LCOV - code coverage report
Current view: top level - lib_enc - ivas_mcmasa_enc.c (source / functions) Hit Total Coverage
Test: Coverage on main -- conformance test test_26252.py @ efe53129c9ed87a5067dd0a8fb9dca41db9c4add Lines: 619 658 94.1 %
Date: 2026-02-12 06:30:15 Functions: 12 12 100.0 %

          Line data    Source code
       1             : /******************************************************************************************************
       2             : 
       3             :    (C) 2022-2026 IVAS codec Public Collaboration with portions copyright Dolby International AB, Ericsson AB,
       4             :    Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
       5             :    Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
       6             :    Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
       7             :    contributors to this repository. All Rights Reserved.
       8             : 
       9             :    This software is protected by copyright law and by international treaties.
      10             :    The IVAS codec Public Collaboration consisting of Dolby International AB, Ericsson AB,
      11             :    Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
      12             :    Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
      13             :    Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
      14             :    contributors to this repository retain full ownership rights in their respective contributions in
      15             :    the software. This notice grants no license of any kind, including but not limited to patent
      16             :    license, nor is any license granted by implication, estoppel or otherwise.
      17             : 
      18             :    Contributors are required to enter into the IVAS codec Public Collaboration agreement before making
      19             :    contributions.
      20             : 
      21             :    This software is provided "AS IS", without any express or implied warranties. The software is in the
      22             :    development stage. It is intended exclusively for experts who have experience with such software and
      23             :    solely for the purpose of inspection. All implied warranties of non-infringement, merchantability
      24             :    and fitness for a particular purpose are hereby disclaimed and excluded.
      25             : 
      26             :    Any dispute, controversy or claim arising under or in relation to providing this software shall be
      27             :    submitted to and settled by the final, binding jurisdiction of the courts of Munich, Germany in
      28             :    accordance with the laws of the Federal Republic of Germany excluding its conflict of law rules and
      29             :    the United Nations Convention on Contracts on the International Sales of Goods.
      30             : 
      31             : *******************************************************************************************************/
      32             : 
      33             : #include <assert.h>
      34             : #include <math.h>
      35             : #include <stdlib.h>
      36             : #include <stdio.h>
      37             : #include "ivas_cnst.h"
      38             : #include "ivas_prot.h"
      39             : #include "options.h"
      40             : #include "prot.h"
      41             : #include "ivas_rom_com.h"
      42             : #include "ivas_rom_enc.h"
      43             : #ifdef DEBUGGING
      44             : #include "debug.h"
      45             : #endif
      46             : #include "wmc_auto.h"
      47             : 
      48             : 
      49             : /*-------------------------------------------------------------------------
      50             :  * Local constants
      51             :  *------------------------------------------------------------------------*/
      52             : 
      53             : #define NEAR_HORIZONTAL_PLANE_ELEVATION 17.5f
      54             : #define VERTICAL_ENERGY_RATIO_OFFSET    0.15f
      55             : 
      56             : 
      57             : /*-------------------------------------------------------------------------
      58             :  * Local function prototypes
      59             :  *------------------------------------------------------------------------*/
      60             : 
      61             : /* Structure for covariance matrix */
      62             : typedef struct
      63             : {
      64             :     float xr[MCMASA_MAX_ANA_CHANS][MCMASA_MAX_ANA_CHANS];
      65             :     float xi[MCMASA_MAX_ANA_CHANS][MCMASA_MAX_ANA_CHANS];
      66             : } CovarianceMatrix;
      67             : 
      68             : static void ivas_mcmasa_dmx( MCMASA_ENC_HANDLE hMcMasa, float *data_f[], const int16_t input_frame, const int16_t nchan_transport, const int16_t nchan_inp );
      69             : 
      70             : static void compute_cov_mtx( float sr[MCMASA_MAX_ANA_CHANS][DIRAC_NO_FB_BANDS_MAX], float si[MCMASA_MAX_ANA_CHANS][DIRAC_NO_FB_BANDS_MAX], const int16_t freq, const int16_t N, CovarianceMatrix *COVls );
      71             : 
      72             : static void computeIntensityVector_enc( const int16_t *band_grouping, float Cldfb_RealBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX], float Cldfb_ImagBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX], const int16_t enc_param_start_band, const int16_t num_frequency_bands, float intensity_real[DIRAC_NUM_DIMS][MASA_FREQUENCY_BANDS] );
      73             : 
      74             : static void computeVerticalDiffuseness( float **buffer_intensity, const float *buffer_energy, const int16_t averaging_length, const int16_t num_freq_bands, float *diffuseness );
      75             : 
      76             : static void computeEvenLayout( const float *ls_azimuth, float *ls_azimuth_even, const int16_t numChannels );
      77             : 
      78             : static void computeLfeEnergy( MCMASA_ENC_HANDLE hMcMasa, float *data_f[], const int16_t input_frame );
      79             : 
      80             : 
      81             : /*--------------------------------------------------------------------------*
      82             :  * ivas_mcmasa_enc_open()
      83             :  *
      84             :  *
      85             :  *--------------------------------------------------------------------------*/
      86             : 
      87         215 : ivas_error ivas_mcmasa_enc_open(
      88             :     Encoder_Struct *st_ivas /* i/o: IVAS encoder handle          */
      89             : )
      90             : {
      91             :     int16_t i, j;
      92             :     float tmp_f;
      93             :     MCMASA_ENC_HANDLE hMcMasa;
      94             :     MASA_ENCODER_HANDLE hMasa;
      95             :     float ls_azimuth[MCMASA_MAX_ANA_CHANS];
      96             :     float ls_elevation[MCMASA_MAX_ANA_CHANS];
      97             :     float ls_azimuth_even[MCMASA_MAX_ANA_CHANS];
      98             :     int16_t numAnalysisChannels;
      99             :     float left_min, right_min, azi_diff;
     100             :     const int16_t *band_mapping;
     101             :     int16_t maxBin, input_frame;
     102             :     int16_t nchan_inp;
     103             :     int32_t input_Fs;
     104             :     int32_t dirac_slot_ns;
     105             :     IVAS_FB_CFG *fb_cfg, *fb_cfgLfe;
     106             :     ivas_error error;
     107             : 
     108         215 :     error = IVAS_ERR_OK;
     109             : 
     110         215 :     assert( st_ivas->hMasa != NULL && "MASA encoder handle is not present" );
     111         215 :     hMasa = st_ivas->hMasa;
     112             : 
     113         215 :     if ( ( hMcMasa = (MCMASA_ENC_HANDLE) malloc( sizeof( MCMASA_ENC_DATA ) ) ) == NULL )
     114             :     {
     115           0 :         return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     116             :     }
     117             : 
     118         215 :     nchan_inp = st_ivas->hEncoderConfig->nchan_inp;
     119         215 :     input_Fs = st_ivas->hEncoderConfig->input_Fs;
     120             : 
     121             :     /* Determine if to separate some channels from the analysis */
     122         215 :     ivas_mcmasa_set_separate_channel_mode( &( hMcMasa->separateChannelEnabled ), &( hMcMasa->separateChannelIndex ), st_ivas->hEncoderConfig->ivas_total_brate );
     123             : 
     124         215 :     numAnalysisChannels = nchan_inp - 1;
     125         215 :     if ( hMcMasa->separateChannelEnabled )
     126             :     {
     127          17 :         numAnalysisChannels = nchan_inp - 2;
     128             :     }
     129             : 
     130             :     /* With McMASA, we config MASA encoder only in init as we know the input and there are no frame-by-frame changes currently. */
     131         215 :     if ( ( error = ivas_masa_enc_config( st_ivas ) ) != IVAS_ERR_OK )
     132             :     {
     133           0 :         return error;
     134             :     }
     135             : 
     136             : 
     137             :     /* Determine the number of bands */
     138         215 :     hMcMasa->nbands = st_ivas->hMasa->config.numCodingBands;
     139         215 :     hMcMasa->nCodingBands = st_ivas->hMasa->config.numCodingBands;
     140             : 
     141             :     /* Determine band grouping */
     142         215 :     if ( hMcMasa->nbands == 24 )
     143             :     {
     144           0 :         for ( i = 0; i < hMcMasa->nbands + 1; i++ )
     145             :         {
     146           0 :             hMcMasa->band_grouping[i] = MASA_band_grouping_24[i] * CLDFB_TO_MDFT_FAC;
     147             :         }
     148             :     }
     149             :     else
     150             :     {
     151         215 :         band_mapping = hMasa->data.band_mapping;
     152        1505 :         for ( i = 0; i < hMcMasa->nbands + 1; i++ )
     153             :         {
     154        1290 :             hMcMasa->band_grouping[i] = MASA_band_grouping_24[band_mapping[i]] * CLDFB_TO_MDFT_FAC;
     155             :         }
     156             :     }
     157             : 
     158         215 :     maxBin = (int16_t) ( input_Fs * INV_CLDFB_BANDWIDTH * CLDFB_TO_MDFT_FAC + 0.5f );
     159             : 
     160        1075 :     for ( i = 1; i < hMcMasa->nbands + 1; i++ )
     161             :     {
     162        1075 :         if ( hMcMasa->band_grouping[i] >= maxBin )
     163             :         {
     164         215 :             hMcMasa->band_grouping[i] = maxBin;
     165         215 :             hMcMasa->nbands = i;
     166         215 :             break;
     167             :         }
     168             :     }
     169             : 
     170             :     /* initialize delay compensation */
     171         215 :     hMcMasa->num_samples_delay_comp = NS2SA( input_Fs, DELAY_DIRAC_ENC_CMP_NS );
     172         215 :     tmp_f = (float) hMcMasa->num_samples_delay_comp / (float) ( NS2SA( input_Fs, DIRAC_SLOT_ENC_NS ) );
     173         215 :     hMcMasa->num_slots_delay_comp = (int16_t) ( tmp_f );
     174             : 
     175         215 :     if ( tmp_f > (float) hMcMasa->num_slots_delay_comp )
     176             :     {
     177         215 :         hMcMasa->num_slots_delay_comp++;
     178         215 :         hMcMasa->offset_comp = -hMcMasa->num_samples_delay_comp;
     179         215 :         hMcMasa->num_samples_delay_comp = hMcMasa->num_slots_delay_comp * NS2SA( input_Fs, DIRAC_SLOT_ENC_NS );
     180         215 :         hMcMasa->offset_comp += hMcMasa->num_samples_delay_comp;
     181             :     }
     182             :     else
     183             :     {
     184           0 :         hMcMasa->offset_comp = 0;
     185             :     }
     186             : 
     187             :     /* set FB config. */
     188         215 :     if ( ( error = ivas_fb_set_cfg( &fb_cfg, MASA_FORMAT, numAnalysisChannels, 0, 0, input_Fs, 0 ) ) != IVAS_ERR_OK )
     189             :     {
     190           0 :         return error;
     191             :     }
     192             : 
     193             :     /* Allocate and initialize FB mixer handle */
     194         215 :     if ( ( error = ivas_FB_mixer_open( &( hMcMasa->hFbMixer ), input_Fs, fb_cfg, 0 ) ) != IVAS_ERR_OK )
     195             :     {
     196           0 :         return error;
     197             :     }
     198             : 
     199             : 
     200         215 :     if ( hMcMasa->separateChannelEnabled )
     201             :     {
     202             :         /* TD Energy calculation with LP */
     203          17 :         if ( ( hMcMasa->delay_buffer_lfe[0] = (float *) malloc( NS2SA( input_Fs, DELAY_DIRAC_ENC_CMP_NS + DIRAC_SLOT_ENC_NS ) * sizeof( float ) ) ) == NULL )
     204             :         {
     205           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     206             :         }
     207          17 :         set_zero( hMcMasa->delay_buffer_lfe[0], NS2SA( input_Fs, DELAY_DIRAC_ENC_CMP_NS + DIRAC_SLOT_ENC_NS ) );
     208             : 
     209          17 :         if ( ( hMcMasa->delay_buffer_lfe[1] = (float *) malloc( NS2SA( input_Fs, DELAY_DIRAC_ENC_CMP_NS + DIRAC_SLOT_ENC_NS ) * sizeof( float ) ) ) == NULL )
     210             :         {
     211           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     212             :         }
     213          17 :         set_zero( hMcMasa->delay_buffer_lfe[1], NS2SA( input_Fs, DELAY_DIRAC_ENC_CMP_NS + DIRAC_SLOT_ENC_NS ) );
     214          17 :         hMcMasa->hFbMixerLfe = NULL;
     215             :     }
     216             :     else
     217             :     {
     218             :         /* Allocate and initialize FB mixer handle for LFE channel */
     219         198 :         if ( ( error = ivas_fb_set_cfg( &fb_cfgLfe, MASA_FORMAT, 1, 0, 0, input_Fs, 0 ) ) != IVAS_ERR_OK )
     220             :         {
     221           0 :             return error;
     222             :         }
     223             : 
     224         198 :         if ( ( error = ivas_FB_mixer_open( &( hMcMasa->hFbMixerLfe ), input_Fs, fb_cfgLfe, 0 ) ) != IVAS_ERR_OK )
     225             :         {
     226           0 :             return error;
     227             :         }
     228             : 
     229         198 :         hMcMasa->delay_buffer_lfe[0] = NULL;
     230         198 :         hMcMasa->delay_buffer_lfe[1] = NULL;
     231             :     }
     232             : 
     233         215 :     if ( hMcMasa->separateChannelEnabled )
     234             :     {
     235             :         int16_t bufferSize;
     236             : 
     237             :         /* Ring buffer for the filterbank of the LFE analysis.
