------------------------------------------------------------------------------------
63 : * WB
64 : * speech ACELP@12k8 ACELP@12k8 ACELP@12k8 ACELP@12k8 ACELP@16k ACELP@16k ACELP@16k TCX ACELP@16k TCX TCX
65 : * +0b WB BWE +0b WB BWE +TD WB BWE +TD WB BWE
66 : * audio GSC@12k8 GSC@12k8 TCX LR MDCT TCX TCX HQ TCX HQ TCX TCX
67 : * +0b WB BWE +0b WB BWE +IGF
68 : * inactive GSC@12k8 GSC@12k8 TCX GSC@12k8 TCX TCX AVQ@16k TCX AVQ@16k TCX TCX
69 : * +0b WB BWE +0b WB BWE +IGF +FD WB BWE
70 : * ----------------------------------------------------------------------------------------------------------------------------------------------------------------
71 : * SWB
72 : * speech ACELP@12k8 ACELP@16k ACELP@16k ACELP@16k TCX ACELP@16k TCX TCX
73 : * +TD SWB BWE +TD SWB BWE +TD SWB BWE +TD SWB BWE +IGF +HR SWB BWE
74 : * audio LR MDCT/GSC TCX TCX HQ TCX HQ TCX TCX
75 : * +FD SWB BWE +IGF +IGF +FD SWB BWE +IGF
76 : * inactive GSC@12k8 TCX TCX AVQ@16k TCX AVQ@16k TCX TCX
77 : * +FD SWB BWE +IGF +IGF +FD SWB BWE +IGF +HR SWB BWE
78 : * ----------------------------------------------------------------------------------------------------------------------------------------------------------------
79 : * FB
80 : * speech ACELP@16k ACELP@16k ACELP@16k TCX ACELP@16k TCX TCX
81 : * +TD FB BWE +TD FB BWE +TD FB BWE +IGF +HR FB BWE
82 : * audio TCX TCX HQ TCX HQ TCX TCX
83 : * +IGF +IGF +FD FB BWE +IGF
84 : * inactive TCX TCX AVQ@16k TCX AVQ@16k TCX TCX
85 : * +IGF +IGF +FD FB BWE +IGF +HR FB BWE
86 : * -----------------------------------------------------------------------------------------------------------------------------------------------------------------
87 : *
88 : * Note: the GSC technology is part of the ACELP core as AUDIO coder_type (it is used also at 13.2 for SWB unvoiced noisy speech)
89 : * Note2: FB processing is optional and is activated via "-band FB" option on the encoder command line
90 : * Note3: NB (0-4kHz), WB (0-8kHz), SWB (0-16kHz), FB (0-20kHz)
91 : *
92 : * Signalling of modes (x marks a mode that must be signalled in the bitstream)
93 : *
94 : * 7.20 8.00 9.6 13.2 16.4 24.4 32 48 64
95 : * NB WB SWB FB NB WB SWB FB NB WB SWB FB NB WB SWB FB NB WB SWB FB NB WB SWB FB NB WB SWB FB NB WB SWB FB NB WB SWB FB
96 : * GC, 12k8 x x x x x x x x x x x x x
97 : * UC, 12k8 x x x x x x
98 : * VC, 12k8 x x x x x x x x x x x x x
99 : * TC, 12k8 x x x x x x x x x x x x x
100 : * GC, 16k x x x x x x x x x x x x
101 : * TC, 16k x x x x x x x x x x x x
102 : * AC(GSC) x x x x x x x x x x x x x
103 : * IC x x x x x x x x x x x x x x x x x x x x x x x x x
104 : *
105 : * GC, 12k8, FS x x x x x x x x x x x x x
106 : * GC, 16k, FS x x x x x x x x x x x
107 : * VC, 12k8, FS x x x x x x x
108 : * TC, 12k8, FS x
109 : * TC, 16k, FS x x x x x x x x x x x
110 : *
111 : * LR MDCT x x x x x x x x x x x
112 : *
113 : *-----------------------------------------------------------------*/
114 :
115 3050 : void decision_matrix_enc(
116 : Encoder_State *st, /* i : encoder state structure */
117 : int16_t *hq_core_type /* o : HQ core type */
118 : )
119 : {
120 : /* initialization */
