Line data Source code
1 : /******************************************************************************************************
2 :
3 : (C) 2022-2025 IVAS codec Public Collaboration with portions copyright Dolby International AB, Ericsson AB,
4 : Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
5 : Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
6 : Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
7 : contributors to this repository. All Rights Reserved.
8 :
9 : This software is protected by copyright law and by international treaties.
10 : The IVAS codec Public Collaboration consisting of Dolby International AB, Ericsson AB,
11 : Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
12 : Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
13 : Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
14 : contributors to this repository retain full ownership rights in their respective contributions in
15 : the software. This notice grants no license of any kind, including but not limited to patent
16 : license, nor is any license granted by implication, estoppel or otherwise.
17 :
18 : Contributors are required to enter into the IVAS codec Public Collaboration agreement before making
19 : contributions.
20 :
21 : This software is provided "AS IS", without any express or implied warranties. The software is in the
22 : development stage. It is intended exclusively for experts who have experience with such software and
23 : solely for the purpose of inspection. All implied warranties of non-infringement, merchantability
24 : and fitness for a particular purpose are hereby disclaimed and excluded.
25 :
26 : Any dispute, controversy or claim arising under or in relation to providing this software shall be
27 : submitted to and settled by the final, binding jurisdiction of the courts of Munich, Germany in
28 : accordance with the laws of the Federal Republic of Germany excluding its conflict of law rules and
29 : the United Nations Convention on Contracts on the International Sales of Goods.
30 :
31 : *******************************************************************************************************/
32 :
33 : /*====================================================================================
34 : EVS Codec 3GPP TS26.443 Nov 04, 2021. Version 12.14.0 / 13.10.0 / 14.6.0 / 15.4.0 / 16.3.0
35 : ====================================================================================*/
36 :
37 : #include <assert.h>
38 : #include <stdint.h>
39 : #include "options.h"
40 : #ifdef DEBUGGING
41 : #include "debug.h"
42 : #endif
43 : #include <math.h>
44 : #include "cnst.h"
45 : #include "prot.h"
46 : #include "rom_com.h"
47 : #include "wmc_auto.h"
48 :
49 : #ifdef _MSC_VER
50 : #pragma warning( disable : 4310 )
51 : #endif
52 :
53 : /*-----------------------------------------------------------------*
54 : * Local constants
55 : *-----------------------------------------------------------------*/
56 :
57 : #define FFT_15PONIT_WNK1 0.55901699f /* EDCT & EMDCT constants */
58 : #define FFT_15PONIT_WNK2 0.95105652f /* EDCT & EMDCT constants */
59 : #define FFT_15PONIT_WNK3 0.58778525f /* EDCT & EMDCT constants */
60 : #define FFT_15PONIT_WNK4 0.86602540f /* EDCT & EMDCT constants */
61 : #define FFT_15PONIT_WNK5 0.25000000f /* EDCT & EMDCT constants */
62 :
63 : /* FFT constants */
64 : #define FFT_C31 -0.8660254037f
65 : #define FFT_C51 0.9510565195f
66 : #define FFT_C52 -1.5388417989f
67 : #define FFT_C53 -0.3632712597f
68 : #define FFT_C54 0.5590169895f
69 : #define FFT_C55 -1.2500000000f
70 : #define FFT_C61 0.8660254036f
71 : #define FFT_C81 0.7071067811f
72 : #define FFT_C82 -0.7071067811f
73 : #define FFT_C161 0.7071067811f
74 : #define FFT_C162 -0.7071067811f
75 : #define FFT_C163 0.9238795325f
76 : #define FFT_C164 -0.9238795325f
77 : #define FFT_C165 0.3826834323f
78 : #define FFT_C166 -0.3826834323f
79 :
80 :
81 : /*-----------------------------------------------------------------*
82 : * Local function prototypes
83 : *-----------------------------------------------------------------*/
84 :
85 : static void cdftForw( int16_t n, float *a, const int16_t *ip, const float *w );
86 : static void bitrv2_SR( int16_t n, const int16_t *ip, float *a );
87 : static void cftfsub( int16_t n, float *a, const float *w );
88 : static void cft1st( int16_t n, float *a, const float *w );
89 : static void cftmdl( int16_t n, int16_t l, float *a, const float *w );
90 : static void fft16( float *x, float *y, const int16_t *Idx );
91 : static void fft5_shift1( int16_t n1, float *zRe, float *zIm, const int16_t *Idx );
92 : static void fft8( float *x, float *y, const int16_t *Idx );
93 : static void fft15_shift2( int16_t n1, float *zRe, float *zIm, const int16_t *Idx );
94 : static void fft15_shift8( int16_t n1, float *zRe, float *zIm, const int16_t *Idx );
95 : static void fft5_shift4( int16_t n1, float *zRe, float *zIm, const int16_t *Idx );
96 : static void fft5_32( float *zRe, float *zIm, const int16_t *Idx );
97 : static void fft64( float *x, float *y, const int16_t *Idx );
98 : static void fft32_15( float *x, float *y, const int16_t *Idx );
99 : static void fft32_5( float *x, float *y, const int16_t *Idx );
100 : static void fft8_5( float *x, float *y, const int16_t *Idx );
101 : static void fft5_8( int16_t n1, float *zRe, float *zIm, const int16_t *Idx );
102 : static void fft4_5( float *x, float *y, const int16_t *Idx );
103 : static void fft5_4( int16_t n1, float *zRe, float *zIm, const int16_t *Idx );
104 :
105 51058848 : static float fmac( float a, float b, float c )
106 : {
107 51058848 : return ( ( ( a ) * ( b ) ) + ( c ) );
108 : }
109 :
110 187215776 : static float fnms( float a, float b, float c )
111 : {
112 187215776 : return ( ( c ) - ( ( a ) * ( b ) ) );
113 : }
114 :
115 : /*-----------------------------------------------------------------*
116 : * fft15_shift2()
117 : * 15-point FFT with 2-point circular shift
118 : *-----------------------------------------------------------------*/
119 :
120 83920 : static void fft15_shift2(
121 : int16_t n1, /* i : length of data */
122 : float *zRe, /* i/o: real part of input and output data */
123 : float *zIm, /* i/o: imaginary part of input and output data */
124 : const int16_t *Idx /* i : pointer of the address table */
125 : )
126 : {
127 : int16_t in0, in8, in16, in24, in32, in1, in9, in17, in25, in33, in2, in10, in18, in26, in34;
128 : float fi1, fi2, fi3, fi4, fi5, fi6, fi7, fi8, fi9, fi10, fi11, fi12, fi13, fi14, fi15;
129 : float fi16, fi17, fi18, fi19, fi20, fi21, fi22, fi23, fi24, fi25, fi26, fi27, fi28, fi29, fi30;
130 : float f2i1, f2i2, f2i3, f2i4, f2i5, f2i6, f2i7, f2i8, f2i9, f2i10, f2i11, f2i12;
131 : float f2i13, f2i14, f2i15, f2i16, f2i17, f2i18, f2i19, f2i20, f2i21, f2i22, f2i23, f2i24;
132 : float f3i1, f3i2, f3i3, f3i4, f3i5, f3i6, f3i7, f3i8, f3i9, f3i10, f3i11, f3i12, f3i13, f3i14, f3i15;
133 : float f4i1, f4i2, f4i3, f4i4, f4i5, f4i6, f4i7, f4i8, f4i9;
134 : float f4i10, f4i11, f4i12, f4i13, f4i14, f4i15, f4i16, f4i17, f4i18, f4i19, f4i20, fo1, fo2, fo3, fo4;
135 : float fo5, fo6, fo7, fo8, fo9, fo10, fo11, fo12, fo13, fo14, fo15, fo16, fo17, fo18;
136 : float f2o1, f2o2, f2o3, f2o4, f2o5, f2o6, f2o7, f2o8, f2o9, f2o10, f2o11, f2o12, f2o13;
137 : float f2o14, f2o15, f3o1, f3o2, f3o3, f3o4, f3o5, f3o6, f3o7, f3o8, f3o9, f3o10, f3o11;
138 : float f3o12, f3o13, f3o14, f3o15, f4o1, f4o2, f4o3, f4o4, f4o5, f4o6;
139 : float f4o7, f4o8, f4o9, f4o10, f4o11, f4o12, f4o13, f4o14, f4o15, f4o16, f4o17, f4o18, f4o19;
140 :
141 83920 : in0 = Idx[0];
142 83920 : in8 = Idx[n1];
143 83920 : in16 = Idx[n1 * 2];
144 83920 : in24 = Idx[n1 * 3];
145 83920 : in32 = Idx[n1 * 4];
146 83920 : in1 = Idx[n1 * 5];
147 83920 : in9 = Idx[n1 * 6];
148 83920 : in17 = Idx[n1 * 7];
149 83920 : in25 = Idx[n1 * 8];
150 83920 : in33 = Idx[n1 * 9];
151 83920 : in2 = Idx[n1 * 10];
152 83920 : in10 = Idx[n1 * 11];
153 83920 : in18 = Idx[n1 * 12];
154 83920 : in26 = Idx[n1 * 13];
155 83920 : in34 = Idx[n1 * 14];
156 :
157 83920 : f2i13 = zRe[in0];
158 83920 : f2i14 = zIm[in0];
159 83920 : f2i21 = zRe[in1];
160 83920 : f2i22 = zRe[in2];
161 83920 : f2i23 = zIm[in1];
162 83920 : f2i24 = zIm[in2];
163 :
164 83920 : f2i15 = f2i21 + f2i22;
165 83920 : f2i16 = FFT_15PONIT_WNK4 * ( f2i22 - f2i21 );
166 83920 : f2i17 = FFT_15PONIT_WNK4 * ( f2i23 - f2i24 );
167 83920 : f2i18 = f2i23 + f2i24;
168 83920 : fi1 = f2i13 + f2i15;
169 83920 : fi2 = f2i14 + f2i18;
170 :
171 83920 : f2i19 = fnms( 0.5f, f2i15, f2i13 );
172 83920 : f2i20 = fnms( 0.5f, f2i18, f2i14 );
173 83920 : fi3 = f2i19 - f2i17;
174 83920 : fi4 = f2i19 + f2i17;
175 83920 : fi5 = f2i16 + f2i20;
176 83920 : fi6 = f2i20 - f2i16;
177 :
178 83920 : f3i1 = zRe[in9];
179 83920 : f4i2 = zRe[in10];
180 83920 : f4i3 = zRe[in8];
181 83920 : f3i2 = f4i2 + f4i3;
182 83920 : f3i3 = fnms( 0.5f, f3i2, f3i1 );