     238             :          * The filterbank is using moving average lowpass filter with the crossover of 120 Hz. */
     239          17 :         bufferSize = (int16_t) ( ( input_Fs / FRAMES_PER_SEC ) / MAX_PARAM_SPATIAL_SUBFRAMES );
     240          51 :         for ( i = 0; i < 2; i++ )
     241             :         {
     242          34 :             if ( ( hMcMasa->lfeAnaRingBuffer[i] = (float *) malloc( bufferSize * sizeof( float ) ) ) == NULL )
     243             :             {
     244           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     245             :             }
     246          34 :             set_zero( hMcMasa->lfeAnaRingBuffer[i], bufferSize );
     247          34 :             hMcMasa->lowpassSum[i] = 0.0f;
     248             :         }
     249          17 :         hMcMasa->ringBufferPointer = 0;
     250          17 :         hMcMasa->ringBufferSize = bufferSize;
     251             :     }
     252             : 
     253             : 
     254         215 :     dirac_slot_ns = DIRAC_SLOT_ENC_NS;
     255             : 
     256             :     /* intensity 3-dim */
     257         860 :     for ( i = 0; i < DIRAC_NUM_DIMS; i++ )
     258             :     {
     259         645 :         if ( ( hMcMasa->direction_vector_m[i] = (float **) malloc( MAX_PARAM_SPATIAL_SUBFRAMES * sizeof( float * ) ) ) == NULL )
     260             :         {
     261           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     262             :         }
     263             : 
     264        3225 :         for ( j = 0; j < MAX_PARAM_SPATIAL_SUBFRAMES; j++ )
     265             :         {
     266        2580 :             if ( ( hMcMasa->direction_vector_m[i][j] = (float *) malloc( hMcMasa->nbands * sizeof( float ) ) ) == NULL )
     267             :             {
     268           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     269             :             }
     270             :         }
     271             :     }
     272             : 
     273         215 :     hMcMasa->no_col_avg_diff = (int8_t) ( DIRAC_NO_COL_AVG_DIFF_NS / dirac_slot_ns );
     274         860 :     for ( i = 0; i < DIRAC_NUM_DIMS; i++ )
     275             :     {
     276         645 :         if ( ( hMcMasa->buffer_intensity_real[i] = (float **) malloc( hMcMasa->no_col_avg_diff * sizeof( float * ) ) ) == NULL )
     277             :         {
     278           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     279             :         }
     280             : 
     281        5805 :         for ( j = 0; j < hMcMasa->no_col_avg_diff; j++ )
     282             :         {
     283        5160 :             if ( ( hMcMasa->buffer_intensity_real[i][j] = (float *) malloc( hMcMasa->nbands * sizeof( float ) ) ) == NULL )
     284             :             {
     285           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     286             :             }
     287        5160 :             set_zero( hMcMasa->buffer_intensity_real[i][j], hMcMasa->nbands );
     288             :         }
     289             :     }
     290             : 
     291         215 :     if ( ( hMcMasa->buffer_intensity_real_vert = (float **) malloc( hMcMasa->no_col_avg_diff * sizeof( float * ) ) ) == NULL )
     292             :     {
     293           0 :         return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     294             :     }
     295             : 
     296        1935 :     for ( j = 0; j < hMcMasa->no_col_avg_diff; j++ )
     297             :     {
     298        1720 :         if ( ( hMcMasa->buffer_intensity_real_vert[j] = (float *) malloc( hMcMasa->nbands * sizeof( float ) ) ) == NULL )
     299             :         {
     300           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     301             :         }
     302        1720 :         set_zero( hMcMasa->buffer_intensity_real_vert[j], hMcMasa->nbands );
     303             :     }
     304             : 
     305         215 :     if ( ( hMcMasa->buffer_energy = (float *) malloc( hMcMasa->nbands * hMcMasa->no_col_avg_diff * sizeof( float ) ) ) == NULL )
     306             :     {
     307           0 :         return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     308             :     }
     309         215 :     set_zero( hMcMasa->buffer_energy, hMcMasa->nbands * hMcMasa->no_col_avg_diff );
     310             : 
     311         215 :     if ( st_ivas->hEncoderConfig->mc_input_setup == MC_LS_SETUP_5_1 )
     312             :     {
     313         144 :         mvr2r( ls_azimuth_CICP6, ls_azimuth, nchan_inp - 1 );
     314         144 :         mvr2r( ls_elevation_CICP6, ls_elevation, nchan_inp - 1 );
     315         144 :         hMcMasa->numHorizontalChannels = 5;
     316         144 :         hMcMasa->isHorizontalSetup = 1;
     317             :     }
     318          71 :     else if ( st_ivas->hEncoderConfig->mc_input_setup == MC_LS_SETUP_7_1 )
     319             :     {
     320          13 :         mvr2r( ls_azimuth_CICP12, ls_azimuth, nchan_inp - 1 );
     321          13 :         mvr2r( ls_elevation_CICP12, ls_elevation, nchan_inp - 1 );
     322          13 :         hMcMasa->numHorizontalChannels = 7;
     323          13 :         hMcMasa->isHorizontalSetup = 1;
     324             :     }
     325          58 :     else if ( st_ivas->hEncoderConfig->mc_input_setup == MC_LS_SETUP_5_1_2 )
     326             :     {
     327          10 :         mvr2r( ls_azimuth_CICP14, ls_azimuth, nchan_inp - 1 );
     328          10 :         mvr2r( ls_elevation_CICP14, ls_elevation, nchan_inp - 1 );
     329          10 :         hMcMasa->numHorizontalChannels = 5;
     330          10 :         hMcMasa->isHorizontalSetup = 0;
     331             :     }
     332          48 :     else if ( st_ivas->hEncoderConfig->mc_input_setup == MC_LS_SETUP_5_1_4 )
     333             :     {
     334          10 :         mvr2r( ls_azimuth_CICP16, ls_azimuth, nchan_inp - 1 );
     335          10 :         mvr2r( ls_elevation_CICP16, ls_elevation, nchan_inp - 1 );
     336          10 :         hMcMasa->numHorizontalChannels = 5;
     337          10 :         hMcMasa->isHorizontalSetup = 0;
     338             :     }
     339             :     else
     340             :     {
     341          38 :         mvr2r( ls_azimuth_CICP19, ls_azimuth, nchan_inp - 1 );
     342          38 :         mvr2r( ls_elevation_CICP19, ls_elevation, nchan_inp - 1 );
     343          38 :         hMcMasa->numHorizontalChannels = 7;
     344          38 :         hMcMasa->isHorizontalSetup = 0;
     345             :     }
     346             : 
     347         215 :     if ( hMcMasa->separateChannelEnabled )
     348             :     {
     349          17 :         mvr2r( &ls_azimuth[hMcMasa->separateChannelIndex + 1], &ls_azimuth[hMcMasa->separateChannelIndex], numAnalysisChannels - hMcMasa->separateChannelIndex );
     350          17 :         mvr2r( &ls_elevation[hMcMasa->separateChannelIndex + 1], &ls_elevation[hMcMasa->separateChannelIndex], numAnalysisChannels - hMcMasa->separateChannelIndex );
     351          17 :         hMcMasa->numHorizontalChannels--;
     352             :     }
     353             : 
     354         215 :     computeEvenLayout( ls_azimuth, ls_azimuth_even, hMcMasa->numHorizontalChannels );
     355         215 :     if ( !hMcMasa->isHorizontalSetup )
     356             :     {
     357          58 :         computeEvenLayout( &ls_azimuth[hMcMasa->numHorizontalChannels], &ls_azimuth_even[hMcMasa->numHorizontalChannels], numAnalysisChannels - hMcMasa->numHorizontalChannels );
     358             :     }
     359             : 
     360        1587 :     for ( i = 0; i < numAnalysisChannels; i++ )
     361             :     {
     362        1372 :         hMcMasa->chnlToFoaMtx[0][i] = 1.0f;
     363        1372 :         hMcMasa->chnlToFoaMtx[1][i] = sinf( ls_azimuth[i] * PI_OVER_180 ) * cosf( ls_elevation[i] * PI_OVER_180 );
     364        1372 :         hMcMasa->chnlToFoaMtx[2][i] = sinf( ls_elevation[i] * PI_OVER_180 );
     365        1372 :         hMcMasa->chnlToFoaMtx[3][i] = cosf( ls_azimuth[i] * PI_OVER_180 ) * cosf( ls_elevation[i] * PI_OVER_180 );
     366             : 
     367        1372 :         hMcMasa->chnlToFoaEvenMtx[0][i] = 1.0f;
     368        1372 :         hMcMasa->chnlToFoaEvenMtx[1][i] = sinf( ls_azimuth_even[i] * PI_OVER_180 );
     369        1372 :         hMcMasa->chnlToFoaEvenMtx[2][i] = 0.0f;
     370        1372 :         hMcMasa->chnlToFoaEvenMtx[3][i] = cosf( ls_azimuth_even[i] * PI_OVER_180 );
     371             :     }
     372             : 
     373         215 :     hMcMasa->combineRatios = hMasa->config.mergeRatiosOverSubframes;
     374             : 
     375         215 :     mvr2r( ls_azimuth, hMcMasa->ls_azimuth, numAnalysisChannels );
     376             : 
     377        1375 :     for ( i = 0; i < hMcMasa->numHorizontalChannels; i++ )
     378             :     {
     379        1160 :         left_min = 360.0f;
     380        1160 :         right_min = -360.0f;
     381             : 
     382        7546 :         for ( j = 0; j < hMcMasa->numHorizontalChannels; j++ )
     383             :         {
     384        6386 :             azi_diff = ls_azimuth[j] - ls_azimuth[i];
     385             : 
     386        6386 :             if ( azi_diff > 180.0f )
     387             :             {
     388         330 :                 azi_diff -= 360.0f;
     389             :             }
     390        6056 :             else if ( azi_diff < -180.0f )
     391             :             {
     392         330 :                 azi_diff += 360.0f;
     393             :             }
     394             : 
     395        6386 :             if ( azi_diff < left_min && azi_diff > 0.0f )
     396             :             {
     397        1739 :                 hMcMasa->leftNearest[i] = j;
     398        1739 :                 left_min = azi_diff;
     399             :             }
     400             : 
     401        6386 :             if ( azi_diff > right_min && azi_diff < 0.0f )
     402             :             {
     403        1524 :                 hMcMasa->rightNearest[i] = j;
     404        1524 :                 right_min = azi_diff;
     405             :             }
     406             :         }
     407             :     }
     408             : 
     409         215 :     hMcMasa->prevMultiChEne = 0.0f;
     410         215 :     hMcMasa->prevDownmixEne = 0.0f;
     411         215 :     hMcMasa->prevEQ = 1.0f;
     412         215 :     input_frame = (int16_t) ( input_Fs / FRAMES_PER_SEC );
     413      193815 :     for ( i = 0; i < input_frame; i++ )
     414             :     {
     415      193600 :         hMcMasa->interpolator[i] = ( (float) i ) / ( (float) input_frame );
     416             :     }
     417             : 
     418         215 :     mvs2s( DirAC_block_grouping_5ms_MDFT, hMcMasa->block_grouping, MAX_PARAM_SPATIAL_SUBFRAMES + 1 );
     419             : 
     420         215 :     hMcMasa->index_buffer_intensity = 0;
     421             : 
     422         215 :     st_ivas->hMcMasa = hMcMasa;
     423             : 
     424         215 :     return error;
     425             : }
     426             : 
     427             : 
     428             : /*-------------------------------------------------------------------------
     429             :  * ivas_mcmasa_enc_reconfig()
     430             :  *
     431             :  * Reconfigure McMASA encoder
     432             :  *------------------------------------------------------------------------*/
     433             : 
     434          30 : ivas_error ivas_mcmasa_enc_reconfig(
     435             :     Encoder_Struct *st_ivas /* i/o: IVAS encoder structure */
     436             : )
     437             : {
     438             :     int32_t ivas_total_brate;
     439             :     ivas_error error;
     440             : 
     441          30 :     error = IVAS_ERR_OK;
     442             : 
     443          30 :     ivas_total_brate = st_ivas->hEncoderConfig->ivas_total_brate;
     444             : 
     445          30 :     if ( ivas_total_brate != st_ivas->hEncoderConfig->last_ivas_total_brate )
     446             :     {
     447             :         /* bitrate changed, may need to do something */
     448             : 
     449             :         /* brute-force solution: close McMASA and re-instantiate with new settings */
     450          30 :         ivas_masa_enc_close( &( st_ivas->hMasa ) );
     451          30 :         ivas_mcmasa_enc_close( &( st_ivas->hMcMasa ), st_ivas->hEncoderConfig->input_Fs );
     452             : 
     453             :         /* Determine if to separate some channels from the analysis */
     454          30 :         ivas_mcmasa_setNumTransportChannels( &( st_ivas->nchan_transport ), &( st_ivas->hEncoderConfig->element_mode_init ), ivas_total_brate );
     455             : 