121 3050 : st->core = -1;
122 3050 : st->extl = -1;
123 3050 : st->extl_brate = 0;
124 3050 : *hq_core_type = -1;
125 3050 : st->igf = 0;
126 :
127 : /* SID and FRAME_NO_DATA frames */
128 3050 : if ( st->Opt_DTX_ON && ( st->core_brate == SID_2k40 || st->core_brate == FRAME_NO_DATA ) )
129 : {
130 0 : st->core = ACELP_CORE;
131 :
132 0 : if ( st->input_Fs >= 32000 && st->bwidth >= SWB )
133 : {
134 0 : st->extl = SWB_CNG;
135 : }
136 :
137 0 : st->rf_mode = 0;
138 :
139 0 : return;
140 : }
141 :
142 3050 : st->core_brate = 0;
143 :
144 : /* SC-VBR */
145 3050 : if ( st->Opt_SC_VBR )
146 : {
147 : /* SC-VBR */
148 0 : st->core = ACELP_CORE;
149 0 : st->core_brate = ACELP_7k20;
150 0 : st->total_brate = ACELP_7k20;
151 :
152 0 : if ( st->hSC_VBR->ppp_mode == 1 )
153 : {
154 : /* PPP mode */
155 0 : st->core_brate = PPP_NELP_2k80;
156 : }
157 0 : else if ( ( ( st->coder_type == UNVOICED || st->coder_type == TRANSITION ) && !st->sp_aud_decision1 ) || st->bwidth != NB )
158 : {
159 0 : if ( st->coder_type == UNVOICED && st->vad_flag == 1 && ( ( st->last_bwidth >= SWB && st->last_Opt_SC_VBR ) || st->last_bwidth < SWB ) && ( st->last_core != HQ_CORE || st->bwidth != NB ) )
160 : {
161 : /* NELP mode */
162 0 : st->hSC_VBR->nelp_mode = 1;
163 0 : st->core_brate = PPP_NELP_2k80;
164 : }
165 0 : else if ( st->coder_type == TRANSITION || ( st->coder_type == UNVOICED && st->hSC_VBR->nelp_mode != 1 ) || ( ( st->coder_type == AUDIO || st->coder_type == INACTIVE ) && st->bwidth != NB ) )
166 : {
167 : /* silence portions */
168 0 : st->core_brate = ACELP_8k00;
169 0 : st->total_brate = ACELP_8k00;
170 : }
171 : }
172 :
173 : /* set inactive coder_type flag in ACELP core to GSC */
174 0 : st->inactive_coder_type_flag = 1;
175 :
176 0 : return;
177 : }
178 :
179 : /*---------------------------------------------------------------------*
180 : * NB
181 : *---------------------------------------------------------------------*/
182 :
183 3050 : else if ( st->bwidth == NB )
184 : {
185 0 : st->core = ACELP_CORE;
186 :
187 : #ifdef DEBUGGING
188 : if ( st->total_brate >= HQCORE_NB_MIN_RATE && ( st->force == FORCE_MUSIC || ( st->force == -1 && st->sp_aud_decision1 == 1 ) ) )
189 : {
190 : st->core = HQ_CORE;
191 : }
192 : #else
193 0 : if ( st->total_brate >= HQCORE_NB_MIN_RATE && st->sp_aud_decision1 == 1 )
194 : {
195 0 : st->core = HQ_CORE;
196 : }
197 : #endif
198 : }
199 :
200 : /*---------------------------------------------------------------------*
201 : * WB
202 : *---------------------------------------------------------------------*/
203 :
204 3050 : else if ( st->bwidth == WB )
205 : {
206 0 : st->core = ACELP_CORE;
207 :
208 : #ifdef DEBUGGING
209 : if ( ( st->total_brate >= HQCORE_WB_MIN_RATE && ( st->force == FORCE_MUSIC || ( st->force == -1 && st->sp_aud_decision1 == 1 ) ) ) || st->total_brate >= HQ_96k )
210 : #else
211 0 : if ( ( st->total_brate >= HQCORE_WB_MIN_RATE && st->sp_aud_decision1 == 1 ) || st->total_brate >= HQ_96k )
212 : #endif
213 : {
214 0 : st->core = HQ_CORE;
215 : }
216 : else
217 : {
218 0 : if ( st->bwidth == WB && st->total_brate < ACELP_9k60 )