183 83920 : f3i4 = FFT_15PONIT_WNK4 * ( f4i3 - f4i2 );
184 :
185 83920 : f3i5 = zIm[in9];
186 83920 : f4i4 = zIm[in10];
187 83920 : f4i5 = zIm[in8];
188 83920 : f3i6 = f4i4 + f4i5;
189 83920 : f3i7 = FFT_15PONIT_WNK4 * ( f4i4 - f4i5 );
190 83920 : f3i8 = fnms( 0.5f, f3i6, f3i5 );
191 :
192 83920 : f3i9 = zRe[in33];
193 83920 : f4i6 = zRe[in34];
194 83920 : f4i7 = zRe[in32];
195 83920 : f3i10 = f4i6 + f4i7;
196 83920 : f3i11 = fnms( 0.5f, f3i10, f3i9 );
197 83920 : f3i12 = FFT_15PONIT_WNK4 * ( f4i7 - f4i6 );
198 :
199 83920 : f3i13 = zIm[in33];
200 83920 : f4i8 = zIm[in34];
201 83920 : f4i9 = zIm[in32];
202 83920 : f3i14 = f4i8 + f4i9;
203 83920 : f3i15 = FFT_15PONIT_WNK4 * ( f4i8 - f4i9 );
204 83920 : f4i1 = fnms( 0.5f, f3i14, f3i13 );
205 :
206 83920 : fi7 = f3i1 + f3i2;
207 83920 : fi8 = f3i9 + f3i10;
208 83920 : fi9 = fi7 + fi8;
209 83920 : fi10 = f3i3 - f3i7;
210 83920 : fi11 = f3i11 - f3i15;
211 83920 : fi12 = fi10 + fi11;
212 83920 : fi13 = f3i5 + f3i6;
213 83920 : fi14 = f3i13 + f3i14;
214 83920 : fi15 = fi13 + fi14;
215 83920 : fi16 = f3i8 - f3i4;
216 83920 : fi17 = f4i1 - f3i12;
217 83920 : fi18 = fi16 + fi17;
218 83920 : fi19 = f3i4 + f3i8;
219 83920 : fi20 = f3i12 + f4i1;
220 83920 : fi21 = fi19 + fi20;
221 83920 : fi22 = f3i3 + f3i7;
222 83920 : fi23 = f3i11 + f3i15;
223 83920 : fi24 = fi22 + fi23;
224 :
225 83920 : f4i10 = zRe[in24];
226 83920 : fo6 = zRe[in25];
227 83920 : fo7 = zRe[in26];
228 83920 : f4i11 = fo6 + fo7;
229 83920 : f4i12 = fnms( 0.5f, f4i11, f4i10 );
230 83920 : f4i13 = FFT_15PONIT_WNK4 * ( fo7 - fo6 );
231 :
232 83920 : f4i14 = zIm[in24];
233 83920 : fo8 = zIm[in25];
234 83920 : fo9 = zIm[in26];
235 83920 : f4i15 = fo8 + fo9;
236 83920 : f4i16 = FFT_15PONIT_WNK4 * ( fo8 - fo9 );
237 83920 : f4i17 = fnms( 0.5f, f4i15, f4i14 );
238 :
239 83920 : f4i18 = zRe[in18];
240 83920 : f2o10 = zRe[in16];
241 83920 : f2o11 = zRe[in17];
242 83920 : f4i19 = f2o10 + f2o11;
243 83920 : f4i20 = fnms( 0.5f, f4i19, f4i18 );
244 83920 : fo1 = FFT_15PONIT_WNK4 * ( f2o11 - f2o10 );
245 :
246 83920 : fo2 = zIm[in18];
247 83920 : f2o12 = zIm[in16];
248 83920 : f2o13 = zIm[in17];
249 83920 : fo3 = f2o12 + f2o13;
250 83920 : fo4 = FFT_15PONIT_WNK4 * ( f2o12 - f2o13 );
251 83920 : fo5 = fnms( 0.5f, fo3, fo2 );
252 :
253 83920 : fi25 = f4i10 + f4i11;
254 83920 : fi26 = f4i18 + f4i19;
255 83920 : fi27 = fi25 + fi26;
256 83920 : fi28 = f4i12 - f4i16;
257 83920 : fi29 = f4i20 - fo4;
258 83920 : fi30 = fi28 + fi29;
259 83920 : f2i1 = f4i14 + f4i15;
260 83920 : f2i2 = fo2 + fo3;
261 83920 : f2i3 = f2i1 + f2i2;
262 83920 : f2i4 = f4i17 - f4i13;
263 83920 : f2i5 = fo5 - fo1;
264 83920 : f2i6 = f2i4 + f2i5;
265 83920 : f2i7 = f4i13 + f4i17;
266 83920 : f2i8 = fo1 + fo5;
267 83920 : f2i9 = f2i7 + f2i8;
268 83920 : f2i10 = f4i12 + f4i16;
269 83920 : f2i11 = f4i20 + fo4;
270 83920 : f2i12 = f2i10 + f2i11;
271 :
272 83920 : fo10 = FFT_15PONIT_WNK1 * ( fi27 - fi9 );
273 83920 : fo11 = fi27 + fi9;
274 83920 : fo12 = fnms( FFT_15PONIT_WNK5, fo11, fi1 );
275 83920 : fo15 = fi13 - fi14;
276 83920 : fo16 = f2i1 - f2i2;
277 83920 : fo13 = fnms( FFT_15PONIT_WNK3, fo16, FFT_15PONIT_WNK2 * fo15 );
278 83920 : fo14 = fmac( FFT_15PONIT_WNK2, fo16, FFT_15PONIT_WNK3 * fo15 );
279 :
280 83920 : zRe[in0] = fi1 + fo11;
281 83920 : fo17 = fo10 + fo12;
282 83920 : zRe[in18] = fo17 - fo14;
283 83920 : zRe[in24] = fo17 + fo14;
284 83920 : fo18 = fo12 - fo10;
285 83920 : zRe[in9] = fo18 - fo13;
286 83920 : zRe[in33] = fo18 + fo13;
287 :
288 83920 : f2o1 = FFT_15PONIT_WNK1 * ( f2i3 - fi15 );
289 83920 : f2o2 = f2i3 + fi15;
290 83920 : f2o3 = fnms( FFT_15PONIT_WNK5, f2o2, fi2 );
291 83920 : f2o6 = fi7 - fi8;
292 83920 : f2o7 = fi25 - fi26;
293 83920 : f2o4 = fnms( FFT_15PONIT_WNK3, f2o7, FFT_15PONIT_WNK2 * f2o6 );
294 83920 : f2o5 = fmac( FFT_15PONIT_WNK2, f2o7, FFT_15PONIT_WNK3 * f2o6 );
295 83920 : zIm[in0] = fi2 + f2o2;
296 83920 : f2o8 = f2o1 + f2o3;
297 83920 : zIm[in24] = f2o8 - f2o5;
298 83920 : zIm[in18] = f2o5 + f2o8;
299 83920 : f2o9 = f2o3 - f2o1;
300 83920 : zIm[in33] = f2o9 - f2o4;
301 83920 : zIm[in9] = f2o4 + f2o9;
302 :
303 83920 : f2o14 = FFT_15PONIT_WNK1 * ( fi30 - fi12 );
304 83920 : f2o15 = fi30 + fi12;
305 83920 : f3o1 = fnms( FFT_15PONIT_WNK5, f2o15, fi3 );
306 83920 : f3o4 = fi16 - fi17;
307 83920 : f3o5 = f2i4 - f2i5;
308 83920 : f3o2 = fnms( FFT_15PONIT_WNK3, f3o5, FFT_15PONIT_WNK2 * f3o4 );
309 83920 : f3o3 = fmac( FFT_15PONIT_WNK2, f3o5, FFT_15PONIT_WNK3 * f3o4 );
310 83920 : zRe[in2] = fi3 + f2o15;
311 83920 : f3o6 = f2o14 + f3o1;
312 83920 : zRe[in17] = f3o6 - f3o3;
313 83920 : zRe[in26] = f3o6 + f3o3;
314 83920 : f3o7 = f3o1 - f2o14;
315 83920 : zRe[in8] = f3o7 - f3o2;
316 83920 : zRe[in32] = f3o7 + f3o2;
317 :
318 83920 : f3o8 = FFT_15PONIT_WNK1 * ( f2i6 - fi18 );
319 83920 : f3o9 = f2i6 + fi18;
320 83920 : f3o10 = fnms( FFT_15PONIT_WNK5, f3o9, fi6 );
321 83920 : f3o13 = fi10 - fi11;
322 83920 : f3o14 = fi28 - fi29;
323 83920 : f3o11 = fnms( FFT_15PONIT_WNK3, f3o14, FFT_15PONIT_WNK2 * f3o13 );
324 83920 : f3o12 = fmac( FFT_15PONIT_WNK2, f3o14, FFT_15PONIT_WNK3 * f3o13 );
325 83920 : zIm[in2] = fi6 + f3o9;
326 83920 : f3o15 = f3o8 + f3o10;
327 83920 : zIm[in26] = f3o15 - f3o12;
328 83920 : zIm[in17] = f3o12 + f3o15;
329 83920 : f4o1 = f3o10 - f3o8;
330 83920 : zIm[in8] = f3o11 + f4o1;
331 83920 : zIm[in32] = f4o1 - f3o11;
332 :
333 83920 : f4o2 = FFT_15PONIT_WNK1 * ( f2i9 - fi21 );
334 83920 : f4o3 = f2i9 + fi21;
335 83920 : f4o4 = fnms( FFT_15PONIT_WNK5, f4o3, fi5 );
336 83920 : f4o7 = f2i10 - f2i11;
337 83920 : f4o8 = fi22 - fi23;
338 83920 : f4o5 = fmac( FFT_15PONIT_WNK2, f4o7, FFT_15PONIT_WNK3 * f4o8 );
339 83920 : f4o6 = fnms( FFT_15PONIT_WNK3, f4o7, FFT_15PONIT_WNK2 * f4o8 );
340 83920 : zIm[in1] = fi5 + f4o3;
341 83920 : f4o9 = f4o4 - f4o2;
342 83920 : f4o10 = f4o2 + f4o4;
343 :
344 83920 : zIm[in10] = f4o6 + f4o9;
345 83920 : zIm[in34] = f4o9 - f4o6;
346 83920 : zIm[in25] = f4o10 - f4o5;
347 83920 : zIm[in16] = f4o5 + f4o10;
348 :
349 83920 : f4o11 = FFT_15PONIT_WNK1 * ( f2i12 - fi24 );
350 83920 : f4o12 = f2i12 + fi24;
351 83920 : f4o13 = fnms( FFT_15PONIT_WNK5, f4o12, fi4 );
352 83920 : f4o16 = f2i7 - f2i8;
353 83920 : f4o17 = fi19 - fi20;
354 83920 : f4o14 = fmac( FFT_15PONIT_WNK2, f4o16, FFT_15PONIT_WNK3 * f4o17 );
355 83920 : f4o15 = fnms( FFT_15PONIT_WNK3, f4o16, FFT_15PONIT_WNK2 * f4o17 );
356 83920 : zRe[in1] = fi4 + f4o12;
357 83920 : f4o18 = f4o13 - f4o11;
358 83920 : f4o19 = f4o11 + f4o13;
359 :
360 83920 : zRe[in10] = f4o18 - f4o15;
361 83920 : zRe[in34] = f4o18 + f4o15;
362 83920 : zRe[in16] = f4o19 - f4o14;
363 83920 : zRe[in25] = f4o19 + f4o14;
364 :
365 83920 : return;
366 : }
367 :
368 : /*-----------------------------------------------------------------*
369 : * fft15_shift8()
370 : * 15-point FFT with 8-point circular shift
371 : *-----------------------------------------------------------------*/
372 :
373 8425888 : static void fft15_shift8(
374 : int16_t n1, /* i : length of data */
375 : float *zRe, /* i/o: real part of input and output data */
376 : float *zIm, /* i/o: imaginary part of input and output data */
377 : const int16_t *Idx /* i : pointer of the address table */
378 : )
379 : {
380 : int16_t in0, in8, in16, in24, in32, in1, in9, in17, in25, in33, in2, in10, in18, in26, in34;
381 : float fi1, fi2, fi3, fi4, fi5, fi6, fi7, fi8, fi9, fi10, fi11, fi12, fi13, fi14, fi15;
382 : float fi16, fi17, fi18, fi19, fi20, fi21, fi22, fi23, fi24, fi25, fi26, fi27, fi28, fi29, fi30;
383 : float f2i1, f2i2, f2i3, f2i4, f2i5, f2i6, f2i7, f2i8, f2i9, f2i10, f2i11, f2i12;
384 : float f2i13, f2i14, f2i15, f3i1, f3i2, f3i3, f3i4, f3i5, f3i6, f3i7, f3i8, f3i9;
385 : float f3i10, f3i11, f3i12, f3i13, f3i14, f3i15, f4i1, f4i2, f4i3, f4i4, f4i5, f4i6, f4i7, f4i8, f4i9;
386 : float f4i10, f4i11, f4i12, f4i13, f4i14, f4i15, fo1, fo2, fo3, fo4, fo5, fo6;
387 : float fo7, fo8, fo9, fo10, fo11, fo12, fo13, fo14, fo15, f2o1, f2o2, f2o3, f2o4;
388 : float f2o5, f2o6, f2o7, f2o8, f2o9, f2o10, f2o11, f2o12, f2o13, f2o14, f2o15;
389 : float f3o1, f3o2, f3o3, f3o4, f3o5, f3o6, f3o7, f3o8, f3o9, f3o10, f3o11, f3o12;
390 : float f3o13, f3o14, f3o15, f4o1, f4o2, f4o3, f4o4, f4o5, f4o6, f4o7, f4o8, f4o9;
391 : float f4o10, f4o11, f4o12, f4o13, f4o14, f4o15, f5o1, f5o2, f5o3, f5o4, f5o5, f5o6, f5o7;
392 : float f5o8, f5o9, f5o10, f5o11, f5o12, f5o13, f5o14, f5o15, f5o16, f5o17, f5o18, f5o19, f5o21, f5o22;
393 :
394 8425888 : in0 = Idx[0];
395 8425888 : in8 = Idx[n1];
396 8425888 : in16 = Idx[n1 * 2];
397 8425888 : in24 = Idx[n1 * 3];
398 8425888 : in32 = Idx[n1 * 4];
399 8425888 : in1 = Idx[n1 * 5];
400 8425888 : in9 = Idx[n1 * 6];
401 8425888 : in17 = Idx[n1 * 7];
402 8425888 : in25 = Idx[n1 * 8];
403 8425888 : in33 = Idx[n1 * 9];
404 8425888 : in2 = Idx[n1 * 10];
405 8425888 : in10 = Idx[n1 * 11];
406 8425888 : in18 = Idx[n1 * 12];
407 8425888 : in26 = Idx[n1 * 13];
408 8425888 : in34 = Idx[n1 * 14];
409 :