     456          30 :         if ( ( error = ivas_masa_enc_open( st_ivas ) ) != IVAS_ERR_OK )
     457             :         {
     458           0 :             return error;
     459             :         }
     460             : 
     461          30 :         if ( ( error = ivas_mcmasa_enc_open( st_ivas ) ) != IVAS_ERR_OK )
     462             :         {
     463           0 :             return error;
     464             :         }
     465             : 
     466             :         /* core SCE, CPE reconfiguration happens later */
     467             :     }
     468             : 
     469          30 :     return error;
     470             : }
     471             : 
     472             : /*--------------------------------------------------------------------------*
     473             :  * ivas_mcmasa_enc_close()
     474             :  *
     475             :  *
     476             :  *--------------------------------------------------------------------------*/
     477             : 
     478         904 : void ivas_mcmasa_enc_close(
     479             :     MCMASA_ENC_HANDLE *hMcMasa, /* i/o: encoder McMASA handle    */
     480             :     const int32_t input_Fs      /* i  : input sampling rate      */
     481             : )
     482             : {
     483             :     int16_t i, j;
     484             : 
     485         904 :     if ( hMcMasa == NULL || *hMcMasa == NULL )
     486             :     {
     487         689 :         return;
     488             :     }
     489             : 
     490         215 :     if ( ( *hMcMasa )->separateChannelEnabled )
     491             :     {
     492          17 :         free( ( *hMcMasa )->delay_buffer_lfe[0] );
     493          17 :         free( ( *hMcMasa )->delay_buffer_lfe[1] );
     494             : 
     495          51 :         for ( i = 0; i < 2; i++ )
     496             :         {
     497          34 :             free( ( *hMcMasa )->lfeAnaRingBuffer[i] );
     498             :         }
     499             :     }
     500             : 
     501         215 :     ivas_FB_mixer_close( &( *hMcMasa )->hFbMixer, input_Fs, 0 );
     502             : 
     503         215 :     if ( !( *hMcMasa )->separateChannelEnabled )
     504             :     {
     505         198 :         ivas_FB_mixer_close( &( *hMcMasa )->hFbMixerLfe, input_Fs, 0 );
     506             :     }
     507             : 
     508             :     /* intensity 3-dim */
     509         860 :     for ( i = 0; i < DIRAC_NUM_DIMS; i++ )
     510             :     {
     511        3225 :         for ( j = 0; j < MAX_PARAM_SPATIAL_SUBFRAMES; j++ )
     512             :         {
     513        2580 :             free( ( *hMcMasa )->direction_vector_m[i][j] );
     514        2580 :             ( *hMcMasa )->direction_vector_m[i][j] = NULL;
     515             :         }
     516             : 
     517        5805 :         for ( j = 0; j < ( *hMcMasa )->no_col_avg_diff; j++ )
     518             :         {
     519        5160 :             free( ( *hMcMasa )->buffer_intensity_real[i][j] );
     520        5160 :             ( *hMcMasa )->buffer_intensity_real[i][j] = NULL;
     521             :         }
     522             : 
     523         645 :         free( ( *hMcMasa )->buffer_intensity_real[i] );
     524         645 :         ( *hMcMasa )->buffer_intensity_real[i] = NULL;
     525             : 
     526         645 :         free( ( *hMcMasa )->direction_vector_m[i] );
     527         645 :         ( *hMcMasa )->direction_vector_m[i] = NULL;
     528             :     }
     529             : 
     530        1935 :     for ( j = 0; j < ( *hMcMasa )->no_col_avg_diff; j++ )
     531             :     {
     532        1720 :         free( ( *hMcMasa )->buffer_intensity_real_vert[j] );
     533        1720 :         ( *hMcMasa )->buffer_intensity_real_vert[j] = NULL;
     534             :     }
     535         215 :     free( ( *hMcMasa )->buffer_intensity_real_vert );
     536         215 :     ( *hMcMasa )->buffer_intensity_real_vert = NULL;
     537             : 
     538         215 :     free( ( *hMcMasa )->buffer_energy );
     539         215 :     ( *hMcMasa )->buffer_energy = NULL;
     540             : 
     541         215 :     free( ( *hMcMasa ) );
     542         215 :     ( *hMcMasa ) = NULL;
     543             : 
     544         215 :     return;
     545             : }
     546             : 
     547             : 
     548             : /*--------------------------------------------------------------------------*
     549             :  * ivas_mcmasa_enc()
     550             :  *
     551             :  * Multichannel MASA encoder
     552             :  *--------------------------------------------------------------------------*/
     553             : 
     554        6150 : void ivas_mcmasa_enc(
     555             :     MCMASA_ENC_HANDLE hMcMasa,     /* i/o: Encoder McMASA handle         */
     556             :     IVAS_QMETADATA_HANDLE hQMeta,  /* o  : Qmetadata handle              */
     557             :     MASA_ENCODER_HANDLE hMasa,     /* i/o: Encoder MASA handle           */
     558             :     float *data_f[],               /* i  : Input frame of audio          */
     559             :     const int16_t input_frame,     /* i  : Input frame size              */
     560             :     const int16_t nchan_transport, /* i  : Number of transport channels  */
     561             :     const int16_t nchan_inp        /* i  : Number of input channels      */
     562             : )
     563             : {
     564             :     int16_t i, j, k;
     565        6150 :     int16_t nBands = hMcMasa->nbands;
     566        6150 :     int16_t nBlocks = MAX_PARAM_SPATIAL_SUBFRAMES;
     567        6150 :     uint8_t fixedDistance = 0;
     568             :     float elevation_m_values[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     569             :     float azimuth_m_values[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     570             :     float energyRatio[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     571             :     float spreadCoherence[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     572             :     float surroundingCoherence[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     573             :     float separatedChannelSignal[L_FRAME48k];
     574             : 
     575             :     /* Compute low frequency energy */
     576        6150 :     computeLfeEnergy( hMcMasa, data_f, input_frame );
     577             : 
     578             :     /* Sum center and LFE, move surround channels */
     579        6150 :     v_add( data_f[2], data_f[3], data_f[2], input_frame );
     580       24490 :     for ( i = 4; i < nchan_inp; i++ )
     581             :     {
     582       18340 :         mvr2r( data_f[i], data_f[i - 1], input_frame );
     583             :     }
     584             : 
     585        6150 :     if ( hMcMasa->separateChannelEnabled )
     586             :     {
     587             :         /* Identify channel to separate */
     588         425 :         i = hMcMasa->separateChannelIndex;
     589             : 
     590             :         /* Separate the identified channel */
     591         425 :         mvr2r( data_f[i], separatedChannelSignal, input_frame );
     592             : 
     593             :         /* Move the remaining channels in order to perform the analysis without the separated channel */
     594        3785 :         for ( i = ( hMcMasa->separateChannelIndex + 1 ); i < ( nchan_inp - 1 ); i++ )
     595             :         {
     596        3360 :             mvr2r( data_f[i], data_f[i - 1], input_frame );
     597             :         }
     598             :     }
     599             : 
     600             :     /* Analysis */
     601        6150 :     ivas_mcmasa_param_est_enc( hMcMasa, hMasa, data_f, elevation_m_values, azimuth_m_values, energyRatio, spreadCoherence, surroundingCoherence, input_frame, nchan_inp );
     602             : 
     603             :     /* Determine LFE-to-total energy ratio */
     604       30750 :     for ( i = 0; i < MAX_PARAM_SPATIAL_SUBFRAMES; i++ )
     605             :     {
     606       24600 :         hMasa->data.lfeToTotalEnergyRatio[i] = hMcMasa->lfeLfEne[i] / ( EPSILON + hMcMasa->totalLfEne[i] );
     607             :     }
     608             : 
     609             :     /* Set analyzed values to the MASA struct */
     610       36900 :     for ( i = 0; i < nBands; i++ )
     611             :     {
     612      153750 :         for ( j = 0; j < nBlocks; j++ )
     613             :         {
     614      123000 :             if ( hMcMasa->combineRatios )
     615             :             {
     616      123000 :                 k = 0;
     617             :             }
     618             :             else
     619             :             {
     620           0 :                 k = j;
     621             :             }
     622             : 
     623      123000 :             hQMeta->q_direction[0].band_data[i].azimuth[j] = azimuth_m_values[j][i];
     624      123000 :             hQMeta->q_direction[0].band_data[i].elevation[j] = elevation_m_values[j][i];
     625      123000 :             hQMeta->q_direction[0].band_data[i].energy_ratio[j] = energyRatio[k][i];
     626      123000 :             hQMeta->q_direction[0].band_data[i].distance[j] = fixedDistance;
     627             : 
     628      123000 :             if ( hQMeta->surcoh_band_data != NULL )
     629             :             {
     630       97800 :                 hQMeta->q_direction[0].coherence_band_data[i].spread_coherence[j] = (uint8_t) roundf( spreadCoherence[j][i] * UINT8_MAX );
     631       97800 :                 hQMeta->surcoh_band_data[i].surround_coherence[j] = (uint8_t) roundf( surroundingCoherence[k][i] * UINT8_MAX );
     632             :             }
     633             :         }
     634             :     }
     635             : 
     636             :     /* At lower sampling rates, set zeros for higher bands that were not analyzed */
     637        6150 :     if ( nBands < hMcMasa->nCodingBands )
     638             :     {
     639           0 :         for ( i = nBands; i < hMcMasa->nCodingBands; i++ )
     640             :         {
     641           0 :             for ( j = 0; j < nBlocks; j++ )
     642             :             {
     643           0 :                 hQMeta->q_direction[0].band_data[i].azimuth[j] = 0.0f;
     644           0 :                 hQMeta->q_direction[0].band_data[i].elevation[j] = 0.0f;
     645           0 :                 hQMeta->q_direction[0].band_data[i].energy_ratio[j] = 0.0f;
     646           0 :                 hQMeta->q_direction[0].band_data[i].distance[j] = 0;
     647             : 
     648           0 :                 if ( hQMeta->surcoh_band_data != NULL )
     649             :                 {
     650           0 :                     hQMeta->q_direction[0].coherence_band_data[i].spread_coherence[j] = 0;
     651           0 :                     hQMeta->surcoh_band_data[i].surround_coherence[j] = 0;
     652             :                 }
     653             :             }
     654             :         }
     655             :     }
     656             : 
     657             :     /* Downmix */
     658        6150 :     ivas_mcmasa_dmx( hMcMasa, data_f, input_frame, nchan_transport, nchan_inp );
     659             : 
     660        6150 :     if ( hMcMasa->separateChannelEnabled )
     661             :     {
     662             :         /* Put separated channel back to data_f to first empty channel after the transport audio signals for encoding */
     663         425 :         mvr2r( separatedChannelSignal, data_f[2], input_frame );
     664             :     }
     665             : 
     666             :     /* Update mcMASA-relevant coding parameters */
     667             :     /* These are reset to default values as they may be modified during later processing. */
     668        6150 :     hMasa->config.joinedSubframes = FALSE;
     669        6150 :     hQMeta->q_direction[0].cfg.nbands = hMcMasa->nbands;
     670        6150 :     hQMeta->q_direction[0].cfg.nblocks = MAX_PARAM_SPATIAL_SUBFRAMES;
     671        6150 :     hQMeta->all_coherence_zero = 1;
     672             : 
     673             :     /* Check spread coherence */
     674        6150 :     i = 0;
     675       14549 :     while ( i < nBlocks && hQMeta->all_coherence_zero )
     676             :     {
     677        8399 :         j = 0;
     678       28668 :         while ( j < nBands && hQMeta->all_coherence_zero )
     679             :         {
     680       20269 :             if ( spreadCoherence[i][j] > MASA_COHERENCE_THRESHOLD )
     681             :             {
     682        5554 :                 hQMeta->all_coherence_zero = 0;
     683             :             }