219 : {
220 0 : st->extl = WB_BWE;
221 : }
222 0 : else if ( st->bwidth == WB && st->total_brate >= ACELP_9k60 && st->total_brate <= ACELP_16k40 )
223 : {
224 : /* Note: WB BWE is used exceptionally at 13.2 kbps if GSC is selected instead of LR-MDCT */
225 0 : if ( st->sp_aud_decision1 == 1 || st->coder_type == INACTIVE || ( st->sp_aud_decision1 == 0 && st->sp_aud_decision2 == 1 ) )
226 : {
227 0 : st->extl = WB_BWE;
228 0 : st->extl_brate = WB_BWE_0k35;
229 : }
230 : else
231 : {
232 0 : st->extl = WB_TBE;
233 0 : st->extl_brate = WB_TBE_1k05;
234 : }
235 : }
236 : }
237 : }
238 :
239 : /*---------------------------------------------------------------------*
240 : * SWB and FB
241 : *---------------------------------------------------------------------*/
242 :
243 3050 : else if ( st->bwidth == SWB || st->bwidth == FB )
244 : {
245 : #ifdef DEBUGGING
246 : if ( ( st->total_brate >= HQCORE_WB_MIN_RATE && ( st->force == FORCE_MUSIC || ( st->force == -1 && st->sp_aud_decision1 == 1 ) ) ) || st->total_brate >= HQ_96k )
247 : #else
248 3050 : if ( ( st->total_brate >= HQCORE_SWB_MIN_RATE && st->sp_aud_decision1 == 1 ) || st->total_brate >= HQ_96k )
249 : #endif
250 : {
251 968 : st->core = HQ_CORE;
252 : }
253 : else
254 : {
255 2082 : st->core = ACELP_CORE;
256 :
257 2082 : if ( st->total_brate >= ACELP_13k20 && st->total_brate < ACELP_48k )
258 : {
259 : /* Note: SWB BWE is not used in case of GSC noisy speech */
260 : /* Note: SWB BWE is used exceptionally at 13.2 kbps if GSC is selected instead of LR-MDCT */
261 1413 : if ( ( st->sp_aud_decision1 == 1 || st->coder_type == INACTIVE || ( st->sp_aud_decision1 == 0 && st->sp_aud_decision2 == 1 ) ) && !st->GSC_noisy_speech )
262 : {
263 6 : st->extl = SWB_BWE;
264 6 : st->extl_brate = SWB_BWE_1k6;
265 :
266 6 : if ( st->bwidth == FB && st->total_brate >= ACELP_24k40 )
267 : {
268 0 : st->extl = FB_BWE;
269 0 : st->extl_brate = FB_BWE_1k8;
270 : }
271 : }
272 : else
273 : {
274 1407 : st->extl = SWB_TBE;
275 1407 : st->extl_brate = SWB_TBE_1k6;
276 :
277 1407 : if ( st->total_brate >= ACELP_24k40 )
278 : {
279 0 : st->extl_brate = SWB_TBE_2k8;
280 : }
281 :
282 1407 : if ( st->bwidth == FB && st->total_brate >= ACELP_24k40 )
283 : {
284 0 : st->extl = FB_TBE;
285 0 : st->extl_brate = FB_TBE_3k0;
286 : }
287 : }
288 : }
289 669 : else if ( st->total_brate >= ACELP_48k )
290 : {
291 669 : st->extl = SWB_BWE_HIGHRATE;
292 669 : st->extl_brate = SWB_BWE_16k;
293 :
294 669 : if ( st->bwidth == FB )
295 : {
296 0 : st->extl = FB_BWE_HIGHRATE;
297 : }
298 : }
299 : }
300 : }
301 :
302 : /*-----------------------------------------------------------------*
303 : * Set HQ core type
304 : *-----------------------------------------------------------------*/
305 :
306 3050 : if ( st->core == HQ_CORE )
307 : {
308 968 : *hq_core_type = NORMAL_HQ_CORE;
309 :
310 968 : if ( ( st->bwidth == SWB || st->bwidth == WB ) && st->total_brate <= LRMDCT_CROSSOVER_POINT )
311 : {
312 : /* note that FB (bitrate >= 24400 bps) is always coded with NORMAL_HQ_CORE */
313 637 : *hq_core_type = LOW_RATE_HQ_CORE;
314 : }