410 8425888 : f2i13 = zRe[in0];
411 8425888 : f2i14 = zIm[in0];
412 8425888 : f3i6 = zRe[in1];
413 8425888 : f3i7 = zRe[in2];
414 8425888 : f3i8 = zIm[in1];
415 8425888 : f3i9 = zIm[in2];
416 :
417 8425888 : f2i15 = f3i6 + f3i7;
418 8425888 : f3i1 = FFT_15PONIT_WNK4 * ( f3i7 - f3i6 );
419 8425888 : f3i2 = FFT_15PONIT_WNK4 * ( f3i8 - f3i9 );
420 8425888 : f3i3 = f3i8 + f3i9;
421 :
422 8425888 : fi1 = f2i13 + f2i15;
423 8425888 : fi2 = f2i14 + f3i3;
424 8425888 : f3i4 = fnms( 0.5f, f2i15, f2i13 );
425 8425888 : fi3 = f3i4 - f3i2;
426 8425888 : fi4 = f3i4 + f3i2;
427 8425888 : f3i5 = fnms( 0.5f, f3i3, f2i14 );
428 8425888 : fi5 = f3i1 + f3i5;
429 8425888 : fi6 = f3i5 - f3i1;
430 :
431 8425888 : f3i10 = zRe[in9];
432 8425888 : f4i11 = zRe[in10];
433 8425888 : f4i12 = zRe[in8];
434 8425888 : f3i14 = zIm[in9];
435 8425888 : f4i13 = zIm[in10];
436 8425888 : f4i14 = zIm[in8];
437 8425888 : f4i3 = zRe[in33];
438 8425888 : f4i15 = zRe[in34];
439 8425888 : fo1 = zRe[in32];
440 8425888 : f4i7 = zIm[in33];
441 8425888 : fo2 = zIm[in34];
442 8425888 : fo3 = zIm[in32];
443 :
444 :
445 8425888 : f3i11 = f4i11 + f4i12;
446 8425888 : f3i12 = fnms( 0.5f, f3i11, f3i10 );
447 8425888 : f3i13 = FFT_15PONIT_WNK4 * ( f4i12 - f4i11 );
448 8425888 : f3i15 = f4i13 + f4i14;
449 8425888 : f4i1 = FFT_15PONIT_WNK4 * ( f4i13 - f4i14 );
450 8425888 : f4i2 = fnms( 0.5f, f3i15, f3i14 );
451 8425888 : f4i4 = f4i15 + fo1;
452 8425888 : f4i5 = fnms( 0.5f, f4i4, f4i3 );
453 8425888 : f4i6 = FFT_15PONIT_WNK4 * ( fo1 - f4i15 );
454 8425888 : f4i8 = fo2 + fo3;
455 8425888 : f4i9 = FFT_15PONIT_WNK4 * ( fo2 - fo3 );
456 8425888 : f4i10 = fnms( 0.5f, f4i8, f4i7 );
457 :
458 8425888 : fi7 = f3i10 + f3i11;
459 8425888 : fi8 = f4i3 + f4i4;
460 8425888 : fi9 = fi7 + fi8;
461 8425888 : fi10 = f3i12 - f4i1;
462 8425888 : fi11 = f4i5 - f4i9;
463 8425888 : fi12 = fi10 + fi11;
464 8425888 : fi13 = f3i14 + f3i15;
465 8425888 : fi14 = f4i7 + f4i8;
466 8425888 : fi15 = fi13 + fi14;
467 8425888 : fi16 = f4i2 - f3i13;
468 8425888 : fi17 = f4i10 - f4i6;
469 8425888 : fi18 = fi16 + fi17;
470 8425888 : fi19 = f3i13 + f4i2;
471 8425888 : fi20 = f4i6 + f4i10;
472 8425888 : fi21 = fi19 + fi20;
473 8425888 : fi22 = f3i12 + f4i1;
474 8425888 : fi23 = f4i5 + f4i9;
475 8425888 : fi24 = fi22 + fi23;
476 :
477 8425888 : fo4 = zRe[in24];
478 8425888 : f2o5 = zRe[in25];
479 8425888 : f2o6 = zRe[in26];
480 8425888 : fo8 = zIm[in24];
481 8425888 : f2o7 = zIm[in25];
482 8425888 : f2o8 = zIm[in26];
483 8425888 : fo12 = zRe[in18];
484 8425888 : f2o9 = zRe[in16];
485 8425888 : f2o10 = zRe[in17];
486 8425888 : f2o1 = zIm[in18];
487 8425888 : f2o11 = zIm[in16];
488 8425888 : f2o12 = zIm[in17];
489 :
490 :
491 8425888 : fo5 = f2o5 + f2o6;
492 8425888 : fo6 = fnms( 0.5f, fo5, fo4 );
493 8425888 : fo7 = FFT_15PONIT_WNK4 * ( f2o6 - f2o5 );
494 8425888 : fo9 = f2o7 + f2o8;
495 8425888 : fo10 = FFT_15PONIT_WNK4 * ( f2o7 - f2o8 );
496 8425888 : fo11 = fnms( 0.5f, fo9, fo8 );
497 8425888 : fo13 = f2o9 + f2o10;
498 8425888 : fo14 = fnms( 0.5f, fo13, fo12 );
499 8425888 : fo15 = FFT_15PONIT_WNK4 * ( f2o10 - f2o9 );
500 8425888 : f2o2 = f2o11 + f2o12;
501 8425888 : f2o3 = FFT_15PONIT_WNK4 * ( f2o11 - f2o12 );
502 8425888 : f2o4 = fnms( 0.5f, f2o2, f2o1 );
503 :
504 8425888 : fi25 = fo4 + fo5;
505 8425888 : fi26 = fo12 + fo13;
506 8425888 : fi27 = fi25 + fi26;
507 8425888 : fi28 = fo6 - fo10;
508 8425888 : fi29 = fo14 - f2o3;
509 8425888 : fi30 = fi28 + fi29;
510 8425888 : f2i1 = fo8 + fo9;
511 8425888 : f2i2 = f2o1 + f2o2;
512 8425888 : f2i3 = f2i1 + f2i2;
513 8425888 : f2i4 = fo11 - fo7;
514 8425888 : f2i5 = f2o4 - fo15;
515 8425888 : f2i6 = f2i4 + f2i5;
516 8425888 : f2i7 = fo7 + fo11;
517 8425888 : f2i8 = fo15 + f2o4;
518 8425888 : f2i9 = f2i7 + f2i8;
519 8425888 : f2i10 = fo6 + fo10;
520 8425888 : f2i11 = fo14 + f2o3;
521 8425888 : f2i12 = f2i10 + f2i11;
522 :
523 8425888 : f2o13 = FFT_15PONIT_WNK1 * ( fi27 - fi9 );
524 8425888 : f2o14 = fi27 + fi9;
525 8425888 : f2o15 = fnms( FFT_15PONIT_WNK5, f2o14, fi1 );
526 8425888 : f3o3 = fi13 - fi14;
527 8425888 : f3o4 = f2i1 - f2i2;
528 8425888 : f3o1 = fnms( FFT_15PONIT_WNK3, f3o4, FFT_15PONIT_WNK2 * f3o3 );
529 8425888 : f3o2 = fmac( FFT_15PONIT_WNK2, f3o4, FFT_15PONIT_WNK3 * f3o3 );
530 8425888 : zRe[in0] = fi1 + f2o14;
531 8425888 : f3o5 = f2o13 + f2o15;
532 8425888 : zRe[in24] = f3o5 - f3o2;
533 8425888 : zRe[in18] = f3o5 + f3o2;
534 8425888 : f3o6 = f2o15 - f2o13;
535 8425888 : zRe[in33] = f3o6 - f3o1;
536 8425888 : zRe[in9] = f3o6 + f3o1;
537 :
538 8425888 : f3o7 = FFT_15PONIT_WNK1 * ( f2i3 - fi15 );
539 8425888 : f3o8 = f2i3 + fi15;
540 8425888 : f3o9 = fnms( FFT_15PONIT_WNK5, f3o8, fi2 );
541 8425888 : f3o12 = fi7 - fi8;
542 8425888 : f3o13 = fi25 - fi26;
543 8425888 : f3o10 = fnms( FFT_15PONIT_WNK3, f3o13, FFT_15PONIT_WNK2 * f3o12 );
544 8425888 : f3o11 = fmac( FFT_15PONIT_WNK2, f3o13, FFT_15PONIT_WNK3 * f3o12 );
545 8425888 : zIm[in0] = fi2 + f3o8;
546 8425888 : f3o14 = f3o7 + f3o9;
547 8425888 : zIm[in18] = f3o14 - f3o11;
548 8425888 : zIm[in24] = f3o11 + f3o14;
549 8425888 : f3o15 = f3o9 - f3o7;
550 8425888 : zIm[in9] = f3o15 - f3o10;
551 8425888 : zIm[in33] = f3o10 + f3o15;
552 :
553 8425888 : f4o1 = FFT_15PONIT_WNK1 * ( fi30 - fi12 );
554 8425888 : f4o2 = fi30 + fi12;
555 8425888 : f4o3 = fnms( FFT_15PONIT_WNK5, f4o2, fi3 );
556 8425888 : f4o6 = fi16 - fi17;
557 8425888 : f4o7 = f2i4 - f2i5;
558 8425888 : f4o4 = fnms( FFT_15PONIT_WNK3, f4o7, FFT_15PONIT_WNK2 * f4o6 );
559 8425888 : f4o5 = fmac( FFT_15PONIT_WNK2, f4o7, FFT_15PONIT_WNK3 * f4o6 );
560 8425888 : zRe[in2] = fi3 + f4o2;
561 8425888 : f4o8 = f4o1 + f4o3;
562 8425888 : zRe[in26] = f4o8 - f4o5;
563 8425888 : zRe[in17] = f4o8 + f4o5;
564 8425888 : f4o9 = f4o3 - f4o1;
565 8425888 : zRe[in32] = f4o9 - f4o4;
566 8425888 : zRe[in8] = f4o9 + f4o4;
567 :
568 8425888 : f4o10 = FFT_15PONIT_WNK1 * ( f2i6 - fi18 );
569 8425888 : f4o11 = f2i6 + fi18;
570 8425888 : f4o12 = fnms( FFT_15PONIT_WNK5, f4o11, fi6 );
571 8425888 : f4o15 = fi10 - fi11;
572 8425888 : f5o1 = fi28 - fi29;
573 8425888 : f4o13 = fnms( FFT_15PONIT_WNK3, f5o1, FFT_15PONIT_WNK2 * f4o15 );
574 8425888 : f4o14 = fmac( FFT_15PONIT_WNK2, f5o1, FFT_15PONIT_WNK3 * f4o15 );
575 8425888 : zIm[in2] = fi6 + f4o11;
576 8425888 : f5o2 = f4o10 + f4o12;
577 8425888 : zIm[in17] = f5o2 - f4o14;
578 8425888 : zIm[in26] = f4o14 + f5o2;
579 8425888 : f5o3 = f4o12 - f4o10;
580 8425888 : zIm[in32] = f4o13 + f5o3;
581 8425888 : zIm[in8] = f5o3 - f4o13;
582 :
583 8425888 : f5o4 = FFT_15PONIT_WNK1 * ( f2i9 - fi21 );
584 8425888 : f5o5 = f2i9 + fi21;
585 8425888 : f5o6 = fnms( FFT_15PONIT_WNK5, f5o5, fi5 );
586 8425888 : f5o9 = f2i10 - f2i11;
587 8425888 : f5o10 = fi22 - fi23;
588 8425888 : f5o7 = fmac( FFT_15PONIT_WNK2, f5o9, FFT_15PONIT_WNK3 * f5o10 );
589 8425888 : f5o8 = fnms( FFT_15PONIT_WNK3, f5o9, FFT_15PONIT_WNK2 * f5o10 );
590 8425888 : zIm[in1] = fi5 + f5o5;
591 8425888 : f5o11 = f5o6 - f5o4;
592 8425888 : f5o12 = f5o4 + f5o6;
593 8425888 : zIm[in34] = f5o8 + f5o11;
594 8425888 : zIm[in10] = f5o11 - f5o8;
595 :
596 8425888 : zIm[in16] = f5o12 - f5o7;
597 8425888 : zIm[in25] = f5o7 + f5o12;
598 :
599 8425888 : f5o13 = FFT_15PONIT_WNK1 * ( f2i12 - fi24 );
600 8425888 : f5o14 = f2i12 + fi24;
601 8425888 : f5o15 = fnms( FFT_15PONIT_WNK5, f5o14, fi4 );
602 8425888 : f5o18 = f2i7 - f2i8;
603 8425888 : f5o19 = fi19 - fi20;
604 8425888 : f5o16 = fmac( FFT_15PONIT_WNK2, f5o18, FFT_15PONIT_WNK3 * f5o19 );
605 8425888 : f5o17 = fnms( FFT_15PONIT_WNK3, f5o18, FFT_15PONIT_WNK2 * f5o19 );
606 8425888 : zRe[in1] = fi4 + f5o14;
607 8425888 : f5o21 = f5o15 - f5o13;
608 8425888 : f5o22 = f5o13 + f5o15;
609 :
610 8425888 : zRe[in34] = f5o21 - f5o17;
611 8425888 : zRe[in10] = f5o21 + f5o17;
612 8425888 : zRe[in25] = f5o22 - f5o16;
613 8425888 : zRe[in16] = f5o22 + f5o16;
614 :
615 8425888 : return;
616 : }
617 :
618 : /*-----------------------------------------------------------------*
619 : * fft5_shift1()
620 : * 5-point FFT with 1-point circular shift
621 : *-----------------------------------------------------------------*/
622 :
623 3491488 : static void fft5_shift1(
624 : int16_t n1, /* i : length of data */
625 : float *zRe, /* i/o: real part of input and output data */
626 : float *zIm, /* i/o: imaginary part of input and output data */
627 : const int16_t *Idx /* i : pointer of the address table */
628 : )
629 : {
630 : float fi1, fi2, fi3, fi4, fi5, fi6, fi7, fi8;
631 : float fo1, fo2, fo3, fo4, fo5, fo6, fo7, fo8;
632 : int16_t in1, in2, in3, in4, in5;
633 :
634 3491488 : in1 = Idx[0];
635 3491488 : in2 = Idx[n1];
636 3491488 : in3 = Idx[n1 * 2];
637 3491488 : in4 = Idx[n1 * 3];
638 3491488 : in5 = Idx[n1 * 4];
639 :
640 3491488 : fi1 = zRe[in1];
641 3491488 : fi2 = zIm[in1];
642 3491488 : fo3 = zRe[in2];
643 3491488 : fo4 = zRe[in5];
644 3491488 : fo6 = zRe[in3];
645 3491488 : fo7 = zRe[in4];
646 :
647 3491488 : fo5 = fo3 + fo4;
648 3491488 : fo8 = fo6 + fo7;