     684       20269 :             j++;
     685             :         }
     686        8399 :         i++;
     687             :     }
     688             : 
     689             :     /* Check surrounding coherence */
     690        6150 :     if ( hQMeta->all_coherence_zero )
     691             :     {
     692             :         float diffuse_to_total_ratio[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     693             :         uint8_t cohSignificant;
     694             :         int16_t nSubFrames;
     695             : 
     696         596 :         nSubFrames = hMcMasa->combineRatios ? 1 : MAX_PARAM_SPATIAL_SUBFRAMES;
     697        1192 :         for ( i = 0; i < nSubFrames; i++ )
     698             :         {
     699        3576 :             for ( j = 0; j < nBands; j++ )
     700             :             {
     701        2980 :                 diffuse_to_total_ratio[i][j] = fmaxf( 0.0f, 1.0f - energyRatio[i][j] );
     702             :             }
     703             :         }
     704             : 
     705         596 :         cohSignificant = ivas_masa_surrcoh_signicant( surroundingCoherence, diffuse_to_total_ratio, nSubFrames, nBands );
     706         596 :         if ( cohSignificant )
     707             :         {
     708         319 :             hQMeta->all_coherence_zero = 0;
     709             :         }
     710             :     }
     711        6150 :     hMasa->config.coherencePresent = !hQMeta->all_coherence_zero;
     712             : 
     713        6150 :     return;
     714             : }
     715             : 
     716             : 
     717             : /*--------------------------------------------------------------------------*
     718             :  * ivas_mcmasa_param_est_enc()
     719             :  *
     720             :  * Estimate metadata parameters for McMASA
     721             :  *--------------------------------------------------------------------------*/
     722             : 
     723        6150 : void ivas_mcmasa_param_est_enc(
     724             :     MCMASA_ENC_HANDLE hMcMasa,                                                     /* i  : McMASA encoder structure        */
     725             :     MASA_ENCODER_HANDLE hMasa,                                                     /* i  : MASA encoder structure          */
     726             :     float *data_f[],                                                               /* i  : Audio frame in MC-format        */
     727             :     float elevation_m_values[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS],   /* o  : Estimated elevation             */
     728             :     float azimuth_m_values[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS],     /* o  : Estimated azimuth               */
     729             :     float energyRatio[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS],          /* o  : Estimated direct-to-total ratio */
     730             :     float spreadCoherence[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS],      /* o  : Estimated spread coherence      */
     731             :     float surroundingCoherence[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS], /* o  : Estimated surround coherence    */
     732             :     const int16_t input_frame,                                                     /* i  : Input frame size                */
     733             :     const int16_t nchan_inp                                                        /* i  : Number of input channels        */
     734             : )
     735             : {
     736             :     float reference_power[MDFT_NO_COL_MAX][DIRAC_NO_FB_BANDS_MAX];
     737             :     int16_t ts, i, j, d;
     738             :     int16_t num_freq_bins, num_freq_bands, index;
     739             :     float dir_v[DIRAC_NUM_DIMS];
     740             :     int16_t l_ts;
     741             :     float *pcm_in[MCMASA_MAX_ANA_CHANS];
     742             :     float Chnl_RealBuffer[MCMASA_MAX_ANA_CHANS][DIRAC_NO_FB_BANDS_MAX];
     743             :     float Chnl_ImagBuffer[MCMASA_MAX_ANA_CHANS][DIRAC_NO_FB_BANDS_MAX];
     744             :     float *p_Chnl_RealBuffer[MCMASA_MAX_ANA_CHANS];
     745             :     float *p_Chnl_ImagBuffer[MCMASA_MAX_ANA_CHANS];
     746             :     float Foa_RealBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX];
     747             :     float Foa_ImagBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX];
     748             :     float FoaEven_RealBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX];
     749             :     float FoaEven_ImagBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX];
     750             :     float intensity_real[DIRAC_NUM_DIMS][MASA_FREQUENCY_BANDS];
     751             :     float intensity_even_real[DIRAC_NUM_DIMS][MASA_FREQUENCY_BANDS];
     752             :     float direction_vector[DIRAC_NUM_DIMS][MASA_FREQUENCY_BANDS];
     753             :     float diffuseness_vector[MASA_FREQUENCY_BANDS];
     754             :     float vertical_diffuseness_vector[MASA_FREQUENCY_BANDS];
     755             :     float diffuseness_m[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     756             :     float coherentEnergyRatio[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     757             :     int16_t band_m_idx, block_m_idx;
     758             :     float renormalization_factor_diff[MASA_FREQUENCY_BANDS];
     759             :     float norm_tmp;
     760             :     int16_t mrange[2], brange[2];
     761             :     int16_t numSubFramesForRatio;
     762             :     CovarianceMatrix COVls[MASA_FREQUENCY_BANDS];
     763             :     float absCOVls[MCMASA_MAX_ANA_CHANS][MCMASA_MAX_ANA_CHANS];
     764             :     float lsEnergy[MCMASA_MAX_ANA_CHANS];
     765             :     float lsEnergySum, maxEne;
     766             :     int16_t loudestCh;
     767             :     float surrCoh, tempCoh, tempCoh2;
     768             :     int16_t i1, i2, i3;
     769             :     float angleDist, minAngleDist;
     770             :     float currentAzi;
     771             :     float lsEnergyRelation;
     772             :     float tempLsEnergyRelation;
     773             :     float stereoness, cohwideness, spreadCoh;
     774             :     float stereoRatio, cohPanRatio;
     775             :     float stereoCoh, cohPanCoh, cohRatio;
     776             :     float renormalization_factor_coh[MASA_FREQUENCY_BANDS];
     777             :     int16_t numAnalysisChannels;
     778             : 
     779        6150 :     num_freq_bins = input_frame / MDFT_NO_COL_MAX;
     780        6150 :     num_freq_bands = hMcMasa->nbands;
     781        6150 :     l_ts = input_frame / MDFT_NO_COL_MAX;
     782             : 
     783        6150 :     numAnalysisChannels = nchan_inp - 1;
     784        6150 :     if ( hMcMasa->separateChannelEnabled )
     785             :     {
     786         425 :         numAnalysisChannels = nchan_inp - 2;
     787             :     }
     788             : 
     789        6150 :     if ( hMcMasa->combineRatios )
     790             :     {
     791             :         /* Need to initialize renormalization_factors, and variables to be normalized */
     792        6150 :         set_zero( renormalization_factor_diff, hMcMasa->nbands );
     793        6150 :         set_zero( diffuseness_m[0], hMcMasa->nbands );
     794        6150 :         set_zero( renormalization_factor_coh, hMcMasa->nbands );
     795        6150 :         set_zero( surroundingCoherence[0], hMcMasa->nbands );
     796        6150 :         set_zero( coherentEnergyRatio[0], hMcMasa->nbands );
     797             :     }
     798             : 
     799             :     /* Copy current frame to memory for delay compensation */
     800       42515 :     for ( i = 0; i < numAnalysisChannels; i++ )
     801             :     {
     802       36365 :         pcm_in[i] = data_f[i];
     803       36365 :         p_Chnl_RealBuffer[i] = &Chnl_RealBuffer[i][0];
     804       36365 :         p_Chnl_ImagBuffer[i] = &Chnl_ImagBuffer[i][0];
     805             :     }
     806             : 
     807             :     /* do processing over all CLDFB time slots */
     808       30750 :     for ( block_m_idx = 0; block_m_idx < MAX_PARAM_SPATIAL_SUBFRAMES; block_m_idx++ )
     809             :     {
     810       24600 :         mrange[0] = hMcMasa->block_grouping[block_m_idx];
     811       24600 :         mrange[1] = hMcMasa->block_grouping[block_m_idx + 1];
     812             : 
     813      147600 :         for ( band_m_idx = 0; band_m_idx < hMcMasa->nbands; band_m_idx++ )
     814             :         {
     815      123000 :             hMcMasa->direction_vector_m[0][block_m_idx][band_m_idx] = 0;
     816      123000 :             hMcMasa->direction_vector_m[1][block_m_idx][band_m_idx] = 0;
     817      123000 :             hMcMasa->direction_vector_m[2][block_m_idx][band_m_idx] = 0;
     818             :         }
     819             : 
     820             :         /* Reset variable */
     821      147600 :         for ( i = 0; i < hMcMasa->nbands; i++ )
     822             :         {
     823      850300 :             for ( j = 0; j < numAnalysisChannels; j++ )
     824             :             {
     825      727300 :                 set_zero( COVls[i].xr[j], numAnalysisChannels );
     826      727300 :                 set_zero( COVls[i].xi[j], numAnalysisChannels );
     827             :             }
     828             :         }
     829             : 
     830       49200 :         for ( ts = mrange[0]; ts < mrange[1]; ts++ )
     831             :         {
     832       24600 :             ivas_fb_mixer_get_windowed_fr( hMcMasa->hFbMixer, pcm_in, p_Chnl_RealBuffer, p_Chnl_ImagBuffer, l_ts, l_ts, hMcMasa->hFbMixer->fb_cfg->num_in_chans );
     833             : 
     834       24600 :             ivas_fb_mixer_update_prior_input( hMcMasa->hFbMixer, pcm_in, l_ts, hMcMasa->hFbMixer->fb_cfg->num_in_chans );
     835             : 
     836      170060 :             for ( i = 0; i < numAnalysisChannels; i++ )
     837             :             {
     838      145460 :                 pcm_in[i] += l_ts;
     839             :             }
     840             : 
     841             :             /* Compute covariance matrix */
     842      147600 :             for ( i = 0; i < num_freq_bands; i++ )
     843             :             {
     844      123000 :                 brange[0] = hMcMasa->band_grouping[i];
     845      123000 :                 brange[1] = hMcMasa->band_grouping[i + 1];
     846     5963000 :                 for ( j = brange[0]; j < brange[1]; j++ )
     847             :                 {
     848     5840000 :                     compute_cov_mtx( Chnl_RealBuffer, Chnl_ImagBuffer, j, numAnalysisChannels, &( COVls[i] ) );
     849             :                 }
     850             : 
     851             :                 /* Store energies for guiding metadata encoding */
     852      123000 :                 hMasa->data.energy[block_m_idx][i] = 0.0f;
     853      850300 :                 for ( j = 0; j < numAnalysisChannels; j++ )
     854             :                 {
     855      727300 :                     hMasa->data.energy[block_m_idx][i] += COVls[i].xr[j][j];
     856             :                 }
     857             :             }
     858             : 
     859       24600 :             if ( !hMcMasa->separateChannelEnabled )
     860             :             {
     861             :                 /* Compute low frequency energy */
     862      151520 :                 for ( i = 0; i < numAnalysisChannels; i++ )
     863             :                 {
     864      643100 :                     for ( j = 0; j < CLDFB_TO_MDFT_FAC; j++ )
     865             :                     {
     866      514480 :                         hMcMasa->totalLfEne[block_m_idx] += Chnl_RealBuffer[i][j] * Chnl_RealBuffer[i][j] + Chnl_ImagBuffer[i][j] * Chnl_ImagBuffer[i][j];
     867             :                     }
     868             :                 }
     869             :             }
     870             : 
     871             :             /* Compute standard FOA */
     872             :             /* W */
     873       24600 :             v_add( Chnl_RealBuffer[0], Chnl_RealBuffer[1], Foa_RealBuffer[0], num_freq_bins );
     874       24600 :             v_add( Chnl_ImagBuffer[0], Chnl_ImagBuffer[1], Foa_ImagBuffer[0], num_freq_bins );
     875      120860 :             for ( i = 2; i < numAnalysisChannels; i++ )
     876             :             {
     877       96260 :                 v_add( Chnl_RealBuffer[i], Foa_RealBuffer[0], Foa_RealBuffer[0], num_freq_bins );
     878       96260 :                 v_add( Chnl_ImagBuffer[i], Foa_ImagBuffer[0], Foa_ImagBuffer[0], num_freq_bins );
     879             :             }
     880             : 