315 331 : else if ( st->bwidth == NB )
316 : {
317 0 : *hq_core_type = LOW_RATE_HQ_CORE;
318 : }
319 : }
320 :
321 : /* set core bitrate */
322 3050 : st->core_brate = st->total_brate - st->extl_brate;
323 :
324 3050 : if ( st->ini_frame == 0 )
325 : {
326 : /* avoid switching in the very first frame */
327 3 : st->last_core = st->core;
328 3 : st->last_core_brate = st->core_brate;
329 3 : st->last_extl = st->extl;
330 : }
331 :
332 : /*-----------------------------------------------------------------*
333 : * set inactive coder_type flag in ACELP core
334 : *-----------------------------------------------------------------*/
335 :
336 3050 : st->inactive_coder_type_flag = 0; /* AVQ by default */
337 3050 : if ( st->total_brate <= MAX_GSC_INACTIVE_BRATE )
338 : {
339 2050 : st->inactive_coder_type_flag = 1; /* GSC */
340 : }
341 :
342 3050 : return;
343 : }
344 :
345 :
346 : /*---------------------------------------------------------------------*
347 : * signaling_mode1_tcx20_enc()
348 : *
349 : * write MODE1 TCX20 signaling information into the bitstream
350 : *---------------------------------------------------------------------*/
351 :
352 1166 : int16_t signaling_mode1_tcx20_enc(
353 : Encoder_State *st, /* i/o: encoder state structure */
354 : const int16_t push /* i : flag to push indice */
355 : )
356 : {
357 : int16_t num_bits;
358 : int16_t nBits, idx, start_idx;
359 1166 : BSTR_ENC_HANDLE hBstr = st->hBstr;
360 :
361 1166 : assert( st->core == TCX_20_CORE );
362 :
363 1166 : num_bits = 0;
364 :
365 : /* Use ACELP signaling for LR MDCT */
366 1166 : if ( st->total_brate <= ACELP_16k40 )
367 : {
368 : /* find the section in the ACELP signaling table corresponding to bitrate */
369 1166 : idx = 0;
370 40810 : while ( acelp_sig_tbl[idx] != st->total_brate )
371 : {
372 39644 : idx++;
373 : }
374 :
375 : /* retrieve the number of bits for signaling */
376 1166 : nBits = (int16_t) acelp_sig_tbl[++idx];
377 :
378 : /* retrieve the signaling index */
379 1166 : start_idx = ++idx;
380 37312 : while ( acelp_sig_tbl[idx] != SIG2IND( LR_MDCT, st->bwidth, 0, 0 ) )
381 : {
382 36146 : idx++;
383 : }
384 :
385 1166 : num_bits += nBits;
386 1166 : if ( push )
387 : {
388 583 : push_indice( hBstr, IND_ACELP_SIGNALLING, idx - start_idx, nBits );
389 : }
390 :
391 : /* HQ/TCX core switching flag */
392 1166 : ++num_bits;
393 1166 : if ( push )
394 : {
395 583 : push_indice( hBstr, IND_MDCT_CORE, 1, 1 );
396 : }
397 : }
398 : else
399 : {
400 0 : if ( st->core_brate <= ACELP_64k )
401 : {
402 : /* write ACELP/HQ core indication flag */
403 0 : ++num_bits;
404 0 : if ( push )
405 : {
406 0 : push_indice( hBstr, IND_CORE, 1, 1 );
407 : }
408 : }
409 :
410 : /* HQ/TCX core switching flag */
411 0 : ++num_bits;
412 0 : if ( push )
413 : {
414 0 : push_indice( hBstr, IND_MDCT_CORE, 1, 1 );
415 : }
416 :
417 0 : num_bits += 2;
418 0 : if ( push )
419 : {
420 : /* write band-width (needed for different I/O sampling rate support) */
421 0 : if ( st->bwidth == NB )
422 : {
423 0 : push_indice( hBstr, IND_HQ_BWIDTH, 0, 2 );
424 : }
425 0 : else if ( st->bwidth == WB )
426 : {