649 3491488 : fi3 = fo5 + fo8;
650 3491488 : fi4 = fo6 - fo7;
651 3491488 : fi5 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
652 3491488 : fi6 = fo3 - fo4;
653 :
654 3491488 : fo3 = zIm[in2];
655 3491488 : fo4 = zIm[in5];
656 3491488 : fo6 = zIm[in3];
657 3491488 : fo7 = zIm[in4];
658 :
659 3491488 : fo5 = fo3 + fo4;
660 3491488 : fo8 = fo6 + fo7;
661 3491488 : fi7 = fo3 - fo4;
662 3491488 : fi8 = fo5 + fo8;
663 3491488 : fo1 = fo6 - fo7;
664 3491488 : fo2 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
665 :
666 3491488 : zRe[in1] = fi1 + fi3;
667 3491488 : zIm[in1] = fi2 + fi8;
668 :
669 3491488 : fo3 = FFT_15PONIT_WNK2 * fi7 + FFT_15PONIT_WNK3 * fo1;
670 3491488 : fo4 = FFT_15PONIT_WNK2 * fo1 - FFT_15PONIT_WNK3 * fi7;
671 3491488 : fo7 = fi1 - fi3 / 4;
672 3491488 : fo5 = fi5 + fo7;
673 3491488 : fo6 = fo7 - fi5;
674 :
675 3491488 : zRe[in2] = fo5 + fo3;
676 3491488 : zRe[in3] = fo6 - fo4;
677 3491488 : zRe[in4] = fo6 + fo4;
678 3491488 : zRe[in5] = fo5 - fo3;
679 :
680 3491488 : fo3 = FFT_15PONIT_WNK2 * fi6 + FFT_15PONIT_WNK3 * fi4;
681 3491488 : fo4 = FFT_15PONIT_WNK2 * fi4 - FFT_15PONIT_WNK3 * fi6;
682 3491488 : fo7 = fi2 - fi8 / 4;
683 3491488 : fo5 = fo2 + fo7;
684 3491488 : fo6 = fo7 - fo2;
685 :
686 3491488 : zIm[in2] = fo5 - fo3;
687 3491488 : zIm[in3] = fo4 + fo6;
688 3491488 : zIm[in4] = fo6 - fo4;
689 3491488 : zIm[in5] = fo3 + fo5;
690 :
691 3491488 : return;
692 : }
693 :
694 : /*-----------------------------------------------------------------*
695 : * fft5_shift4()
696 : * 5-point FFT with 4-point circular shift
697 : *-----------------------------------------------------------------*/
698 :
699 311303168 : static void fft5_shift4(
700 : int16_t n1, /* i : length of data */
701 : float *zRe, /* i/o: real part of input and output data */
702 : float *zIm, /* i/o: imaginary part of input and output data */
703 : const int16_t *Idx /* i : pointer of the address table */
704 : )
705 : {
706 : float fi1, fi2, fi3, fi4, fi5, fi6, fi7, fi8;
707 : float fo1, fo2, fo3, fo4, fo5, fo6, fo7, fo8;
708 : int16_t in1, in2, in3, in4, in5;
709 :
710 311303168 : in1 = Idx[0];
711 311303168 : in2 = Idx[n1];
712 311303168 : in3 = Idx[n1 * 2];
713 311303168 : in4 = Idx[n1 * 3];
714 311303168 : in5 = Idx[n1 * 4];
715 :
716 311303168 : fi1 = zRe[in1];
717 311303168 : fi2 = zIm[in1];
718 311303168 : fo3 = zRe[in2];
719 311303168 : fo4 = zRe[in5];
720 311303168 : fo6 = zRe[in3];
721 311303168 : fo7 = zRe[in4];
722 :
723 311303168 : fo5 = fo3 + fo4;
724 311303168 : fo8 = fo6 + fo7;
725 311303168 : fi3 = fo5 + fo8;
726 311303168 : fi4 = fo6 - fo7;
727 311303168 : fi5 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
728 311303168 : fi6 = fo3 - fo4;
729 :
730 311303168 : fo3 = zIm[in2];
731 311303168 : fo4 = zIm[in5];
732 311303168 : fo6 = zIm[in3];
733 311303168 : fo7 = zIm[in4];
734 :
735 311303168 : fo5 = fo3 + fo4;
736 311303168 : fo8 = fo6 + fo7;
737 311303168 : fi7 = fo3 - fo4;
738 311303168 : fi8 = fo5 + fo8;
739 311303168 : fo1 = fo6 - fo7;
740 311303168 : fo2 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
741 :
742 311303168 : zRe[in1] = fi1 + fi3;
743 311303168 : zIm[in1] = fi2 + fi8;
744 :
745 311303168 : fo3 = FFT_15PONIT_WNK2 * fi7 + FFT_15PONIT_WNK3 * fo1;
746 311303168 : fo4 = FFT_15PONIT_WNK2 * fo1 - FFT_15PONIT_WNK3 * fi7;
747 311303168 : fo7 = fi1 - fi3 / 4;
748 311303168 : fo5 = fi5 + fo7;
749 311303168 : fo6 = fo7 - fi5;
750 311303168 : zRe[in2] = fo5 - fo3;
751 311303168 : zRe[in4] = fo6 - fo4;
752 311303168 : zRe[in3] = fo6 + fo4;
753 311303168 : zRe[in5] = fo5 + fo3;
754 :
755 311303168 : fo3 = FFT_15PONIT_WNK2 * fi6 + FFT_15PONIT_WNK3 * fi4;
756 311303168 : fo4 = FFT_15PONIT_WNK2 * fi4 - FFT_15PONIT_WNK3 * fi6;
757 311303168 : fo7 = fi2 - fi8 / 4;
758 311303168 : fo5 = fo2 + fo7;
759 311303168 : fo6 = fo7 - fo2;
760 :
761 311303168 : zIm[in3] = fo6 - fo4;
762 311303168 : zIm[in2] = fo3 + fo5;
763 311303168 : zIm[in4] = fo4 + fo6;
764 311303168 : zIm[in5] = fo5 - fo3;
765 :
766 311303168 : return;
767 : }
768 :
769 : /*-----------------------------------------------------------------*
770 : * fft5_32()
771 : * 5-point FFT called for 32 times
772 : *-----------------------------------------------------------------*/
773 :
774 9754368 : static void fft5_32(
775 : float *zRe, /* i/o: real part of input and output data */
776 : float *zIm, /* i/o: imaginary part of input and output data */
777 : const int16_t *Idx /* i : pointer of the address table */
778 : )
779 : {
780 : float fi1, fi2, fi3, fi4, fi5, fi6, fi7, fi8;
781 : float fo1, fo2, fo3, fo4, fo5, fo6, fo7, fo8;
782 : int16_t in1, in2, in3, in4, in5;
783 :
784 9754368 : in1 = Idx[0];
785 9754368 : in2 = Idx[32];
786 9754368 : in3 = Idx[64];
787 9754368 : in4 = Idx[96];
788 9754368 : in5 = Idx[128];
789 :
790 9754368 : fi1 = zRe[in1];
791 9754368 : fi2 = zIm[in1];
792 9754368 : fo3 = zRe[in2];
793 9754368 : fo4 = zRe[in5];
794 9754368 : fo6 = zRe[in3];
795 9754368 : fo7 = zRe[in4];
796 :
797 9754368 : fo5 = fo3 + fo4;
798 9754368 : fo8 = fo6 + fo7;
799 9754368 : fi3 = fo5 + fo8;
800 9754368 : fi4 = fo6 - fo7;
801 9754368 : fi5 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
802 9754368 : fi6 = fo3 - fo4;
803 :
804 9754368 : fo3 = zIm[in2];
805 9754368 : fo4 = zIm[in5];
806 9754368 : fo6 = zIm[in3];
807 9754368 : fo7 = zIm[in4];
808 :
809 9754368 : fo5 = fo3 + fo4;
810 9754368 : fo8 = fo6 + fo7;
811 9754368 : fi7 = fo3 - fo4;
812 9754368 : fi8 = fo5 + fo8;
813 9754368 : fo1 = fo6 - fo7;
814 9754368 : fo2 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
815 :
816 9754368 : zRe[in1] = fi1 + fi3;
817 9754368 : zIm[in1] = fi2 + fi8;
818 :
819 9754368 : fo3 = FFT_15PONIT_WNK2 * fi7 + FFT_15PONIT_WNK3 * fo1;
820 9754368 : fo4 = FFT_15PONIT_WNK2 * fo1 - FFT_15PONIT_WNK3 * fi7;
821 9754368 : fo7 = fi1 - fi3 / 4;
822 9754368 : fo5 = fi5 + fo7;
823 9754368 : fo6 = fo7 - fi5;
824 :
825 9754368 : zRe[in2] = fo6 + fo4;
826 9754368 : zRe[in3] = fo5 + fo3;
827 9754368 : zRe[in4] = fo5 - fo3;
828 9754368 : zRe[in5] = fo6 - fo4;
829 :
830 9754368 : fo3 = FFT_15PONIT_WNK2 * fi6 + FFT_15PONIT_WNK3 * fi4;
831 9754368 : fo4 = FFT_15PONIT_WNK2 * fi4 - FFT_15PONIT_WNK3 * fi6;
832 9754368 : fo7 = fi2 - fi8 / 4;
833 9754368 : fo5 = fo2 + fo7;
834 9754368 : fo6 = fo7 - fo2;
835 :
836 9754368 : zIm[in2] = fo6 - fo4;
837 9754368 : zIm[in3] = fo5 - fo3;
838 9754368 : zIm[in4] = fo3 + fo5;
839 9754368 : zIm[in5] = fo4 + fo6;
840 :
841 9754368 : return;
842 : }
843 :
844 : /*-----------------------------------------------------------------*
845 : * fft64()
846 : * 64-point FFT
847 : *-----------------------------------------------------------------*/
848 :
849 24320560 : static void fft64(
850 : float *x, /* i/o: real part of input and output data */
851 : float *y, /* i/o: imaginary part of input and output data */
852 : const int16_t *Idx /* i : pointer of the address table */
853 : )
854 : {
855 : int16_t i, id, jd;
856 : float z[128];
857 1580836400 : for ( i = 0; i < 64; i++ )
858 : {
859 1556515840 : id = Idx[i];
860 1556515840 : z[2 * i] = x[id];
861 1556515840 : z[2 * i + 1] = y[id];
862 : }
863 :
864 24320560 : cdftForw( 128, z, Ip_fft64, w_fft64 );
865 :
866 1580836400 : for ( i = 0; i < 64; i++ )
867 : {
868 1556515840 : jd = Odx_fft64[i];
869 1556515840 : id = Idx[jd];
870 1556515840 : x[id] = z[2 * i];
871 1556515840 : y[id] = z[2 * i + 1];
872 : }
873 :
874 24320560 : return;
875 : }
876 :
877 :
878 : /*-----------------------------------------------------------------*
879 : * fft32_15()
880 : * 32-point FFT called for 15 times
881 : *-----------------------------------------------------------------*/
882 :
883 3949635 : static void fft32_15(
884 : float *x, /* i/o: real part of input and output data */
885 : float *y, /* i/o: imaginary part of input and output data */
886 : const int16_t *Idx /* i : pointer of the address table */
887 : )
888 : {
889 : int16_t i, id, jd;
890 : float z[64];
891 :
892 130337955 : for ( i = 0; i < 32; i++ )
893 : {
894 126388320 : id = Idx[i];
895 126388320 : z[2 * i] = x[id];
896 126388320 : z[2 * i + 1] = y[id];
897 : }
898 :
899 3949635 : cdftForw( 64, z, Ip_fft32, w_fft32 );
900 :
901 130337955 : for ( i = 0; i < 32; i++ )
902 : {
903 126388320 : jd = Odx_fft32_15[i];
904 126388320 : id = Idx[jd];
905 126388320 : x[id] = z[2 * i];
906 126388320 : y[id] = z[2 * i + 1];
907 : }
908 :
909 3949635 : return;
910 : }
911 :
912 : /*-----------------------------------------------------------------*
913 : * fft32_5()
914 : * 32-point FFT called for 5 times
915 : *-----------------------------------------------------------------*/
916 :
917 1524120 : static void fft32_5(
918 : float *x, /* i/o: real part of input and output data */
919 : float *y, /* i/o: imaginary part of input and output data */
920 : const int16_t *Idx /* i : pointer of the address table */
921 : )
922 : {