     881             :             /* Y */
     882       24600 :             v_multc( Chnl_RealBuffer[0], hMcMasa->chnlToFoaMtx[1][0], Foa_RealBuffer[1], num_freq_bins );
     883       24600 :             v_multc( Chnl_ImagBuffer[0], hMcMasa->chnlToFoaMtx[1][0], Foa_ImagBuffer[1], num_freq_bins );
     884      145460 :             for ( i = 1; i < numAnalysisChannels; i++ )
     885             :             {
     886      120860 :                 v_multc_acc( Chnl_RealBuffer[i], hMcMasa->chnlToFoaMtx[1][i], Foa_RealBuffer[1], num_freq_bins );
     887      120860 :                 v_multc_acc( Chnl_ImagBuffer[i], hMcMasa->chnlToFoaMtx[1][i], Foa_ImagBuffer[1], num_freq_bins );
     888             :             }
     889             : 
     890             :             /* Z */
     891       24600 :             if ( hMcMasa->isHorizontalSetup )
     892             :             {
     893             :                 /* Set zero for horizontal setups */
     894       19800 :                 set_zero( Foa_RealBuffer[2], num_freq_bins );
     895       19800 :                 set_zero( Foa_ImagBuffer[2], num_freq_bins );
     896             :             }
     897             :             else
     898             :             {
     899        4800 :                 v_multc( Chnl_RealBuffer[0], hMcMasa->chnlToFoaMtx[2][0], Foa_RealBuffer[2], num_freq_bins );
     900        4800 :                 v_multc( Chnl_ImagBuffer[0], hMcMasa->chnlToFoaMtx[2][0], Foa_ImagBuffer[2], num_freq_bins );
     901       45340 :                 for ( i = 1; i < numAnalysisChannels; i++ )
     902             :                 {
     903       40540 :                     v_multc_acc( Chnl_RealBuffer[i], hMcMasa->chnlToFoaMtx[2][i], Foa_RealBuffer[2], num_freq_bins );
     904       40540 :                     v_multc_acc( Chnl_ImagBuffer[i], hMcMasa->chnlToFoaMtx[2][i], Foa_ImagBuffer[2], num_freq_bins );
     905             :                 }
     906             :             }
     907             : 
     908             :             /* X */
     909       24600 :             v_multc( Chnl_RealBuffer[0], hMcMasa->chnlToFoaMtx[3][0], Foa_RealBuffer[3], num_freq_bins );
     910       24600 :             v_multc( Chnl_ImagBuffer[0], hMcMasa->chnlToFoaMtx[3][0], Foa_ImagBuffer[3], num_freq_bins );
     911      145460 :             for ( i = 1; i < numAnalysisChannels; i++ )
     912             :             {
     913      120860 :                 v_multc_acc( Chnl_RealBuffer[i], hMcMasa->chnlToFoaMtx[3][i], Foa_RealBuffer[3], num_freq_bins );
     914      120860 :                 v_multc_acc( Chnl_ImagBuffer[i], hMcMasa->chnlToFoaMtx[3][i], Foa_ImagBuffer[3], num_freq_bins );
     915             :             }
     916             : 
     917             :             /* Compute even FOA */
     918             :             /* W */
     919       24600 :             mvr2r( Foa_RealBuffer[0], FoaEven_RealBuffer[0], num_freq_bins );
     920       24600 :             mvr2r( Foa_ImagBuffer[0], FoaEven_ImagBuffer[0], num_freq_bins );
     921             : 
     922             :             /* Y */
     923       24600 :             v_multc( Chnl_RealBuffer[0], hMcMasa->chnlToFoaEvenMtx[1][0], FoaEven_RealBuffer[1], num_freq_bins );
     924       24600 :             v_multc( Chnl_ImagBuffer[0], hMcMasa->chnlToFoaEvenMtx[1][0], FoaEven_ImagBuffer[1], num_freq_bins );
     925      145460 :             for ( i = 1; i < numAnalysisChannels; i++ )
     926             :             {
     927      120860 :                 v_multc_acc( Chnl_RealBuffer[i], hMcMasa->chnlToFoaEvenMtx[1][i], FoaEven_RealBuffer[1], num_freq_bins );
     928      120860 :                 v_multc_acc( Chnl_ImagBuffer[i], hMcMasa->chnlToFoaEvenMtx[1][i], FoaEven_ImagBuffer[1], num_freq_bins );
     929             :             }
     930             : 
     931             :             /* Z (even setups are handled as horizontal) */
     932       24600 :             set_zero( FoaEven_RealBuffer[2], num_freq_bins );
     933       24600 :             set_zero( FoaEven_ImagBuffer[2], num_freq_bins );
     934             : 
     935             :             /* X */
     936       24600 :             v_multc( Chnl_RealBuffer[0], hMcMasa->chnlToFoaEvenMtx[3][0], FoaEven_RealBuffer[3], num_freq_bins );
     937       24600 :             v_multc( Chnl_ImagBuffer[0], hMcMasa->chnlToFoaEvenMtx[3][0], FoaEven_ImagBuffer[3], num_freq_bins );
     938      145460 :             for ( i = 1; i < numAnalysisChannels; i++ )
     939             :             {
     940      120860 :                 v_multc_acc( Chnl_RealBuffer[i], hMcMasa->chnlToFoaEvenMtx[3][i], FoaEven_RealBuffer[3], num_freq_bins );
     941      120860 :                 v_multc_acc( Chnl_ImagBuffer[i], hMcMasa->chnlToFoaEvenMtx[3][i], FoaEven_ImagBuffer[3], num_freq_bins );
     942             :             }
     943             : 
     944             :             /* Direction estimation */
     945       24600 :             computeIntensityVector_enc(
     946       24600 :                 hMcMasa->band_grouping,
     947             :                 Foa_RealBuffer,
     948             :                 Foa_ImagBuffer,
     949             :                 0,
     950             :                 num_freq_bands,
     951             :                 intensity_real );
     952             : 
     953       24600 :             computeDirectionVectors(
     954             :                 intensity_real[0],
     955             :                 intensity_real[1],
     956             :                 intensity_real[2],
     957             :                 0,
     958             :                 num_freq_bands,
     959             :                 direction_vector[0],
     960             :                 direction_vector[1],
     961             :                 direction_vector[2] );
     962             : 
     963             :             /* Power and intensity estimation for diffuseness */
     964       24600 :             computeIntensityVector_enc(
     965       24600 :                 hMcMasa->band_grouping,
     966             :                 FoaEven_RealBuffer,
     967             :                 FoaEven_ImagBuffer,
     968             :                 0,
     969             :                 num_freq_bands,
     970             :                 intensity_even_real );
     971             : 
     972       24600 :             computeReferencePower_enc( hMcMasa->band_grouping,
     973             :                                        FoaEven_RealBuffer,
     974             :                                        FoaEven_ImagBuffer,
     975       24600 :                                        reference_power[ts],
     976             :                                        0,
     977             :                                        num_freq_bands,
     978             :                                        MC_FORMAT,
     979             :                                        0,
     980             :                                        FOA_CHANNELS,
     981             :                                        NULL,
     982             :                                        NULL );
     983             : 
     984             :             /* Fill buffers of length "averaging_length" time slots for intensity and energy */
     985       24600 :             hMcMasa->index_buffer_intensity = ( hMcMasa->index_buffer_intensity % hMcMasa->no_col_avg_diff ) + 1; /* averaging_length = 32 */
     986       24600 :             index = hMcMasa->index_buffer_intensity;
     987       98400 :             for ( i = 0; i < DIRAC_NUM_DIMS; i++ )
     988             :             {
     989             :                 /* only real part needed */
     990       73800 :                 mvr2r( intensity_even_real[i], &( hMcMasa->buffer_intensity_real[i][index - 1][0] ), num_freq_bands );
     991             :             }
     992       24600 :             mvr2r( reference_power[ts], &( hMcMasa->buffer_energy[( index - 1 ) * num_freq_bands] ), num_freq_bands );
     993             : 
     994       24600 :             computeDiffuseness_mdft( hMcMasa->buffer_intensity_real, hMcMasa->buffer_energy, num_freq_bands, hMcMasa->no_col_avg_diff, diffuseness_vector );
     995             : 
     996             :             /* Compute vertical diffuseness, and tune original diffuseness if needed */
     997       24600 :             if ( !hMcMasa->isHorizontalSetup )
     998             :             {
     999        4800 :                 mvr2r( intensity_real[2], &( hMcMasa->buffer_intensity_real_vert[index - 1][0] ), num_freq_bands );
    1000        4800 :                 computeVerticalDiffuseness( hMcMasa->buffer_intensity_real_vert, hMcMasa->buffer_energy, hMcMasa->no_col_avg_diff, num_freq_bands, vertical_diffuseness_vector );
    1001        4800 :                 v_min( diffuseness_vector, vertical_diffuseness_vector, diffuseness_vector, num_freq_bands );
    1002             :             }
    1003             : 
    1004      147600 :             for ( band_m_idx = 0; band_m_idx < hMcMasa->nbands; band_m_idx++ )
    1005             :             {
    1006      123000 :                 norm_tmp = reference_power[ts][band_m_idx] * ( 1 - diffuseness_vector[band_m_idx] );
    1007             : 
    1008      123000 :                 hMcMasa->direction_vector_m[0][block_m_idx][band_m_idx] += norm_tmp * direction_vector[0][band_m_idx];
    1009      123000 :                 hMcMasa->direction_vector_m[1][block_m_idx][band_m_idx] += norm_tmp * direction_vector[1][band_m_idx];
    1010      123000 :                 hMcMasa->direction_vector_m[2][block_m_idx][band_m_idx] += norm_tmp * direction_vector[2][band_m_idx];
    1011             : 
    1012      123000 :                 if ( hMcMasa->combineRatios )
    1013             :                 {
    1014      123000 :                     diffuseness_m[0][band_m_idx] += reference_power[ts][band_m_idx] * diffuseness_vector[band_m_idx];
    1015      123000 :                     renormalization_factor_diff[band_m_idx] += reference_power[ts][band_m_idx];
    1016             :                 }
    1017             :                 else
    1018             :                 {
    1019           0 :                     diffuseness_m[block_m_idx][band_m_idx] = diffuseness_vector[band_m_idx];
    1020             :                 }
    1021             :             }
    1022             :         }
    1023             : 
    1024      147600 :         for ( band_m_idx = 0; band_m_idx < hMcMasa->nbands; band_m_idx++ )
    1025             :         {
    1026      492000 :             for ( d = 0; d < DIRAC_NUM_DIMS; d++ )
    1027             :             {
    1028      369000 :                 dir_v[d] = hMcMasa->direction_vector_m[d][block_m_idx][band_m_idx];
    1029             :             }
    1030      123000 :             ivas_qmetadata_direction_vector_to_azimuth_elevation( dir_v, &azimuth_m_values[block_m_idx][band_m_idx], &elevation_m_values[block_m_idx][band_m_idx] );
    1031             :         }
    1032             : 
    1033             :         /* Coherence processing */
    1034      147600 :         for ( band_m_idx = 0; band_m_idx < hMcMasa->nbands; band_m_idx++ )
    1035             :         {
    1036             :             /* Compute absolute values */
    1037      850300 :             for ( i = 0; i < numAnalysisChannels; i++ )
    1038             :             {
    1039     3456800 :                 for ( j = i; j < numAnalysisChannels; j++ )
    1040             :                 {
    1041     2729500 :                     absCOVls[i][j] = sqrtf( ( COVls[band_m_idx].xr[i][j] * COVls[band_m_idx].xr[i][j] + COVls[band_m_idx].xi[i][j] * COVls[band_m_idx].xi[i][j] ) );
    1042             :                 }
    1043      727300 :                 lsEnergy[i] = absCOVls[i][i];
    1044             :             }
    1045             : 
    1046             :             /* Find loudest channel */
    1047      123000 :             maxEne = lsEnergy[0];
    1048      123000 :             loudestCh = 0;
    1049      727300 :             for ( i = 1; i < numAnalysisChannels; i++ )
    1050             :             {
    1051      604300 :                 if ( lsEnergy[i] > maxEne )
    1052             :                 {
    1053      185549 :                     maxEne = lsEnergy[i];
    1054      185549 :                     loudestCh = i;
    1055             :                 }
    1056             :             }
    1057             : 
    1058             :             /* Compute surrounding coherence */
    1059      123000 :             surrCoh = 1.0f;
    1060      850300 :             for ( i = 0; i < numAnalysisChannels; i++ )
    1061             :             {
    1062      727300 :                 if ( i != loudestCh )
    1063             :                 {
    1064      604300 :                     if ( i < loudestCh )