427 0 : push_indice( hBstr, IND_HQ_BWIDTH, 1, 2 );
428 : }
429 0 : else if ( st->bwidth == SWB )
430 : {
431 0 : push_indice( hBstr, IND_HQ_BWIDTH, 2, 2 );
432 : }
433 : else /* st->bwidth == FB */
434 : {
435 0 : push_indice( hBstr, IND_HQ_BWIDTH, 3, 2 );
436 : }
437 : }
438 : }
439 :
440 1166 : return num_bits;
441 : }
442 :
443 :
444 : /*---------------------------------------------------------------------*
445 : * signaling_enc()
446 : *
447 : * write signaling information into the bitstream
448 : *---------------------------------------------------------------------*/
449 :
450 2617 : void signaling_enc(
451 : Encoder_State *st /* i : encoder state structure */
452 : )
453 : {
454 : int16_t nBits, idx, start_idx;
455 : int32_t total_brate_temp;
456 : int16_t sig;
457 2617 : BSTR_ENC_HANDLE hBstr = st->hBstr;
458 :
459 2617 : if ( st->mdct_sw == MODE2 )
460 : {
461 :
462 150 : assert( !st->tcxonly );
463 150 : assert( st->core == HQ_CORE );
464 :
465 150 : push_next_indice( hBstr, 1, 1 ); /* TCX */
466 150 : push_next_indice( hBstr, 1, 1 ); /* HQ_CORE */
467 :
468 : /* write ACELP->HQ core switching flag */
469 150 : if ( st->last_core == ACELP_CORE || st->last_core == AMR_WB_CORE )
470 : {
471 16 : push_indice( hBstr, IND_HQ_SWITCHING_FLG, 1, 1 );
472 :
473 : /* write ACELP L_frame info */
474 16 : if ( st->last_L_frame == L_FRAME )
475 : {
476 0 : push_indice( hBstr, IND_LAST_L_FRAME, 0, 1 );
477 : }
478 : else
479 : {
480 16 : push_indice( hBstr, IND_LAST_L_FRAME, 1, 1 );
481 : }
482 : }
483 : else
484 : {
485 134 : push_indice( hBstr, IND_HQ_SWITCHING_FLG, 0, 1 );
486 : }
487 :
488 150 : return;
489 : }
490 :
491 2467 : if ( st->core == ACELP_CORE )
492 : {
493 : int16_t ppp_mode, nelp_mode;
494 :
495 2082 : if ( st->Opt_SC_VBR )
496 : {
497 0 : ppp_mode = st->hSC_VBR->ppp_mode;
498 0 : nelp_mode = st->hSC_VBR->nelp_mode;
499 : }
500 : else
501 : {
502 2082 : ppp_mode = 0;
503 2082 : nelp_mode = 0;
504 : }
505 :
506 2082 : if ( ppp_mode == 1 || nelp_mode == 1 )
507 : {
508 : /* 1 bit to distinguish between 2.8kbps PPP/NELP frame and SID frame */
509 0 : push_indice( hBstr, IND_CORE, 0, 1 );
510 :
511 : /* SC-VBR: 0 - PPP_NB, 1 - PPP_WB, 2 - NELP_NB, 3 - NELP_WB */
512 0 : if ( st->coder_type == VOICED && st->bwidth == NB && ppp_mode == 1 )
513 : {
514 0 : push_indice( hBstr, IND_PPP_NELP_MODE, 0, 2 );
515 : }
516 0 : else if ( st->coder_type == VOICED && st->bwidth != NB && ppp_mode == 1 )
517 : {
518 0 : push_indice( hBstr, IND_PPP_NELP_MODE, 1, 2 );
519 : }
520 0 : else if ( st->coder_type == UNVOICED && st->bwidth == NB && nelp_mode == 1 )
521 : {
522 0 : push_indice( hBstr, IND_PPP_NELP_MODE, 2, 2 );
523 : }
524 0 : else if ( st->coder_type == UNVOICED && st->bwidth != NB && nelp_mode == 1 )
525 : {
526 0 : push_indice( hBstr, IND_PPP_NELP_MODE, 3, 2 );
527 : }
528 : }
529 2082 : else if ( st->core_brate != SID_2k40 && st->core_brate != FRAME_NO_DATA )
530 : {
531 : /* write the ACELP/HQ core selection bit */
532 2082 : if ( st->total_brate >= ACELP_24k40 )
533 : {
534 669 : push_indice( hBstr, IND_CORE, 0, 1 );
535 : }
536 :