923 : int16_t i, id, jd;
924 : float z[64];
925 :
926 50295960 : for ( i = 0; i < 32; i++ )
927 : {
928 48771840 : id = Idx[i];
929 48771840 : z[2 * i] = x[id];
930 48771840 : z[2 * i + 1] = y[id];
931 : }
932 :
933 1524120 : cdftForw( 64, z, Ip_fft32, w_fft32 );
934 :
935 50295960 : for ( i = 0; i < 32; i++ )
936 : {
937 48771840 : jd = Odx_fft32_5[i];
938 48771840 : id = Idx[jd];
939 48771840 : x[id] = z[2 * i];
940 48771840 : y[id] = z[2 * i + 1];
941 : }
942 :
943 1524120 : return;
944 : }
945 :
946 : /*-----------------------------------------------------------------*
947 : * fft16()
948 : * 16-point FFT
949 : *-----------------------------------------------------------------*/
950 :
951 1091090 : static void fft16(
952 : float *x, /* i/o: real part of input and output data */
953 : float *y, /* i/o: imaginary part of input and output data */
954 : const int16_t *Idx /* i : pointer of the address table */
955 : )
956 : {
957 : int16_t i, id, jd;
958 : float z[32];
959 :
960 18548530 : for ( i = 0; i < 16; i++ )
961 : {
962 17457440 : id = Idx[i];
963 17457440 : z[2 * i] = x[id];
964 17457440 : z[2 * i + 1] = y[id];
965 : }
966 :
967 1091090 : cdftForw( 32, z, Ip_fft16, w_fft16 );
968 :
969 18548530 : for ( i = 0; i < 16; i++ )
970 : {
971 17457440 : jd = Odx_fft16[i];
972 17457440 : id = Idx[jd];
973 17457440 : x[id] = z[2 * i];
974 17457440 : y[id] = z[2 * i + 1];
975 : }
976 :
977 1091090 : return;
978 : }
979 :
980 : /*-----------------------------------------------------------------*
981 : * fft8()
982 : * 8-point FFT
983 : *-----------------------------------------------------------------*/
984 :
985 157350 : static void fft8(
986 : float *x, /* i/o: real part of input and output data */
987 : float *y, /* i/o: imaginary part of input and output data */
988 : const int16_t *Idx /* i : pointer of the address table */
989 : )
990 : {
991 : int16_t i, id;
992 : float z[16];
993 :
994 1416150 : for ( i = 0; i < 8; i++ )
995 : {
996 1258800 : id = Idx[i];
997 1258800 : z[2 * i] = x[id];
998 1258800 : z[2 * i + 1] = y[id];
999 : }
1000 :
1001 157350 : cdftForw( 16, z, Ip_fft8, w_fft8 );
1002 :
1003 1416150 : for ( i = 0; i < 8; i++ )
1004 : {
1005 1258800 : id = Idx[i];
1006 1258800 : x[id] = z[2 * i];
1007 1258800 : y[id] = z[2 * i + 1];
1008 : }
1009 :
1010 157350 : return;
1011 : }
1012 :
1013 : /*-----------------------------------------------------------------*
1014 : * fft8_5()
1015 : * 8-point FFT with shift 5
1016 : *-----------------------------------------------------------------*/
1017 :
1018 17740 : static void fft8_5(
1019 : float *x, /* i/o: real part of input and output data */
1020 : float *y, /* i/o: imaginary part of input and output data */
1021 : const int16_t *Idx /* i : pointer of the address table */
1022 : )
1023 : {
1024 : int16_t i, id, jd;
1025 : float z[16];
1026 :
1027 159660 : for ( i = 0; i < 8; i++ )
1028 : {
1029 141920 : id = Idx[i];
1030 141920 : z[2 * i] = x[id];
1031 141920 : z[2 * i + 1] = y[id];
1032 : }
1033 :
1034 17740 : cdftForw( 16, z, Ip_fft8, w_fft8 );
1035 :
1036 159660 : for ( i = 0; i < 8; i++ )
1037 : {
1038 141920 : jd = Odx_fft8_5[i];
1039 141920 : id = Idx[jd];
1040 141920 : x[id] = z[2 * i];
1041 141920 : y[id] = z[2 * i + 1];
1042 : }
1043 17740 : return;
1044 : }
1045 :
1046 : /*-----------------------------------------------------------------*
1047 : * fft5_8()
1048 : * 5-point FFT with shift 2
1049 : *-----------------------------------------------------------------*/
1050 :
1051 28384 : static void fft5_8(
1052 : int16_t n1, /* i : length of data */
1053 : float *zRe, /* i/o: real part of input and output data */
1054 : float *zIm, /* i/o: imaginary part of input and output data */
1055 : const int16_t *Idx /* i : pointer of the address table */
1056 : )
1057 : {
1058 : float fi1, fi2, fi3, fi4, fi5, fi6, fi7, fi8;
1059 : float fo1, fo2, fo3, fo4, fo5, fo6, fo7, fo8;
1060 : int16_t in1, in2, in3, in4, in5;
1061 :
1062 28384 : in1 = Idx[0];
1063 28384 : in2 = Idx[n1];
1064 28384 : in3 = Idx[n1 * 2];
1065 28384 : in4 = Idx[n1 * 3];
1066 28384 : in5 = Idx[n1 * 4];
1067 :
1068 28384 : fi1 = zRe[in1];
1069 28384 : fi2 = zIm[in1];
1070 28384 : fo3 = zRe[in2];
1071 28384 : fo4 = zRe[in5];
1072 28384 : fo6 = zRe[in3];
1073 28384 : fo7 = zRe[in4];
1074 :
1075 28384 : fo5 = fo3 + fo4;
1076 28384 : fo8 = fo6 + fo7;
1077 28384 : fi3 = fo5 + fo8;
1078 28384 : fi4 = fo6 - fo7;
1079 28384 : fi5 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
1080 28384 : fi6 = fo3 - fo4;
1081 :
1082 28384 : fo3 = zIm[in2];
1083 28384 : fo4 = zIm[in5];
1084 28384 : fo6 = zIm[in3];
1085 28384 : fo7 = zIm[in4];
1086 :
1087 28384 : fo5 = fo3 + fo4;
1088 28384 : fo8 = fo6 + fo7;
1089 28384 : fi7 = fo3 - fo4;
1090 28384 : fi8 = fo5 + fo8;
1091 28384 : fo1 = fo6 - fo7;
1092 28384 : fo2 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
1093 :
1094 28384 : zRe[in1] = fi1 + fi3;
1095 28384 : zIm[in1] = fi2 + fi8;
1096 :
1097 28384 : fo3 = FFT_15PONIT_WNK2 * fi7 + FFT_15PONIT_WNK3 * fo1;
1098 28384 : fo4 = FFT_15PONIT_WNK2 * fo1 - FFT_15PONIT_WNK3 * fi7;
1099 28384 : fo7 = fi1 - fi3 / 4;
1100 28384 : fo5 = fi5 + fo7;
1101 28384 : fo6 = fo7 - fi5;
1102 :
1103 28384 : zRe[in2] = fo6 - fo4;
1104 28384 : zRe[in3] = fo5 - fo3;
1105 28384 : zRe[in5] = fo6 + fo4;
1106 28384 : zRe[in4] = fo5 + fo3;
1107 :
1108 28384 : fo3 = FFT_15PONIT_WNK2 * fi6 + FFT_15PONIT_WNK3 * fi4;
1109 28384 : fo4 = FFT_15PONIT_WNK2 * fi4 - FFT_15PONIT_WNK3 * fi6;
1110 28384 : fo7 = fi2 - fi8 / 4;
1111 28384 : fo5 = fo2 + fo7;
1112 28384 : fo6 = fo7 - fo2;
1113 :
1114 28384 : zIm[in2] = fo4 + fo6;
1115 28384 : zIm[in3] = fo3 + fo5;
1116 28384 : zIm[in4] = fo5 - fo3;
1117 28384 : zIm[in5] = fo6 - fo4;
1118 :
1119 28384 : return;
1120 : }
1121 :
1122 : /*-----------------------------------------------------------------*
1123 : * fft4_5()
1124 : * 8-point FFT with shift 1
1125 : *-----------------------------------------------------------------*/
1126 :
1127 1960 : static void fft4_5(
1128 : float *x, /* i/o: real part of input and output data */
1129 : float *y, /* i/o: imaginary part of input and output data */
1130 : const int16_t *Idx /* i : pointer of the address table */
1131 : )
1132 : {
1133 : int16_t i, id, jd;
1134 : float z[8];
1135 :
1136 9800 : for ( i = 0; i < 4; i++ )
1137 : {
1138 7840 : id = Idx[i];
1139 7840 : z[2 * i] = x[id];
1140 7840 : z[2 * i + 1] = y[id];
1141 : }
1142 :
1143 1960 : cdftForw( 8, z, Ip_fft4, w_fft4 );
1144 :
1145 9800 : for ( i = 0; i < 4; i++ )
1146 : {
1147 7840 : jd = Odx_fft4_5[i];
1148 7840 : id = Idx[jd];
1149 7840 : x[id] = z[2 * i];
1150 7840 : y[id] = z[2 * i + 1];
1151 : }
1152 1960 : return;
1153 : }
1154 :
1155 : /*-----------------------------------------------------------------*
1156 : * fft5_4()
1157 : * 5-point FFT with shift 4
1158 : *-----------------------------------------------------------------*/
1159 :
1160 1568 : static void fft5_4(
1161 : int16_t n1,
1162 : float *zRe,
1163 : float *zIm,
1164 : const int16_t *Idx )
1165 : {
1166 : float fi1, fi2, fi3, fi4, fi5, fi6, fi7, fi8;
1167 : float fo1, fo2, fo3, fo4, fo5, fo6, fo7, fo8;
1168 : int16_t in1, in2, in3, in4, in5;
1169 :
1170 1568 : in1 = Idx[0];
1171 1568 : in2 = Idx[n1];
1172 1568 : in3 = Idx[n1 * 2];
1173 1568 : in4 = Idx[n1 * 3];
1174 1568 : in5 = Idx[n1 * 4];
1175 :
1176 1568 : fi1 = zRe[in1];
1177 1568 : fi2 = zIm[in1];
1178 1568 : fo3 = zRe[in2];
1179 1568 : fo4 = zRe[in5];
1180 1568 : fo6 = zRe[in3];
1181 1568 : fo7 = zRe[in4];
1182 :
1183 1568 : fo5 = fo3 + fo4;
1184 1568 : fo8 = fo6 + fo7;
1185 1568 : fi3 = fo5 + fo8;
1186 1568 : fi4 = fo6 - fo7;
1187 1568 : fi5 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
1188 1568 : fi6 = fo3 - fo4;
1189 :
1190 1568 : fo3 = zIm[in2];
1191 1568 : fo4 = zIm[in5];
1192 1568 : fo6 = zIm[in3];
1193 1568 : fo7 = zIm[in4];
1194 :
1195 1568 : fo5 = fo3 + fo4;
1196 1568 : fo8 = fo6 + fo7;
1197 1568 : fi7 = fo3 - fo4;
1198 1568 : fi8 = fo5 + fo8;
1199 1568 : fo1 = fo6 - fo7;
1200 1568 : fo2 = FFT_15PONIT_WNK1 * ( fo5 - fo8 );
1201 :
1202 1568 : zRe[in1] = fi1 + fi3;
1203 1568 : zIm[in1] = fi2 + fi8;
1204 :
1205 1568 : fo3 = FFT_15PONIT_WNK2 * fi7 + FFT_15PONIT_WNK3 * fo1;
1206 1568 : fo4 = FFT_15PONIT_WNK2 * fo1 - FFT_15PONIT_WNK3 * fi7;
1207 1568 : fo7 = fi1 - fi3 / 4;
1208 1568 : fo5 = fi5 + fo7;
1209 1568 : fo6 = fo7 - fi5;
1210 :
1211 1568 : zRe[in2] = fo5 - fo3;
1212 1568 : zRe[in4] = fo6 - fo4;
1213 1568 : zRe[in3] = fo6 + fo4;
1214 1568 : zRe[in5] = fo5 + fo3;
1215 :
1216 1568 : fo3 = FFT_15PONIT_WNK2 * fi6 + FFT_15PONIT_WNK3 * fi4;
1217 1568 : fo4 = FFT_15PONIT_WNK2 * fi4 - FFT_15PONIT_WNK3 * fi6;
1218 1568 : fo7 = fi2 - fi8 / 4;
1219 1568 : fo5 = fo2 + fo7;
1220 1568 : fo6 = fo7 - fo2;
1221 :
1222 1568 : zIm[in2] = fo3 + fo5;
1223 1568 : zIm[in3] = fo6 - fo4;
1224 1568 : zIm[in4] = fo4 + fo6;
1225 1568 : zIm[in5] = fo5 - fo3;
1226 :