    1065             :                     {
    1066      360993 :                         i1 = i;
    1067      360993 :                         i2 = loudestCh;
    1068             :                     }
    1069             :                     else
    1070             :                     {
    1071      243307 :                         i1 = loudestCh;
    1072      243307 :                         i2 = i;
    1073             :                     }
    1074      604300 :                     tempCoh = absCOVls[i1][i2] / ( sqrtf( ( lsEnergy[i1] * lsEnergy[i2] + EPSILON ) ) );
    1075      604300 :                     surrCoh = ( surrCoh < tempCoh ) ? surrCoh : tempCoh;
    1076             :                 }
    1077             :             }
    1078      123000 :             surrCoh = surrCoh * surrCoh;
    1079      123000 :             surrCoh = ( surrCoh < 1.0f ) ? surrCoh : 1.0f;
    1080      123000 :             surrCoh = ( surrCoh > 0.0f ) ? surrCoh : 0.0f;
    1081             : 
    1082             :             /* Compute spread coherence */
    1083      123000 :             if ( elevation_m_values[block_m_idx][band_m_idx] < NEAR_HORIZONTAL_PLANE_ELEVATION ) /* Computed only near horizontal plane */
    1084             :             {
    1085      102814 :                 minAngleDist = 180.0f;
    1086      102814 :                 i1 = 0;
    1087      102814 :                 currentAzi = azimuth_m_values[block_m_idx][band_m_idx];
    1088      624314 :                 for ( i = 0; i < hMcMasa->numHorizontalChannels; i++ )
    1089             :                 {
    1090      521500 :                     angleDist = fabsf( currentAzi - hMcMasa->ls_azimuth[i] );
    1091      521500 :                     if ( angleDist > 180.0f )
    1092             :                     {
    1093        4817 :                         angleDist = fabsf( angleDist - 360.0f );
    1094             :                     }
    1095      521500 :                     if ( angleDist < minAngleDist )
    1096             :                     {
    1097      227155 :                         minAngleDist = angleDist;
    1098      227155 :                         i1 = i;
    1099             :                     }
    1100             :                 }
    1101      102814 :                 i2 = hMcMasa->leftNearest[i1];
    1102      102814 :                 i3 = hMcMasa->rightNearest[i1];
    1103             : 
    1104      102814 :                 if ( i2 < i3 )
    1105             :                 {
    1106       91851 :                     stereoCoh = absCOVls[i2][i3] / ( sqrtf( lsEnergy[i2] * lsEnergy[i3] + EPSILON ) );
    1107             :                 }
    1108             :                 else
    1109             :                 {
    1110       10963 :                     stereoCoh = absCOVls[i3][i2] / ( sqrtf( lsEnergy[i2] * lsEnergy[i3] + EPSILON ) );
    1111             :                 }
    1112      102814 :                 lsEnergyRelation = ( lsEnergy[i2] + lsEnergy[i3] ) / ( lsEnergy[i1] + lsEnergy[i2] + lsEnergy[i3] + EPSILON );
    1113      102814 :                 stereoness = stereoCoh * lsEnergyRelation;
    1114             : 
    1115      102814 :                 if ( i1 < i2 )
    1116             :                 {
    1117       45494 :                     tempCoh = absCOVls[i1][i2] / ( sqrtf( lsEnergy[i1] * lsEnergy[i2] + EPSILON ) );
    1118             :                 }
    1119             :                 else
    1120             :                 {
    1121       57320 :                     tempCoh = absCOVls[i2][i1] / ( sqrtf( lsEnergy[i1] * lsEnergy[i2] + EPSILON ) );
    1122             :                 }
    1123      102814 :                 if ( i1 < i3 )
    1124             :                 {
    1125       45644 :                     tempCoh2 = absCOVls[i1][i3] / ( sqrtf( lsEnergy[i1] * lsEnergy[i3] + EPSILON ) );
    1126             :                 }
    1127             :                 else
    1128             :                 {
    1129       57170 :                     tempCoh2 = absCOVls[i3][i1] / ( sqrtf( lsEnergy[i1] * lsEnergy[i3] + EPSILON ) );
    1130             :                 }
    1131      102814 :                 cohPanCoh = ( tempCoh < tempCoh2 ) ? tempCoh : tempCoh2;
    1132      102814 :                 lsEnergyRelation = lsEnergy[i2] / ( lsEnergy[i1] + EPSILON );
    1133      102814 :                 tempLsEnergyRelation = lsEnergy[i1] / ( lsEnergy[i2] + EPSILON );
    1134      102814 :                 lsEnergyRelation = ( lsEnergyRelation < tempLsEnergyRelation ) ? lsEnergyRelation : tempLsEnergyRelation;
    1135      102814 :                 tempLsEnergyRelation = lsEnergy[i3] / ( lsEnergy[i1] + EPSILON );
    1136      102814 :                 lsEnergyRelation = ( lsEnergyRelation < tempLsEnergyRelation ) ? lsEnergyRelation : tempLsEnergyRelation;
    1137      102814 :                 tempLsEnergyRelation = lsEnergy[i1] / ( lsEnergy[i3] + EPSILON );
    1138      102814 :                 lsEnergyRelation = ( lsEnergyRelation < tempLsEnergyRelation ) ? lsEnergyRelation : tempLsEnergyRelation;
    1139      102814 :                 cohwideness = cohPanCoh * lsEnergyRelation;
    1140             : 
    1141      102814 :                 spreadCoh = ( cohwideness > stereoness ) ? cohwideness : stereoness;
    1142      102814 :                 if ( spreadCoh > 0.5f )
    1143             :                 {
    1144       64779 :                     if ( cohwideness > stereoness )
    1145             :                     {
    1146       10891 :                         tempCoh = stereoness - ( cohwideness - 0.5f );
    1147       10891 :                         spreadCoh = ( tempCoh > 0.5f ) ? tempCoh : 0.5f;
    1148             :                     }
    1149             :                 }
    1150      102814 :                 spreadCoh = ( spreadCoh < 1.0f ) ? spreadCoh : 1.0f;
    1151      102814 :                 spreadCoh = ( spreadCoh > 0.0f ) ? spreadCoh : 0.0f;
    1152             : 
    1153             :                 /* Compute energy ratio tuning parameter */
    1154      102814 :                 lsEnergySum = sum_f( lsEnergy, numAnalysisChannels ) + EPSILON;
    1155      102814 :                 lsEnergyRelation = ( lsEnergy[i2] + lsEnergy[i3] ) / lsEnergySum;
    1156      102814 :                 stereoRatio = stereoCoh * lsEnergyRelation - surrCoh;
    1157             : 
    1158      102814 :                 lsEnergyRelation = ( lsEnergy[i1] + lsEnergy[i2] + lsEnergy[i3] ) / lsEnergySum;
    1159      102814 :                 cohPanRatio = cohPanCoh * lsEnergyRelation - surrCoh;
    1160             : 
    1161      102814 :                 cohRatio = ( stereoRatio > cohPanRatio ) ? stereoRatio : cohPanRatio;
    1162      102814 :                 cohRatio = ( cohRatio < 1.0f ) ? cohRatio : 1.0f;
    1163      102814 :                 cohRatio = ( cohRatio > 0.0f ) ? cohRatio : 0.0f;
    1164             :             }
    1165             :             else /* Otherwise, set spread coherence to zero */
    1166             :             {
    1167       20186 :                 spreadCoh = 0.0f;
    1168       20186 :                 cohRatio = 0.0f;
    1169       20186 :                 lsEnergySum = sum_f( lsEnergy, numAnalysisChannels );
    1170             :             }
    1171             : 
    1172             :             /* Store values */
    1173      123000 :             spreadCoherence[block_m_idx][band_m_idx] = spreadCoh;
    1174             : 
    1175      123000 :             if ( hMcMasa->combineRatios )
    1176             :             {
    1177      123000 :                 surroundingCoherence[0][band_m_idx] += lsEnergySum * surrCoh;
    1178      123000 :                 coherentEnergyRatio[0][band_m_idx] += lsEnergySum * cohRatio;
    1179      123000 :                 renormalization_factor_coh[band_m_idx] += lsEnergySum;
    1180             :             }
    1181             :             else
    1182             :             {
    1183           0 :                 surroundingCoherence[block_m_idx][band_m_idx] = surrCoh;
    1184           0 :                 coherentEnergyRatio[block_m_idx][band_m_idx] = cohRatio;
    1185             :             }
    1186             :         }
    1187             :     }
    1188             : 
    1189        6150 :     if ( hMcMasa->combineRatios )
    1190             :     {
    1191       36900 :         for ( band_m_idx = 0; band_m_idx < hMcMasa->nbands; band_m_idx++ )
    1192             :         {
    1193       30750 :             if ( renormalization_factor_diff[band_m_idx] > EPSILON )
    1194             :             {
    1195       30750 :                 diffuseness_m[0][band_m_idx] /= renormalization_factor_diff[band_m_idx];
    1196             :             }
    1197             :             else
    1198             :             {
    1199           0 :                 diffuseness_m[0][band_m_idx] = 0.f;
    1200             :             }
    1201       30750 :             if ( renormalization_factor_coh[band_m_idx] > EPSILON )
    1202             :             {
    1203       30750 :                 surroundingCoherence[0][band_m_idx] /= renormalization_factor_coh[band_m_idx];
    1204       30750 :                 coherentEnergyRatio[0][band_m_idx] /= renormalization_factor_coh[band_m_idx];
    1205             :             }
    1206             :             else
    1207             :             {
    1208           0 :                 surroundingCoherence[0][band_m_idx] = 0.f;
    1209           0 :                 coherentEnergyRatio[0][band_m_idx] = 0.f;
    1210             :             }
    1211             :         }
    1212             :     }
    1213             : 
    1214             :     /* Determine energy ratios */
    1215        6150 :     if ( hMcMasa->combineRatios )
    1216             :     {
    1217        6150 :         numSubFramesForRatio = 1;
    1218             :     }
    1219             :     else
    1220             :     {
    1221           0 :         numSubFramesForRatio = MAX_PARAM_SPATIAL_SUBFRAMES;
    1222             :     }
    1223             : 
    1224       12300 :     for ( i = 0; i < numSubFramesForRatio; i++ )
    1225             :     {
    1226       36900 :         for ( j = 0; j < hMcMasa->nbands; j++ )
    1227             :         {
    1228       30750 :             energyRatio[i][j] = 1.0f - diffuseness_m[i][j];
    1229       30750 :             energyRatio[i][j] = ( energyRatio[i][j] > coherentEnergyRatio[i][j] ) ? energyRatio[i][j] : coherentEnergyRatio[i][j];
    1230             :         }
    1231             :     }
    1232             : 
    1233        6150 :     return;
    1234             : }
    1235             : 
    1236             : 
    1237             : /*--------------------------------------------------------------------------*
    1238             :  * ivas_mcmasa_dmx_modify()
    1239             :  *
    1240             :  *
    1241             :  *--------------------------------------------------------------------------*/
    1242             : 
    1243          21 : void ivas_mcmasa_dmx_modify(
    1244             :     const int16_t n_samples,                                        /* i  : input frame length in samples                        */
    1245             :     float dmx[][L_FRAME48k + NS2SA( 48000, IVAS_FB_ENC_DELAY_NS )], /* i/o: downmix signal to be transformed into another format */
    1246             :     const int16_t n_chnls_dmx_old,                                  /* i  : number of downmix channels in the old format         */
    1247             :     const int16_t n_chnls_dmx_new )                                 /* i  : number of downmix channels in the target format      */
    1248             : {
    1249             :     /* assumed data ordering in **dmx: [sce][cpe_chnl0][cpe_chnl1], i.e., [c][l][r] */
    1250             :     int16_t i;
    1251             : 
    1252          21 :     assert( ( n_chnls_dmx_old == 1 || n_chnls_dmx_old == 2 || n_chnls_dmx_old == 3 ) && "Input downmix may contain only 1-3 channels." );
    1253          21 :     assert( ( n_chnls_dmx_new == 1 || n_chnls_dmx_new == 2 || n_chnls_dmx_new == 3 ) && "Output downmix may contain only 1-3 channels." );
    1254             : 
    1255          21 :     if ( n_chnls_dmx_old == n_chnls_dmx_new )
    1256             :     {
    1257             :         /* same dmx layout -> nothing to do */
    1258           0 :         return;
    1259             :     }
    1260             : 
    1261          21 :     if ( n_chnls_dmx_old == 1 )
    1262             :     {
    1263             :         /* split mono energy into identical channels */
    1264        9610 :         for ( i = 0; i < n_samples; i++ )
    1265             :         {
    1266        9600 :             if ( n_chnls_dmx_new == 2 )