537 : /* find the section in the ACELP signaling table corresponding to bitrate */
538 2082 : idx = 0;
539 11673 : while ( idx < MAX_ACELP_SIG )
540 : {
541 11673 : if ( st->total_brate <= brate_tbl[idx] )
542 : {
543 2082 : break;
544 : }
545 9591 : idx++;
546 : }
547 2082 : total_brate_temp = brate_tbl[idx];
548 :
549 2082 : idx = 0;
550 106989 : while ( acelp_sig_tbl[idx] != total_brate_temp )
551 : {
552 104907 : idx++;
553 : }
554 :
555 : /* retrieve the number of bits for signaling */
556 2082 : nBits = (int16_t) acelp_sig_tbl[++idx];
557 :
558 : /* retrieve the signaling index */
559 2082 : start_idx = ++idx;
560 2082 : if ( st->element_mode == IVAS_CPE_TD && st->bwidth == SWB && st->total_brate <= ACELP_9k60 )
561 : {
562 : /* patch to signal SWB as NB in Stereo */
563 0 : sig = SIG2IND( st->coder_type, NB, st->sharpFlag, st->rf_mode );
564 : }
565 : else
566 : {
567 2082 : sig = SIG2IND( st->coder_type, st->bwidth, st->sharpFlag, st->rf_mode );
568 : }
569 :
570 19127 : while ( acelp_sig_tbl[idx] != sig )
571 : {
572 17045 : idx++;
573 : }
574 :
575 2082 : push_indice( hBstr, IND_ACELP_SIGNALLING, idx - start_idx, nBits );
576 : }
577 :
578 : /* write extension layer flag to distinguish between TBE (0) and BWE (1) */
579 2082 : if ( st->extl_brate > 0 )
580 : {
581 2082 : if ( st->extl == WB_TBE || st->extl == SWB_TBE || st->extl == FB_TBE )
582 : {
583 1407 : push_indice( hBstr, IND_BWE_FLAG, 0, 1 );
584 : }
585 675 : else if ( st->extl == WB_BWE || st->extl == SWB_BWE || st->extl == FB_BWE )
586 : {
587 6 : push_indice( hBstr, IND_BWE_FLAG, 1, 1 );
588 : }
589 : }
590 : }
591 : else /* HQ core */
592 : {
593 : /* write ACELP->HQ core switching flag */
594 385 : if ( st->last_core == ACELP_CORE || st->last_core == AMR_WB_CORE )
595 : {
596 19 : push_indice( hBstr, IND_HQ_SWITCHING_FLG, 1, 1 );
597 :
598 : /* write ACELP L_frame info */
599 19 : if ( st->last_L_frame == L_FRAME )
600 : {
601 7 : push_indice( hBstr, IND_LAST_L_FRAME, 0, 1 );
602 : }
603 : else
604 : {
605 12 : push_indice( hBstr, IND_LAST_L_FRAME, 1, 1 );
606 : }
607 : }
608 : else
609 : {
610 366 : push_indice( hBstr, IND_HQ_SWITCHING_FLG, 0, 1 );
611 : }
612 :
613 : /* HQ/TCX core switching flag */
614 385 : push_indice( hBstr, IND_MDCT_CORE, 0, 1 );
615 :
616 : /* Use ACELP signaling for LR MDCT */
617 385 : if ( st->total_brate <= ACELP_16k40 )
618 : {
619 : /* find the section in the ACELP signaling table corresponding to bitrate */
620 54 : idx = 0;
621 1890 : while ( acelp_sig_tbl[idx] != st->total_brate )
622 : {
623 1836 : idx++;
624 : }
625 :
626 : /* retrieve the number of bits for signaling */
627 54 : nBits = (int16_t) acelp_sig_tbl[++idx];
628 :
629 : /* retrieve the signaling index */
630 54 : start_idx = ++idx;
631 1728 : while ( acelp_sig_tbl[idx] != SIG2IND( LR_MDCT, st->bwidth, 0, 0 ) )
632 : {
633 1674 : idx++;
634 : }
635 :
636 54 : push_indice( hBstr, IND_ACELP_SIGNALLING, idx - start_idx, nBits );
637 : }
638 : else
639 : {
640 331 : if ( st->core_brate <= ACELP_64k )
641 : {
642 : /* write ACELP/HQ core indication flag */
643 331 : push_indice( hBstr, IND_CORE, 1, 1 );
644 : }