1227 1568 : return;
1228 : }
1229 :
1230 :
1231 : /*-----------------------------------------------------------------*
1232 : * DoRTFT80()
1233 : * a low complexity 2-dimensional DFT of 80 points
1234 : *-----------------------------------------------------------------*/
1235 :
1236 218218 : void DoRTFT80(
1237 : float *x, /* i/o: real part of input and output data */
1238 : float *y /* i/o: imaginary part of input and output data */
1239 : )
1240 : {
1241 : int16_t j;
1242 :
1243 : /* Applying 16-point FFT for 5 times based on the address table Idx_dortft80 */
1244 1309308 : for ( j = 0; j < 5; j++ )
1245 : {
1246 1091090 : fft16( x, y, Idx_dortft80 + 16 * j );
1247 : }
1248 :
1249 : /* Applying 5-point FFT for 16 times based on the address table Idx_dortft80 */
1250 3709706 : for ( j = 0; j < 16; j++ )
1251 : {
1252 3491488 : fft5_shift1( 16, x, y, Idx_dortft80 + j );
1253 : }
1254 :
1255 218218 : return;
1256 : }
1257 :
1258 : /*-----------------------------------------------------------------*
1259 : * DoRTFT120()
1260 : * a low complexity 2-dimensional DFT of 120 points
1261 : *-----------------------------------------------------------------*/
1262 :
1263 10490 : void DoRTFT120(
1264 : float *x, /* i/o: real part of input and output data */
1265 : float *y /* i/o: imaginary part of input and output data */
1266 : )
1267 : {
1268 : int16_t j;
1269 :
1270 : /* Applying 8-point FFT for 15 times based on the address table Idx_dortft120 */
1271 167840 : for ( j = 0; j < 15; j++ )
1272 : {
1273 157350 : fft8( x, y, Idx_dortft120 + 8 * j );
1274 : }
1275 :
1276 : /* Applying 15-point FFT for 8 times based on the address table Idx_dortft120 */
1277 94410 : for ( j = 0; j < 8; j++ )
1278 : {
1279 83920 : fft15_shift2( 8, x, y, Idx_dortft120 + j );
1280 : }
1281 :
1282 10490 : return;
1283 : }
1284 :
1285 : /*-----------------------------------------------------------------*
1286 : * DoRTFT160()
1287 : * a low complexity 2-dimensional DFT of 160 points
1288 : *-----------------------------------------------------------------*/
1289 :
1290 304824 : void DoRTFT160(
1291 : float x[], /* i/o: real part of input and output data */
1292 : float y[] /* i/o: imaginary part of input and output data */
1293 : )
1294 : {
1295 : int16_t j;
1296 :
1297 : /* Applying 32-point FFT for 5 times based on the address table Idx_dortft160 */
1298 1828944 : for ( j = 0; j < 5; j++ )
1299 : {
1300 1524120 : fft32_5( x, y, Idx_dortft160 + 32 * j );
1301 : }
1302 :
1303 : /* Applying 5-point FFT for 32 times based on the address table Idx_dortft160 */
1304 10059192 : for ( j = 0; j < 32; j++ )
1305 : {
1306 9754368 : fft5_32( x, y, Idx_dortft160 + j );
1307 : }
1308 :
1309 304824 : return;
1310 : }
1311 :
1312 : /*-----------------------------------------------------------------*
1313 : * DoRTFT320()
1314 : * a low complexity 2-dimensional DFT of 320 points
1315 : *-----------------------------------------------------------------*/
1316 :
1317 4864112 : void DoRTFT320(
1318 : float *x, /* i/o: real part of input and output data */
1319 : float *y /* i/o: imaginary part of input and output data */
1320 : )
1321 : {
1322 : int16_t j;
1323 :
1324 : /* Applying 64-point FFT for 5 times based on the address table Idx_dortft160 */
1325 29184672 : for ( j = 0; j < 5; j++ )
1326 : {
1327 24320560 : fft64( x, y, Idx_dortft320 + 64 * j );
1328 : }
1329 :
1330 : /* Applying 5-point FFT for 64 times based on the address table Idx_dortft160 */
1331 316167280 : for ( j = 0; j < 64; j++ )
1332 : {
1333 311303168 : fft5_shift4( 64, x, y, Idx_dortft320 + j );
1334 : }
1335 :
1336 4864112 : return;
1337 : }
1338 :
1339 : /*-----------------------------------------------------------------*
1340 : * DoRTFT480()
1341 : * a low complexity 2-dimensional DFT of 480 points
1342 : *-----------------------------------------------------------------*/
1343 :
1344 263309 : void DoRTFT480(
1345 : float *x, /* i/o: real part of input and output data */
1346 : float *y /* i/o: imaginary part of input and output data */
1347 : )
1348 : {
1349 : int16_t j;
1350 :
1351 : /* Applying 32-point FFT for 15 times based on the address table Idx_dortft160 */
1352 4212944 : for ( j = 0; j < 15; j++ )
1353 : {
1354 3949635 : fft32_15( x, y, Idx_dortft480 + 32 * j );
1355 : }
1356 :
1357 : /* Applying 5-point FFT for 32 times based on the address table Idx_dortft160 */
1358 8689197 : for ( j = 0; j < 32; j++ )
1359 : {
1360 8425888 : fft15_shift8( 32, x, y, Idx_dortft480 + j );
1361 : }
1362 :
1363 263309 : return;
1364 : }
1365 :
1366 : /*-----------------------------------------------------------------*
1367 : * DoRTFT40()
1368 : * a low complexity 2-dimensional DFT of 40 points
1369 : *-----------------------------------------------------------------*/
1370 :
1371 3548 : void DoRTFT40(
1372 : float *x, /* i/o: real part of input and output data */
1373 : float *y /* i/o: imaginary part of input and output data */
1374 : )
1375 : {
1376 : int16_t j;
1377 : /* Applying 8-point FFT for 5 times based on the address table Idx_dortft40 */
1378 21288 : for ( j = 0; j < 5; j++ )
1379 : {
1380 17740 : fft8_5( x, y, Idx_dortft40 + 8 * j );
1381 : }
1382 :
1383 : /* Applying 5-point FFT for 8 times based on the address table Idx_dortft40 */
1384 31932 : for ( j = 0; j < 8; j++ )
1385 : {
1386 28384 : fft5_8( 8, x, y, Idx_dortft40 + j );
1387 : }
1388 :
1389 3548 : return;
1390 : }
1391 :
1392 : /*-----------------------------------------------------------------*
1393 : * DoRTFT20()
1394 : * a low complexity 2-dimensional DFT of 20 points
1395 : *-----------------------------------------------------------------*/
1396 :
1397 392 : void DoRTFT20(
1398 : float *x, /* i/o: real part of input and output data */
1399 : float *y /* i/o: imaginary part of input and output data */
1400 : )
1401 : {
1402 : int16_t j;
1403 :
1404 : /* Applying 4-point FFT for 5 times based on the address table Idx_dortft20 */
1405 2352 : for ( j = 0; j < 5; j++ )
1406 : {
1407 1960 : fft4_5( x, y, Idx_dortft20 + 4 * j );
1408 : }
1409 :
1410 : /* Applying 5-point FFT for 4 times based on the address table Idx_dortft20 */
1411 1960 : for ( j = 0; j < 4; j++ )
1412 : {
1413 1568 : fft5_4( 4, x, y, Idx_dortft20 + j );
1414 : }
1415 :
1416 392 : return;
1417 : }
1418 :
1419 : /*-----------------------------------------------------------------*
1420 : * DoRTFT128()
1421 : * FFT with 128 points
1422 : *-----------------------------------------------------------------*/
1423 :
1424 12680384 : void DoRTFT128(
1425 : float *x, /* i/o: real part of input and output data */
1426 : float *y /* i/o: imaginary part of input and output data */
1427 : )
1428 : {
1429 :
1430 : int16_t i;
1431 : float z[256];
1432 :
1433 1635769536 : for ( i = 0; i < 128; i++ )
1434 : {
1435 1623089152 : z[2 * i] = x[i];
1436 1623089152 : z[2 * i + 1] = y[i];
1437 : }
1438 :
1439 12680384 : cdftForw( 256, z, Ip_fft128, w_fft128 );
1440 :
1441 12680384 : x[0] = z[0];
1442 12680384 : y[0] = z[1];
1443 1623089152 : for ( i = 1; i < 128; i++ )
1444 : {
1445 1610408768 : x[128 - i] = z[2 * i];
1446 1610408768 : y[128 - i] = z[2 * i + 1];
1447 : }
1448 :
1449 12680384 : return;
1450 : }
1451 :
1452 : /*-----------------------------------------------------------------*
1453 : * cdftForw()
1454 : * Main fuction of Complex Discrete Fourier Transform
1455 : *-----------------------------------------------------------------*/
1456 :
1457 198843391 : static void cdftForw(
1458 : int16_t n, /* i : data length of real and imag */
1459 : float *a, /* i/o: input/output data */
1460 : const int16_t *ip, /* i : work area for bit reversal */
1461 : const float *w /* i : cos/sin table */
1462 : )
1463 : {
1464 : /* bit reversal */
1465 198843391 : bitrv2_SR( n, ip + 2, a );
1466 :
1467 : /* Do FFT */
1468 198843391 : cftfsub( n, a, w );
1469 198843391 : }
1470 :
1471 : /*-----------------------------------------------------------------*
1472 : * bitrv2_SR()
1473 : * Bit reversal
1474 : *-----------------------------------------------------------------*/
1475 :
1476 200340606 : static void bitrv2_SR(
1477 : int16_t n, /* i : data length of real and imag */
1478 : const int16_t *ip, /* i/o: work area for bit reversal */
1479 : float *a /* i/o: input/output data */
1480 : )
1481 : {
1482 : int16_t j, j1, k, k1, m, m2;
1483 : int16_t l;
1484 : float xr, xi, yr, yi;
1485 :
1486 200340606 : if ( n == 64 )
1487 : {
1488 6970970 : m = 4;
1489 6970970 : l = -1;
1490 : }
1491 193369636 : else if ( n == 256 )
1492 : {
1493 12680390 : m = 8;
1494 12680390 : l = -1;
1495 : }
1496 180689246 : else if ( n == 16 )
1497 : {
1498 175090 : m = 2;
1499 175090 : l = -1;
1500 : }
1501 : else
1502 : {
1503 180514156 : l = n;
1504 180514156 : m = 1;
1505 :
1506 801380769 : while ( ( m << 3 ) < l )
1507 : {
1508 620866613 : l >>= 1;
1509 620866613 : m <<= 1;
1510 : }
1511 180514156 : l -= m * 8;