    1267             :             {
    1268        1920 :                 dmx[1][i] = dmx[0][i] * INV_SQRT2;
    1269        1920 :                 dmx[2][i] = dmx[1][i];
    1270             :             }
    1271        7680 :             else if ( n_chnls_dmx_new == 3 )
    1272             :             {
    1273        7680 :                 dmx[0][i] = dmx[0][i] * INV_SQRT3;
    1274             :             }
    1275             :         }
    1276             :     }
    1277          11 :     else if ( n_chnls_dmx_old == 2 )
    1278             :     {
    1279        3844 :         for ( i = 0; i < n_samples; i++ )
    1280             :         {
    1281        3840 :             if ( n_chnls_dmx_new == 1 )
    1282             :             {
    1283             :                 /* sum l and r */
    1284        2880 :                 dmx[0][i] = dmx[1][i] + dmx[2][i];
    1285             :             }
    1286         960 :             else if ( n_chnls_dmx_new == 3 )
    1287             :             {
    1288         960 :                 dmx[0][i] = 0.5f * ( dmx[1][i] + dmx[2][i] );
    1289         960 :                 dmx[1][i] = dmx[1][i] - dmx[0][i];
    1290         960 :                 dmx[2][i] = dmx[2][i] - dmx[0][i];
    1291             :             }
    1292             :         }
    1293             :     }
    1294           7 :     else if ( n_chnls_dmx_old == 3 )
    1295             :     {
    1296        6727 :         for ( i = 0; i < n_samples; i++ )
    1297             :         {
    1298        6720 :             if ( n_chnls_dmx_new == 1 )
    1299             :             {
    1300             :                 /* sum all channels */
    1301        4800 :                 dmx[0][i] = dmx[0][i] + dmx[1][i] + dmx[2][i];
    1302             :             }
    1303        1920 :             else if ( n_chnls_dmx_new == 2 )
    1304             :             {
    1305             :                 /* mix center into sides */
    1306        1920 :                 dmx[0][i] *= INV_SQRT2;
    1307        1920 :                 dmx[1][i] += dmx[0][i];
    1308        1920 :                 dmx[2][i] += dmx[0][i];
    1309             :             }
    1310             :         }
    1311             :     }
    1312             : 
    1313          21 :     return;
    1314             : }
    1315             : 
    1316             : 
    1317             : /*--------------------------------------------------------------------------*
    1318             :  * Local functions
    1319             :  *--------------------------------------------------------------------------*/
    1320             : 
    1321             : /* Compute downmix */
    1322        6150 : static void ivas_mcmasa_dmx(
    1323             :     MCMASA_ENC_HANDLE hMcMasa,
    1324             :     float *data_f[],
    1325             :     const int16_t input_frame,
    1326             :     const int16_t nchan_transport,
    1327             :     const int16_t nchan_inp )
    1328             : {
    1329             :     int16_t i, j;
    1330             :     int16_t numAnalysisChannels;
    1331             :     float dmx_c;
    1332             :     float multiChEne, downmixEne;
    1333             :     float prevEQ, currEQ, instEQ;
    1334             :     float alpha;
    1335             : 
    1336        6150 :     numAnalysisChannels = nchan_inp - 1;
    1337        6150 :     if ( hMcMasa->separateChannelEnabled )
    1338             :     {
    1339         425 :         numAnalysisChannels = nchan_inp - 2;
    1340             :     }
    1341             : 
    1342        6150 :     multiChEne = 0.0f;
    1343       42515 :     for ( j = 0; j < numAnalysisChannels; j++ )
    1344             :     {
    1345    34626765 :         for ( i = 0; i < input_frame; i++ )
    1346             :         {
    1347    34590400 :             multiChEne += data_f[j][i] * data_f[j][i];
    1348             :         }
    1349             :     }
    1350             : 
    1351        6150 :     if ( nchan_transport == 2 )
    1352             :     {
    1353             :         int16_t numSideChannels; /* Channels other than left, right, center */
    1354             :         int16_t leftIndex, rightIndex;
    1355             : 
    1356         785 :         numSideChannels = numAnalysisChannels / 2 - 1;
    1357        3745 :         for ( j = 0; j < numSideChannels; j++ )
    1358             :         {
    1359        2960 :             if ( hMcMasa->separateChannelEnabled )
    1360             :             {
    1361        1680 :                 leftIndex = j * 2 + 2;
    1362        1680 :                 rightIndex = j * 2 + 3;
    1363             :             }
    1364             :             else
    1365             :             {
    1366        1280 :                 leftIndex = j * 2 + 3;
    1367        1280 :                 rightIndex = j * 2 + 4;
    1368             :             }
    1369             : 
    1370     2844560 :             for ( i = 0; i < input_frame; i++ )
    1371             :             {
    1372     2841600 :                 data_f[0][i] += data_f[leftIndex][i];
    1373     2841600 :                 data_f[1][i] += data_f[rightIndex][i];
    1374             :             }
    1375             :         }
    1376             : 
    1377         785 :         if ( !hMcMasa->separateChannelEnabled )
    1378             :         {
    1379      345960 :             for ( i = 0; i < input_frame; i++ )
    1380             :             {
    1381      345600 :                 dmx_c = INV_SQRT2 * data_f[2][i];
    1382      345600 :                 data_f[0][i] += dmx_c;
    1383      345600 :                 data_f[1][i] += dmx_c;
    1384             :             }
    1385             :         }
    1386             :     }
    1387        5365 :     else if ( nchan_transport == 1 )
    1388             :     {
    1389     5091765 :         for ( i = 0; i < input_frame; i++ )
    1390             :         {
    1391    27054400 :             for ( j = 1; j < numAnalysisChannels; j++ )
    1392             :             {
    1393    21968000 :                 data_f[0][i] += data_f[j][i];
    1394             :             }
    1395             :         }
    1396             :     }
    1397             : 
    1398        6150 :     downmixEne = 0.0f;
    1399       13085 :     for ( j = 0; j < nchan_transport; j++ )
    1400             :     {
    1401     6600535 :         for ( i = 0; i < input_frame; i++ )
    1402             :         {
    1403     6593600 :             downmixEne += data_f[j][i] * data_f[j][i];
    1404             :         }
    1405             :     }
    1406             : 
    1407        6150 :     alpha = 0.1f;
    1408        6150 :     hMcMasa->prevMultiChEne = alpha * multiChEne + ( 1.0f - alpha ) * hMcMasa->prevMultiChEne;
    1409        6150 :     hMcMasa->prevDownmixEne = alpha * downmixEne + ( 1.0f - alpha ) * hMcMasa->prevDownmixEne;
    1410             : 
    1411        6150 :     prevEQ = hMcMasa->prevEQ;
    1412        6150 :     currEQ = sqrtf( hMcMasa->prevMultiChEne / ( hMcMasa->prevDownmixEne + EPSILON ) );
    1413        6150 :     hMcMasa->prevEQ = currEQ;
    1414             : 
    1415     5846150 :     for ( i = 0; i < input_frame; i++ )
    1416             :     {
    1417     5840000 :         instEQ = hMcMasa->interpolator[i] * currEQ + ( 1.0f - hMcMasa->interpolator[i] ) * prevEQ;
    1418    12433600 :         for ( j = 0; j < nchan_transport; j++ )
    1419             :         {
    1420     6593600 :             data_f[j][i] *= instEQ;
    1421             :         }
    1422             :     }
    1423             : 
    1424        6150 :     return;
    1425             : }
    1426             : 
    1427             : 
    1428             : /* Compute covariance matrix, i.e., xT * conj(x), and accumulate to the output */
    1429     5840000 : static void compute_cov_mtx(
    1430             :     float sr[MCMASA_MAX_ANA_CHANS][DIRAC_NO_FB_BANDS_MAX], /* i  : Input matrix, real, s[ch][freq]                         */
    1431             :     float si[MCMASA_MAX_ANA_CHANS][DIRAC_NO_FB_BANDS_MAX], /* i  : Input matrix, imag, s[ch][freq]                         */
    1432             :     const int16_t freq,                                    /* i  : Freq to process                                         */
    1433             :     const int16_t N,                                       /* i  : Number of channels                                      */
    1434             :     CovarianceMatrix *COVls                                /* o  : Output matrix, contains upper part of cov mtx           */
    1435             : )
    1436             : {
    1437             :     int16_t i, j;
    1438             :     float a, b, c, d;
    1439             : 
    1440    40430400 :     for ( i = 0; i < N; i++ )
    1441             :     {
    1442    34590400 :         a = sr[i][freq];
    1443    34590400 :         b = si[i][freq];
    1444   164646400 :         for ( j = i; j < N; j++ )
    1445             :         {
    1446   130056000 :             c = sr[j][freq];
    1447   130056000 :             d = si[j][freq];
    1448   130056000 :             COVls->xr[i][j] += a * c + b * d;
    1449   130056000 :             COVls->xi[i][j] += b * c - a * d;
    1450             :         }
    1451             :     }
    1452             : 
    1453     5840000 :     return;
    1454             : }
    1455             : 
    1456             : 
    1457       49200 : static void computeIntensityVector_enc(
    1458             :     const int16_t *band_grouping,
    1459             :     float Cldfb_RealBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX],
    1460             :     float Cldfb_ImagBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX],
    1461             :     const int16_t enc_param_start_band, /* i  : first band to process */
    1462             :     const int16_t num_frequency_bands,
    1463             :     float intensity_real[DIRAC_NUM_DIMS][MASA_FREQUENCY_BANDS] )
    1464             : {
    1465             :     /* Reminder
    1466             :      * X = a + ib; Y = c + id
    1467             :      * X*Y = ac - bd + i(ad +bc)
    1468             :      */
    1469             :     int16_t i, j;
    1470             :     float real, img;
    1471             :     int16_t brange[2];
    1472             : 
    1473      295200 :     for ( i = enc_param_start_band; i < enc_param_start_band + num_frequency_bands; i++ )
    1474             :     {
    1475      246000 :         brange[0] = band_grouping[i];
    1476      246000 :         brange[1] = band_grouping[i + 1];
    1477             : 
    1478      246000 :         intensity_real[0][i] = 0;
    1479      246000 :         intensity_real[1][i] = 0;
    1480      246000 :         intensity_real[2][i] = 0;
    1481             : 
    1482    11926000 :         for ( j = brange[0]; j < brange[1]; j++ )
    1483             :         {
    1484    11680000 :             real = Cldfb_RealBuffer[0][j];
    1485    11680000 :             img = Cldfb_ImagBuffer[0][j];
    1486    11680000 :             intensity_real[0][i] += Cldfb_RealBuffer[3][j] * real + Cldfb_ImagBuffer[3][j] * img;
    1487    11680000 :             intensity_real[1][i] += Cldfb_RealBuffer[1][j] * real + Cldfb_ImagBuffer[1][j] * img;
    1488    11680000 :             intensity_real[2][i] += Cldfb_RealBuffer[2][j] * real + Cldfb_ImagBuffer[2][j] * img;
    1489             :         }
    1490             :     }
    1491             : 
    1492       49200 :     return;
    1493             : }
    1494             : 
    1495             : 
    1496             : /*-------------------------------------------------------------------------
    1497             :  * computeVerticalDiffuseness()
    1498             :  *
    1499             :  *
    1500             :  *------------------------------------------------------------------------*/
    1501             : 
    1502        4800 : static void computeVerticalDiffuseness(
    1503             :     float **buffer_intensity,       /* i  : Intensity vectors           */
    1504             :     const float *buffer_energy,     /* i  : Energy                      */
    1505             :     const int16_t averaging_length, /* i  : Averaging length            */
    1506             :     const int16_t num_freq_bands,   /* i  : Number of frequency bands   */
    1507             :     float *diffuseness              /* o  : Estimated diffuseness       */
    1508             : )
    1509             : {
    1510             :     float intensity_slow[MASA_FREQUENCY_BANDS];
    1511             :     float intensity_slow_abs[MASA_FREQUENCY_BANDS];
    1512             :     float energy_slow[MASA_FREQUENCY_BANDS];
    1513             :     int16_t i, k;