645 :
646 : /* write band-width (needed for different I/O sampling rate support) */
647 331 : if ( st->bwidth == NB )
648 : {
649 0 : push_indice( hBstr, IND_HQ_BWIDTH, 0, 2 );
650 : }
651 331 : else if ( st->bwidth == WB )
652 : {
653 0 : push_indice( hBstr, IND_HQ_BWIDTH, 1, 2 );
654 : }
655 331 : else if ( st->bwidth == SWB )
656 : {
657 331 : push_indice( hBstr, IND_HQ_BWIDTH, 2, 2 );
658 : }
659 : else /* st->bwidth == FB */
660 : {
661 0 : push_indice( hBstr, IND_HQ_BWIDTH, 3, 2 );
662 : }
663 : }
664 : }
665 :
666 2467 : return;
667 : }
668 :
669 : /*---------------------------------------------------------------------*
670 : * signaling_enc_rf()
671 : *
672 : * write channel-aware signaling information into the bitstream
673 : *---------------------------------------------------------------------*/
674 :
675 840027 : void signaling_enc_rf(
676 : Encoder_State *st /* i/o: encoder state structure */
677 : )
678 : {
679 : int16_t i, sfr;
680 840027 : RF_ENC_HANDLE hRF = st->hRF;
681 :
682 : /* write partial copy into bitstream */
683 840027 : if ( st->rf_mode == 1 )
684 : {
685 0 : enc_prm_rf( st, hRF->rf_indx_frametype[st->rf_fec_offset], st->rf_fec_offset );
686 0 : hRF->rf_indx_tbeGainFr[0] = hRF->RF_bwe_gainFr_ind;
687 : }
688 :
689 840027 : if ( hRF != NULL )
690 : {
691 : /* Shift the RF indices such that the partial copy associated with
692 : (n-fec_offset)th frame is included in the bitstream in nth frame. */
693 10300 : for ( i = st->rf_fec_offset; i >= 0; i-- )
694 : {
695 : /* RF frame type */
696 5150 : hRF->rf_indx_frametype[i + 1] = hRF->rf_indx_frametype[i];
697 :
698 : /* RF target bits buffer */
699 5150 : hRF->rf_targetbits_buff[i + 1] = hRF->rf_targetbits_buff[i];
700 :
701 : /* lsf indx */
702 5150 : hRF->rf_indx_lsf[i + 1][0] = hRF->rf_indx_lsf[i][0];
703 5150 : hRF->rf_indx_lsf[i + 1][1] = hRF->rf_indx_lsf[i][1];
704 5150 : hRF->rf_indx_lsf[i + 1][2] = hRF->rf_indx_lsf[i][2];
705 :
706 : /* ES pred energy */
707 5150 : hRF->rf_indx_EsPred[i + 1] = hRF->rf_indx_EsPred[i];
708 :
709 : /* LTF mode, sfr params: pitch, fcb and gain */
710 27850 : for ( sfr = 0; sfr < st->nb_subfr; sfr++ )
711 : {
712 22700 : hRF->rf_indx_ltfMode[i + 1][sfr] = hRF->rf_indx_ltfMode[i][sfr];
713 22700 : hRF->rf_indx_pitch[i + 1][sfr] = hRF->rf_indx_pitch[i][sfr];
714 22700 : hRF->rf_indx_fcb[i + 1][sfr] = hRF->rf_indx_fcb[i][sfr];
715 22700 : hRF->rf_indx_gain[i + 1][sfr] = hRF->rf_indx_gain[i][sfr];
716 : }
717 :
718 : /* shift the nelp indices */
719 5150 : hRF->rf_indx_nelp_iG1[i + 1] = hRF->rf_indx_nelp_iG1[i];
720 5150 : hRF->rf_indx_nelp_iG2[i + 1][0] = hRF->rf_indx_nelp_iG2[i][0];
721 5150 : hRF->rf_indx_nelp_iG2[i + 1][1] = hRF->rf_indx_nelp_iG2[i][1];
722 5150 : hRF->rf_indx_nelp_fid[i + 1] = hRF->rf_indx_nelp_fid[i];
723 :
724 : /* tbe gain Fr shift */
725 5150 : hRF->rf_indx_tbeGainFr[i + 1] = hRF->rf_indx_tbeGainFr[i];
726 5150 : hRF->rf_clas[i + 1] = hRF->rf_clas[i];
727 5150 : hRF->rf_gain_tcx[i + 1] = hRF->rf_gain_tcx[i];
728 5150 : hRF->rf_tcxltp_param[i + 1] = hRF->rf_tcxltp_param[i];
729 : }
730 : }
731 :
732 840027 : return;
733 : }
|