1512 : }
1513 :
1514 200340606 : m2 = 2 * m;
1515 :
1516 200340606 : if ( l == 0 )
1517 : {
1518 567656235 : for ( k = 0; k < m; k++ )
1519 : {
1520 2017344738 : for ( j = 0; j < k; j++ )
1521 : {
1522 1524317134 : j1 = 2 * j + ip[k];
1523 1524317134 : k1 = 2 * k + ip[j];
1524 1524317134 : xr = a[j1];
1525 1524317134 : xi = a[j1 + 1];
1526 1524317134 : yr = a[k1];
1527 1524317134 : yi = a[k1 + 1];
1528 1524317134 : a[j1] = yr;
1529 1524317134 : a[j1 + 1] = yi;
1530 1524317134 : a[k1] = xr;
1531 1524317134 : a[k1 + 1] = xi;
1532 1524317134 : j1 += m2;
1533 1524317134 : k1 += 2 * m2;
1534 1524317134 : xr = a[j1];
1535 1524317134 : xi = a[j1 + 1];
1536 1524317134 : yr = a[k1];
1537 1524317134 : yi = a[k1 + 1];
1538 1524317134 : a[j1] = yr;
1539 1524317134 : a[j1 + 1] = yi;
1540 1524317134 : a[k1] = xr;
1541 1524317134 : a[k1 + 1] = xi;
1542 1524317134 : j1 += m2;
1543 1524317134 : k1 -= m2;
1544 1524317134 : xr = a[j1];
1545 1524317134 : xi = a[j1 + 1];
1546 1524317134 : yr = a[k1];
1547 1524317134 : yi = a[k1 + 1];
1548 1524317134 : a[j1] = yr;
1549 1524317134 : a[j1 + 1] = yi;
1550 1524317134 : a[k1] = xr;
1551 1524317134 : a[k1 + 1] = xi;
1552 1524317134 : j1 += m2;
1553 1524317134 : k1 += 2 * m2;
1554 1524317134 : xr = a[j1];
1555 1524317134 : xi = a[j1 + 1];
1556 1524317134 : yr = a[k1];
1557 1524317134 : yi = a[k1 + 1];
1558 1524317134 : a[j1] = yr;
1559 1524317134 : a[j1 + 1] = yi;
1560 1524317134 : a[k1] = xr;
1561 1524317134 : a[k1 + 1] = xi;
1562 : }
1563 :
1564 493027604 : j1 = 2 * k + m2 + ip[k];
1565 493027604 : k1 = j1 + m2;
1566 493027604 : xr = a[j1];
1567 493027604 : xi = a[j1 + 1];
1568 493027604 : yr = a[k1];
1569 493027604 : yi = a[k1 + 1];
1570 493027604 : a[j1] = yr;
1571 493027604 : a[j1 + 1] = yi;
1572 493027604 : a[k1] = xr;
1573 493027604 : a[k1 + 1] = xi;
1574 : }
1575 : }
1576 : else
1577 : {
1578 1823845580 : for ( k = 1; k < m; k++ )
1579 : {
1580 14801448435 : for ( j = 0; j < k; j++ )
1581 : {
1582 13103314830 : j1 = 2 * j + ip[k];
1583 13103314830 : k1 = 2 * k + ip[j];
1584 13103314830 : xr = a[j1];
1585 13103314830 : xi = a[j1 + 1];
1586 13103314830 : yr = a[k1];
1587 13103314830 : yi = a[k1 + 1];
1588 13103314830 : a[j1] = yr;
1589 13103314830 : a[j1 + 1] = yi;
1590 13103314830 : a[k1] = xr;
1591 13103314830 : a[k1 + 1] = xi;
1592 13103314830 : j1 += m2;
1593 13103314830 : k1 += m2;
1594 13103314830 : xr = a[j1];
1595 13103314830 : xi = a[j1 + 1];
1596 13103314830 : yr = a[k1];
1597 13103314830 : yi = a[k1 + 1];
1598 13103314830 : a[j1] = yr;
1599 13103314830 : a[j1 + 1] = yi;
1600 13103314830 : a[k1] = xr;
1601 13103314830 : a[k1 + 1] = xi;
1602 : }
1603 : }
1604 : }
1605 :
1606 200340606 : return;
1607 : }
1608 :
1609 : /*-----------------------------------------------------------------*
1610 : * cftfsub()
1611 : * Complex Discrete Fourier Transform
1612 : *-----------------------------------------------------------------*/
1613 :
1614 200030766 : static void cftfsub(
1615 : int16_t n, /* i : data length of real and imag */
1616 : float *a, /* i/o: input/output data */
1617 : const float *w /* i : cos/sin table */
1618 : )
1619 : {
1620 : int16_t j, j1, j2, j3, l;
1621 : float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
1622 :
1623 200030766 : l = 2;
1624 200030766 : if ( n > 8 )
1625 : {
1626 200028806 : cft1st( n, a, w );
1627 :
1628 200028806 : l = 8;
1629 672405133 : while ( ( l << 2 ) < n )
1630 : {
1631 472376327 : cftmdl( n, l, a, w );
1632 472376327 : l <<= 2;
1633 : }
1634 : }
1635 :
1636 200030766 : if ( ( l << 2 ) == n )
1637 : {
1638 3616290503 : for ( j = 0; j < l; j += 2 )
1639 : {
1640 3541661872 : j1 = j + l;
1641 3541661872 : j2 = j1 + l;
1642 3541661872 : j3 = j2 + l;
1643 3541661872 : x0r = a[j] + a[j1];
1644 3541661872 : x0i = a[j + 1] + a[j1 + 1];
1645 3541661872 : x1r = a[j] - a[j1];
1646 3541661872 : x1i = a[j + 1] - a[j1 + 1];
1647 3541661872 : x2r = a[j2] + a[j3];
1648 3541661872 : x2i = a[j2 + 1] + a[j3 + 1];
1649 3541661872 : x3r = a[j2] - a[j3];
1650 3541661872 : x3i = a[j2 + 1] - a[j3 + 1];
1651 3541661872 : a[j] = x0r + x2r;
1652 3541661872 : a[j + 1] = x0i + x2i;
1653 3541661872 : a[j2] = x0r - x2r;
1654 3541661872 : a[j2 + 1] = x0i - x2i;
1655 3541661872 : a[j1] = x1r - x3i;
1656 3541661872 : a[j1 + 1] = x1i + x3r;
1657 3541661872 : a[j3] = x1r + x3i;
1658 3541661872 : a[j3 + 1] = x1i - x3r;
1659 : }
1660 : }
1661 : else
1662 : {
1663 28150919935 : for ( j = 0; j < l; j += 2 )
1664 : {
1665 28025517800 : j1 = j + l;
1666 28025517800 : x0r = a[j] - a[j1];
1667 28025517800 : x0i = a[j + 1] - a[j1 + 1];
1668 28025517800 : a[j] += a[j1];
1669 28025517800 : a[j + 1] += a[j1 + 1];
1670 28025517800 : a[j1] = x0r;
1671 28025517800 : a[j1 + 1] = x0i;
1672 : }
1673 : }
1674 :
1675 200030766 : return;
1676 : }
1677 :
1678 : /*-----------------------------------------------------------------*
1679 : * cft1st()
1680 : * Subfunction of Complex Discrete Fourier Transform
1681 : *-----------------------------------------------------------------*/
1682 :
1683 200338646 : static void cft1st(
1684 : int16_t n, /* i : data length of real and imag */
1685 : float *a, /* i/o: input/output data */
1686 : const float *w /* i : cos/sin table */
1687 : )
1688 : {
1689 : int16_t j, k1, k2;
1690 : float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
1691 : float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
1692 :
1693 200338646 : x0r = a[0] + a[2];
1694 200338646 : x0i = a[1] + a[3];
1695 200338646 : x1r = a[0] - a[2];
1696 200338646 : x1i = a[1] - a[3];
1697 200338646 : x2r = a[4] + a[6];
1698 200338646 : x2i = a[5] + a[7];
1699 200338646 : x3r = a[4] - a[6];
1700 200338646 : x3i = a[5] - a[7];
1701 200338646 : a[0] = x0r + x2r;
1702 200338646 : a[1] = x0i + x2i;
1703 200338646 : a[4] = x0r - x2r;
1704 200338646 : a[5] = x0i - x2i;
1705 200338646 : a[2] = x1r - x3i;
1706 200338646 : a[3] = x1i + x3r;
1707 200338646 : a[6] = x1r + x3i;
1708 200338646 : a[7] = x1i - x3r;
1709 200338646 : wk1r = w[2];
1710 200338646 : x0r = a[8] + a[10];
1711 200338646 : x0i = a[9] + a[11];
1712 200338646 : x1r = a[8] - a[10];
1713 200338646 : x1i = a[9] - a[11];
1714 200338646 : x2r = a[12] + a[14];
1715 200338646 : x2i = a[13] + a[15];
1716 200338646 : x3r = a[12] - a[14];
1717 200338646 : x3i = a[13] - a[15];
1718 200338646 : a[8] = x0r + x2r;
1719 200338646 : a[9] = x0i + x2i;
1720 200338646 : a[12] = x2i - x0i;
1721 200338646 : a[13] = x0r - x2r;
1722 200338646 : x0r = x1r - x3i;
1723 200338646 : x0i = x1i + x3r;
1724 200338646 : a[10] = wk1r * ( x0r - x0i );
1725 200338646 : a[11] = wk1r * ( x0r + x0i );
1726 200338646 : x0r = x3i + x1r;
1727 200338646 : x0i = x3r - x1i;
1728 200338646 : a[14] = wk1r * ( x0i - x0r );
1729 200338646 : a[15] = wk1r * ( x0i + x0r );
1730 200338646 : k1 = 0;
1731 :
1732 8778448766 : for ( j = 16; j < n; j += 16 )
1733 : {
1734 8578110120 : k1 += 2;
1735 8578110120 : k2 = 2 * k1;
1736 8578110120 : wk2r = w[k1];
1737 8578110120 : wk2i = w[k1 + 1];
1738 8578110120 : wk1r = w[k2];
1739 8578110120 : wk1i = w[k2 + 1];
1740 8578110120 : wk3r = wk1r - 2 * wk2i * wk1i;
1741 8578110120 : wk3i = 2 * wk2i * wk1r - wk1i;
1742 8578110120 : x0r = a[j] + a[j + 2];
1743 8578110120 : x0i = a[j + 1] + a[j + 3];
1744 8578110120 : x1r = a[j] - a[j + 2];
1745 8578110120 : x1i = a[j + 1] - a[j + 3];
1746 8578110120 : x2r = a[j + 4] + a[j + 6];
1747 8578110120 : x2i = a[j + 5] + a[j + 7];
1748 8578110120 : x3r = a[j + 4] - a[j + 6];
1749 8578110120 : x3i = a[j + 5] - a[j + 7];
1750 8578110120 : a[j] = x0r + x2r;
1751 8578110120 : a[j + 1] = x0i + x2i;
1752 8578110120 : x0r -= x2r;
1753 8578110120 : x0i -= x2i;
1754 8578110120 : a[j + 4] = wk2r * x0r - wk2i * x0i;
1755 8578110120 : a[j + 5] = wk2r * x0i + wk2i * x0r;
1756 8578110120 : x0r = x1r - x3i;
1757 8578110120 : x0i = x1i + x3r;
1758 8578110120 : a[j + 2] = wk1r * x0r - wk1i * x0i;
1759 8578110120 : a[j + 3] = wk1r * x0i + wk1i * x0r;
1760 8578110120 : x0r = x1r + x3i;
1761 8578110120 : x0i = x1i - x3r;
1762 8578110120 : a[j + 6] = wk3r * x0r - wk3i * x0i;
1763 8578110120 : a[j + 7] = wk3r * x0i + wk3i * x0r;
1764 8578110120 : wk1r = w[k2 + 2];
1765 8578110120 : wk1i = w[k2 + 3];
1766 8578110120 : wk3r = wk1r - 2 * wk2r * wk1i;
1767 8578110120 : wk3i = 2 * wk2r * wk1r - wk1i;
1768 8578110120 : x0r = a[j + 8] + a[j + 10];
1769 8578110120 : x0i = a[j + 9] + a[j + 11];
1770 8578110120 : x1r = a[j + 8] - a[j + 10];
1771 8578110120 : x1i = a[j + 9] - a[j + 11];
1772 8578110120 : x2r = a[j + 12] + a[j + 14];
1773 8578110120 : x2i = a[j + 13] + a[j + 15];
1774 8578110120 : x3r = a[j + 12] - a[j + 14];
1775 8578110120 : x3i = a[j + 13] - a[j + 15];
1776 8578110120 : a[j + 8] = x0r + x2r;
1777 8578110120 : a[j + 9] = x0i + x2i;
1778 8578110120 : x0r -= x2r;
1779 8578110120 : x0i -= x2i;
1780 8578110120 : a[j + 12] = -wk2i * x0r - wk2r * x0i;
1781 8578110120 : a[j + 13] = -wk2i * x0i + wk2r * x0r;