    1514        4800 :     float tmp = 0;
    1515             :     const float *p_tmp_c;
    1516             : 
    1517             :     /* Set variables to zero */
    1518        4800 :     set_f( intensity_slow, 0.0f, MASA_FREQUENCY_BANDS );
    1519        4800 :     set_f( energy_slow, 0.0f, MASA_FREQUENCY_BANDS );
    1520             : 
    1521       43200 :     for ( i = 0; i < averaging_length; ++i )
    1522             :     {
    1523             :         /* Energy slow */
    1524       38400 :         p_tmp_c = buffer_energy + i * num_freq_bands;
    1525      230400 :         for ( k = 0; k < num_freq_bands; k++ )
    1526             :         {
    1527      192000 :             energy_slow[k] += *( p_tmp_c++ );
    1528             :         }
    1529             : 
    1530             :         /* Intensity slow */
    1531      230400 :         for ( k = 0; k < num_freq_bands; k++ )
    1532             :         {
    1533      192000 :             intensity_slow[k] += buffer_intensity[i][k];
    1534             :         }
    1535             :     }
    1536             : 
    1537             :     /* Compute absolute value */
    1538       28800 :     for ( k = 0; k < num_freq_bands; k++ )
    1539             :     {
    1540       24000 :         intensity_slow_abs[k] = fabsf( intensity_slow[k] );
    1541             :     }
    1542             : 
    1543             :     /* Compute Diffuseness */
    1544       28800 :     for ( i = 0; i < num_freq_bands; ++i )
    1545             :     {
    1546       24000 :         tmp = intensity_slow_abs[i] / ( energy_slow[i] + EPSILON );
    1547       24000 :         tmp = ( tmp - VERTICAL_ENERGY_RATIO_OFFSET ) / ( 1.0f - VERTICAL_ENERGY_RATIO_OFFSET ); /* Tuned to avoid effect due to ambience of vertically un-even setups */
    1548       24000 :         tmp = 1.0f - tmp;
    1549       24000 :         diffuseness[i] = ( ( tmp < 1.0f ) ? ( ( tmp < 0.0f ) ? 0.f : tmp ) : 1.0f );
    1550             :     }
    1551             : 
    1552        4800 :     return;
    1553             : }
    1554             : 
    1555             : 
    1556         273 : static void computeEvenLayout(
    1557             :     const float *ls_azimuth,
    1558             :     float *ls_azimuth_even,
    1559             :     const int16_t numChannels )
    1560             : {
    1561             :     int16_t i;
    1562             :     int16_t j;
    1563             :     float ls_azimuth_temp[MCMASA_MAX_ANA_CHANS];
    1564             :     float ls_azimuth_even_ordered[MCMASA_MAX_ANA_CHANS];
    1565             :     int16_t ls_azimuth_order[MCMASA_MAX_ANA_CHANS];
    1566             :     float smallestAzimuth;
    1567             :     int16_t smallestAzimuthIndex;
    1568             :     float lsSpacing;
    1569             :     uint8_t oddLayout;
    1570             :     float startAzimuth;
    1571             :     int16_t numChannelsHalf;
    1572             : 
    1573         273 :     lsSpacing = 360.0f / (float) numChannels;
    1574         273 :     oddLayout = numChannels % 2;
    1575         273 :     numChannelsHalf = numChannels / 2;
    1576             : 
    1577         273 :     mvr2r( ls_azimuth, ls_azimuth_temp, numChannels );
    1578        1645 :     for ( i = 0; i < numChannels; i++ )
    1579             :     {
    1580        1372 :         smallestAzimuth = 1000.0f;
    1581        1372 :         smallestAzimuthIndex = 0;
    1582        8566 :         for ( j = 0; j < numChannels; j++ )
    1583             :         {
    1584        7194 :             if ( ls_azimuth_temp[j] < smallestAzimuth )
    1585             :             {
    1586        2522 :                 smallestAzimuth = ls_azimuth_temp[j];
    1587        2522 :                 smallestAzimuthIndex = j;
    1588             :             }
    1589             :         }
    1590        1372 :         ls_azimuth_order[i] = smallestAzimuthIndex;
    1591        1372 :         ls_azimuth_temp[smallestAzimuthIndex] = 1000.0f;
    1592             :     }
    1593             : 
    1594         273 :     if ( oddLayout )
    1595             :     {
    1596         198 :         startAzimuth = -lsSpacing * ( (float) numChannelsHalf );
    1597             :     }
    1598             :     else
    1599             :     {
    1600          75 :         startAzimuth = -lsSpacing * ( (float) numChannelsHalf - 0.5f );
    1601             :     }
    1602             : 
    1603        1645 :     for ( i = 0; i < numChannels; i++ )
    1604             :     {
    1605        1372 :         ls_azimuth_even_ordered[i] = (float) i * lsSpacing + startAzimuth;
    1606             :     }
    1607             : 
    1608        1645 :     for ( i = 0; i < numChannels; i++ )
    1609             :     {
    1610        1372 :         ls_azimuth_even[ls_azimuth_order[i]] = roundf( ls_azimuth_even_ordered[i] );
    1611             :     }
    1612             : 
    1613         273 :     return;
    1614             : }
    1615             : 
    1616        6150 : static void computeLfeEnergy(
    1617             :     MCMASA_ENC_HANDLE hMcMasa,
    1618             :     float *data_f[],
    1619             :     const int16_t input_frame )
    1620             : {
    1621             :     int16_t l_ts;
    1622             :     int16_t block_m_idx;
    1623             :     int16_t mrange[2];
    1624             :     int16_t separateChannelIndex;
    1625             :     int16_t lfeChannelIndex;
    1626             :     float *pcm_in[1];
    1627             : 
    1628             : 
    1629        6150 :     l_ts = input_frame / MDFT_NO_COL_MAX;
    1630        6150 :     separateChannelIndex = hMcMasa->separateChannelIndex;
    1631        6150 :     lfeChannelIndex = LFE_CHANNEL;
    1632             : 
    1633        6150 :     if ( hMcMasa->separateChannelEnabled )
    1634             :     {
    1635         425 :         mvr2r( data_f[lfeChannelIndex], &( hMcMasa->delay_buffer_lfe[0][hMcMasa->num_samples_delay_comp - hMcMasa->offset_comp] ), hMcMasa->offset_comp );
    1636         425 :         mvr2r( data_f[separateChannelIndex], &( hMcMasa->delay_buffer_lfe[1][hMcMasa->num_samples_delay_comp - hMcMasa->offset_comp] ), hMcMasa->offset_comp );
    1637             :     }
    1638             :     else
    1639             :     {
    1640        5725 :         pcm_in[0] = &data_f[lfeChannelIndex][0];
    1641             :     }
    1642             : 
    1643             :     /* Reset variables */
    1644        6150 :     set_zero( hMcMasa->lfeLfEne, MAX_PARAM_SPATIAL_SUBFRAMES );
    1645        6150 :     set_zero( hMcMasa->totalLfEne, MAX_PARAM_SPATIAL_SUBFRAMES );
    1646             : 
    1647             :     /* Compute low-frequency energies */
    1648        6150 :     if ( hMcMasa->separateChannelEnabled ) /* Using low-pass filter */
    1649             :     {
    1650             :         float lowpassCoef;
    1651             :         int16_t i, j;
    1652             :         float delayedInputSignal[2][L_FRAME48k];
    1653             :         float lowPassSignal[2][L_FRAME48k];
    1654             : 
    1655         425 :         mvr2r( &( hMcMasa->delay_buffer_lfe[0][0] ), &( delayedInputSignal[0][0] ), hMcMasa->num_slots_delay_comp * l_ts );
    1656         425 :         mvr2r( data_f[lfeChannelIndex] + hMcMasa->offset_comp, &( delayedInputSignal[0][hMcMasa->num_slots_delay_comp * l_ts] ), ( MDFT_NO_COL_MAX - hMcMasa->num_slots_delay_comp ) * l_ts );
    1657         425 :         mvr2r( &( hMcMasa->delay_buffer_lfe[1][0] ), &( delayedInputSignal[1][0] ), hMcMasa->num_slots_delay_comp * l_ts );
    1658         425 :         mvr2r( data_f[separateChannelIndex] + hMcMasa->offset_comp, &( delayedInputSignal[1][hMcMasa->num_slots_delay_comp * l_ts] ), ( MDFT_NO_COL_MAX - hMcMasa->num_slots_delay_comp ) * l_ts );
    1659             : 
    1660         425 :         lowpassCoef = 1.0f / ( (float) hMcMasa->ringBufferSize );
    1661             : 
    1662      408425 :         for ( i = 0; i < input_frame; i++ )
    1663             :         {
    1664     1224000 :             for ( j = 0; j < 2; j++ )
    1665             :             {
    1666      816000 :                 hMcMasa->lowpassSum[j] += lowpassCoef * delayedInputSignal[j][i] - lowpassCoef * hMcMasa->lfeAnaRingBuffer[j][hMcMasa->ringBufferPointer];
    1667      816000 :                 lowPassSignal[j][i] = hMcMasa->lowpassSum[j];
    1668      816000 :                 hMcMasa->lfeAnaRingBuffer[j][hMcMasa->ringBufferPointer] = delayedInputSignal[j][i];
    1669             :             }
    1670             : 
    1671      408000 :             hMcMasa->ringBufferPointer--;
    1672      408000 :             if ( hMcMasa->ringBufferPointer < 0 )
    1673             :             {
    1674        1700 :                 hMcMasa->ringBufferPointer = hMcMasa->ringBufferSize - 1;
    1675             :             }
    1676             :         }
    1677             : 
    1678        2125 :         for ( block_m_idx = 0; block_m_idx < MAX_PARAM_SPATIAL_SUBFRAMES; block_m_idx++ )
    1679             :         {
    1680        1700 :             mrange[0] = hMcMasa->block_grouping[block_m_idx] * l_ts;
    1681        1700 :             mrange[1] = hMcMasa->block_grouping[block_m_idx + 1] * l_ts;
    1682             : 
    1683      409700 :             for ( i = mrange[0]; i < mrange[1]; i++ )
    1684             :             {
    1685      408000 :                 hMcMasa->lfeLfEne[block_m_idx] += lowPassSignal[0][i] * lowPassSignal[0][i];
    1686      408000 :                 hMcMasa->totalLfEne[block_m_idx] += lowPassSignal[1][i] * lowPassSignal[1][i];
    1687             :             }
    1688        1700 :             hMcMasa->totalLfEne[block_m_idx] += hMcMasa->lfeLfEne[block_m_idx];
    1689             :         }
    1690             :     }
    1691             :     else /* Using CLDFB */
    1692             :     {
    1693             :         int16_t ts;
    1694             :         int16_t i;
    1695             :         float Chnl_RealBuffer[2][DIRAC_NO_FB_BANDS_MAX];
    1696             :         float Chnl_ImagBuffer[2][DIRAC_NO_FB_BANDS_MAX];
    1697             :         float *p_Chnl_RealBuffer[2];
    1698             :         float *p_Chnl_ImagBuffer[2];
    1699             : 
    1700        5725 :         p_Chnl_RealBuffer[0] = &Chnl_RealBuffer[0][0];
    1701        5725 :         p_Chnl_RealBuffer[1] = &Chnl_RealBuffer[1][0];
    1702        5725 :         p_Chnl_ImagBuffer[0] = &Chnl_ImagBuffer[0][0];
    1703        5725 :         p_Chnl_ImagBuffer[1] = &Chnl_ImagBuffer[1][0];
    1704             : 
    1705       28625 :         for ( block_m_idx = 0; block_m_idx < MAX_PARAM_SPATIAL_SUBFRAMES; block_m_idx++ )
    1706             :         {
    1707       22900 :             mrange[0] = hMcMasa->block_grouping[block_m_idx];
    1708       22900 :             mrange[1] = hMcMasa->block_grouping[block_m_idx + 1];
    1709             : 
    1710       45800 :             for ( ts = mrange[0]; ts < mrange[1]; ts++ )
    1711             :             {
    1712       22900 :                 ivas_fb_mixer_get_windowed_fr( hMcMasa->hFbMixerLfe, pcm_in, p_Chnl_RealBuffer, p_Chnl_ImagBuffer, l_ts, l_ts, hMcMasa->hFbMixerLfe->fb_cfg->num_in_chans );
    1713             : 
    1714       22900 :                 ivas_fb_mixer_update_prior_input( hMcMasa->hFbMixerLfe, pcm_in, l_ts, hMcMasa->hFbMixerLfe->fb_cfg->num_in_chans );
    1715             : 
    1716       22900 :                 pcm_in[0] += l_ts;
    1717             : 
    1718             :                 /* Compute low frequency energy for LFE, for other channels it is computed in ivas_chnl_param_est_enc() */
    1719      114500 :                 for ( i = 0; i < CLDFB_TO_MDFT_FAC; i++ )
    1720             :                 {
    1721       91600 :                     hMcMasa->lfeLfEne[block_m_idx] += Chnl_RealBuffer[0][i] * Chnl_RealBuffer[0][i] + Chnl_ImagBuffer[0][i] * Chnl_ImagBuffer[0][i];
    1722             :                 }
    1723             :             }
    1724             :         }
    1725             :     }
    1726             : 
    1727        6150 :     if ( hMcMasa->separateChannelEnabled )
    1728             :     {
    1729         425 :         mvr2r( data_f[lfeChannelIndex] + ( input_frame - hMcMasa->num_samples_delay_comp + hMcMasa->offset_comp ), &( hMcMasa->delay_buffer_lfe[0][0] ), ( hMcMasa->num_samples_delay_comp - hMcMasa->offset_comp ) );
    1730         425 :         mvr2r( data_f[separateChannelIndex] + ( input_frame - hMcMasa->num_samples_delay_comp + hMcMasa->offset_comp ), &( hMcMasa->delay_buffer_lfe[1][0] ), ( hMcMasa->num_samples_delay_comp - hMcMasa->offset_comp ) );
    1731             :     }
    1732             : 
    1733        6150 :     return;
    1734             : }

Generated by: LCOV version 1.14