1782 8578110120 : x0r = x1r - x3i;
1783 8578110120 : x0i = x1i + x3r;
1784 8578110120 : a[j + 10] = wk1r * x0r - wk1i * x0i;
1785 8578110120 : a[j + 11] = wk1r * x0i + wk1i * x0r;
1786 8578110120 : x0r = x1r + x3i;
1787 8578110120 : x0i = x1i - x3r;
1788 8578110120 : a[j + 14] = wk3r * x0r - wk3i * x0i;
1789 8578110120 : a[j + 15] = wk3r * x0i + wk3i * x0r;
1790 : }
1791 :
1792 200338646 : return;
1793 : }
1794 :
1795 : /*-----------------------------------------------------------------*
1796 : * cftmdl()
1797 : * Subfunction of Complex Discrete Fourier Transform
1798 : *-----------------------------------------------------------------*/
1799 :
1800 472686167 : static void cftmdl(
1801 : int16_t n, /* i : data length of real and imag */
1802 : int16_t l, /* i : initial shift for processing */
1803 : float *a, /* i/o: input/output data */
1804 : const float *w /* i : cos/sin table */
1805 : )
1806 : {
1807 : int16_t j, j1, j2, j3, k, k1, k2, m, m2;
1808 : float wk1r, wk1i, wk2r, wk2i, wk3r, wk3i;
1809 : float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
1810 :
1811 472686167 : m = l << 2;
1812 10729613023 : for ( j = 0; j < l; j += 2 )
1813 : {
1814 10256926856 : j1 = j + l;
1815 10256926856 : j2 = j1 + l;
1816 10256926856 : j3 = j2 + l;
1817 10256926856 : x0r = a[j] + a[j1];
1818 10256926856 : x0i = a[j + 1] + a[j1 + 1];
1819 10256926856 : x1r = a[j] - a[j1];
1820 10256926856 : x1i = a[j + 1] - a[j1 + 1];
1821 10256926856 : x2r = a[j2] + a[j3];
1822 10256926856 : x2i = a[j2 + 1] + a[j3 + 1];
1823 10256926856 : x3r = a[j2] - a[j3];
1824 10256926856 : x3i = a[j2 + 1] - a[j3 + 1];
1825 10256926856 : a[j] = x0r + x2r;
1826 10256926856 : a[j + 1] = x0i + x2i;
1827 10256926856 : a[j2] = x0r - x2r;
1828 10256926856 : a[j2 + 1] = x0i - x2i;
1829 10256926856 : a[j1] = x1r - x3i;
1830 10256926856 : a[j1 + 1] = x1i + x3r;
1831 10256926856 : a[j3] = x1r + x3i;
1832 10256926856 : a[j3 + 1] = x1i - x3r;
1833 : }
1834 :
1835 472686167 : wk1r = w[2];
1836 10729613023 : for ( j = m; j < l + m; j += 2 )
1837 : {
1838 10256926856 : j1 = j + l;
1839 10256926856 : j2 = j1 + l;
1840 10256926856 : j3 = j2 + l;
1841 10256926856 : x0r = a[j] + a[j1];
1842 10256926856 : x0i = a[j + 1] + a[j1 + 1];
1843 10256926856 : x1r = a[j] - a[j1];
1844 10256926856 : x1i = a[j + 1] - a[j1 + 1];
1845 10256926856 : x2r = a[j2] + a[j3];
1846 10256926856 : x2i = a[j2 + 1] + a[j3 + 1];
1847 10256926856 : x3r = a[j2] - a[j3];
1848 10256926856 : x3i = a[j2 + 1] - a[j3 + 1];
1849 10256926856 : a[j] = x0r + x2r;
1850 10256926856 : a[j + 1] = x0i + x2i;
1851 10256926856 : a[j2] = x2i - x0i;
1852 10256926856 : a[j2 + 1] = x0r - x2r;
1853 10256926856 : x0r = x1r - x3i;
1854 10256926856 : x0i = x1i + x3r;
1855 10256926856 : a[j1] = wk1r * ( x0r - x0i );
1856 10256926856 : a[j1 + 1] = wk1r * ( x0r + x0i );
1857 10256926856 : x0r = x3i + x1r;
1858 10256926856 : x0i = x3r - x1i;
1859 10256926856 : a[j3] = wk1r * ( x0i - x0r );
1860 10256926856 : a[j3 + 1] = wk1r * ( x0i + x0r );
1861 : }
1862 :
1863 472686167 : k1 = 0;
1864 472686167 : m2 = 2 * m;
1865 2834494483 : for ( k = m2; k < n; k += m2 )
1866 : {
1867 2361808316 : k1 += 2;
1868 2361808316 : k2 = 2 * k1;
1869 2361808316 : wk2r = w[k1];
1870 2361808316 : wk2i = w[k1 + 1];
1871 2361808316 : wk1r = w[k2];
1872 2361808316 : wk1i = w[k2 + 1];
1873 2361808316 : wk3r = wk1r - 2 * wk2i * wk1i;
1874 2361808316 : wk3i = 2 * wk2i * wk1r - wk1i;
1875 16211180188 : for ( j = k; j < l + k; j += 2 )
1876 : {
1877 13849371872 : j1 = j + l;
1878 13849371872 : j2 = j1 + l;
1879 13849371872 : j3 = j2 + l;
1880 13849371872 : x0r = a[j] + a[j1];
1881 13849371872 : x0i = a[j + 1] + a[j1 + 1];
1882 13849371872 : x1r = a[j] - a[j1];
1883 13849371872 : x1i = a[j + 1] - a[j1 + 1];
1884 13849371872 : x2r = a[j2] + a[j3];
1885 13849371872 : x2i = a[j2 + 1] + a[j3 + 1];
1886 13849371872 : x3r = a[j2] - a[j3];
1887 13849371872 : x3i = a[j2 + 1] - a[j3 + 1];
1888 13849371872 : a[j] = x0r + x2r;
1889 13849371872 : a[j + 1] = x0i + x2i;
1890 13849371872 : x0r -= x2r;
1891 13849371872 : x0i -= x2i;
1892 13849371872 : a[j2] = wk2r * x0r - wk2i * x0i;
1893 13849371872 : a[j2 + 1] = wk2r * x0i + wk2i * x0r;
1894 13849371872 : x0r = x1r - x3i;
1895 13849371872 : x0i = x1i + x3r;
1896 13849371872 : a[j1] = wk1r * x0r - wk1i * x0i;
1897 13849371872 : a[j1 + 1] = wk1r * x0i + wk1i * x0r;
1898 13849371872 : x0r = x1r + x3i;
1899 13849371872 : x0i = x1i - x3r;
1900 13849371872 : a[j3] = wk3r * x0r - wk3i * x0i;
1901 13849371872 : a[j3 + 1] = wk3r * x0i + wk3i * x0r;
1902 : }
1903 :
1904 2361808316 : wk1r = w[k2 + 2];
1905 2361808316 : wk1i = w[k2 + 3];
1906 2361808316 : wk3r = wk1r - 2 * wk2r * wk1i;
1907 2361808316 : wk3i = 2 * wk2r * wk1r - wk1i;
1908 16211180188 : for ( j = k + m; j < l + ( k + m ); j += 2 )
1909 : {
1910 13849371872 : j1 = j + l;
1911 13849371872 : j2 = j1 + l;
1912 13849371872 : j3 = j2 + l;
1913 13849371872 : x0r = a[j] + a[j1];
1914 13849371872 : x0i = a[j + 1] + a[j1 + 1];
1915 13849371872 : x1r = a[j] - a[j1];
1916 13849371872 : x1i = a[j + 1] - a[j1 + 1];
1917 13849371872 : x2r = a[j2] + a[j3];
1918 13849371872 : x2i = a[j2 + 1] + a[j3 + 1];
1919 13849371872 : x3r = a[j2] - a[j3];
1920 13849371872 : x3i = a[j2 + 1] - a[j3 + 1];
1921 13849371872 : a[j] = x0r + x2r;
1922 13849371872 : a[j + 1] = x0i + x2i;
1923 13849371872 : x0r -= x2r;
1924 13849371872 : x0i -= x2i;
1925 13849371872 : a[j2] = -wk2i * x0r - wk2r * x0i;
1926 13849371872 : a[j2 + 1] = -wk2i * x0i + wk2r * x0r;
1927 13849371872 : x0r = x1r - x3i;
1928 13849371872 : x0i = x1i + x3r;
1929 13849371872 : a[j1] = wk1r * x0r - wk1i * x0i;
1930 13849371872 : a[j1 + 1] = wk1r * x0i + wk1i * x0r;
1931 13849371872 : x0r = x1r + x3i;
1932 13849371872 : x0i = x1i - x3r;
1933 13849371872 : a[j3] = wk3r * x0r - wk3i * x0i;
1934 13849371872 : a[j3 + 1] = wk3r * x0i + wk3i * x0r;
1935 : }
1936 : }
1937 :
1938 472686167 : return;
1939 : }
1940 :
1941 309840 : static void cftbsub(
1942 : int16_t n,
1943 : float *a,
1944 : const float *w /* i : cos/sin table */
1945 : )
1946 : {
1947 : int16_t j, j1, j2, j3, l;
1948 : float x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i;
1949 :
1950 309840 : l = 2;
1951 309840 : if ( n > 8 )
1952 : {
1953 309840 : cft1st( n, a, w );
1954 309840 : l = 8;
1955 :
1956 619680 : while ( ( l << 2 ) < n )
1957 : {
1958 309840 : cftmdl( n, l, a, w );
1959 309840 : l <<= 2;
1960 : }
1961 : }
1962 :
1963 309840 : if ( ( l << 2 ) == n )
1964 : {
1965 0 : for ( j = 0; j < l; j += 2 )
1966 : {
1967 0 : j1 = j + l;
1968 0 : j2 = j1 + l;
1969 0 : j3 = j2 + l;
1970 0 : x0r = a[j] + a[j1];
1971 0 : x0i = -a[j + 1] - a[j1 + 1];
1972 0 : x1r = a[j] - a[j1];
1973 0 : x1i = -a[j + 1] + a[j1 + 1];
1974 0 : x2r = a[j2] + a[j3];
1975 0 : x2i = a[j2 + 1] + a[j3 + 1];
1976 0 : x3r = a[j2] - a[j3];
1977 0 : x3i = a[j2 + 1] - a[j3 + 1];
1978 0 : a[j] = x0r + x2r;
1979 0 : a[j + 1] = x0i - x2i;
1980 0 : a[j2] = x0r - x2r;
1981 0 : a[j2 + 1] = x0i + x2i;
1982 0 : a[j1] = x1r - x3i;
1983 0 : a[j1 + 1] = x1i - x3r;
1984 0 : a[j3] = x1r + x3i;
1985 0 : a[j3 + 1] = x1i + x3r;
1986 : }
1987 : }
1988 : else
1989 : {
1990 5267280 : for ( j = 0; j < l; j += 2 )
1991 : {
1992 4957440 : j1 = j + l;
1993 4957440 : x0r = a[j] - a[j1];
1994 4957440 : x0i = -a[j + 1] + a[j1 + 1];
1995 4957440 : a[j] += a[j1];
1996 4957440 : a[j + 1] = -a[j + 1] - a[j1 + 1];
1997 4957440 : a[j1] = x0r;
1998 4957440 : a[j1 + 1] = x0i;
1999 : }
2000 : }
2001 :
2002 309840 : return;
2003 : }
2004 :
2005 1187375 : static void rftfsub(
2006 : int16_t n,
2007 : float *a,
2008 : int16_t nc,
2009 : const float *c )
2010 : {
2011 : int16_t j, k, kk, ks, m;
2012 : float wkr, wki, xr, xi, yr, yi;
2013 :
2014 1187375 : m = n >> 1;
2015 1187375 : ks = 2 * nc / m;
2016 1187375 : kk = 0;
2017 18998000 : for ( j = 2; j < m; j += 2 )
2018 : {
2019 17810625 : k = n - j;
2020 17810625 : kk += ks;
2021 17810625 : wkr = 0.5f - c[nc - kk];
2022 17810625 : wki = c[kk];
2023 17810625 : xr = a[j] - a[k];
2024 17810625 : xi = a[j + 1] + a[k + 1];
2025 17810625 : yr = wkr * xr - wki * xi;
2026 17810625 : yi = wkr * xi + wki * xr;
2027 17810625 : a[j] -= yr;
2028 17810625 : a[j + 1] -= yi;
2029 17810625 : a[k] += yr;
2030 17810625 : a[k + 1] -= yi;
2031 : }
2032 :
2033 1187375 : return;
2034 : }
2035 :
2036 :
2037 309840 : static void rftbsub(
2038 : int16_t n,
2039 : float *a,
2040 : int16_t nc,
2041 : const float *c )
2042 : {
2043 : int16_t j, k, kk, ks, m;
2044 : float wkr, wki, xr, xi, yr, yi;
2045 :
2046 309840 : a[1] = -a[1];
2047 309840 : m = n >> 1;
2048 309840 : ks = 2 * nc / m;
2049 309840 : kk = 0;
2050 4957440 : for ( j = 2; j < m; j += 2 )
2051 : {
2052 4647600 : k = n - j;
2053 4647600 : kk += ks;
2054 4647600 : wkr = 0.5f - c[nc - kk];
2055 4647600 : wki = c[kk];
2056 4647600 : xr = a[j] - a[k];
2057 4647600 : xi = a[j + 1] + a[k + 1];
2058 4647600 : yr = wkr * xr + wki * xi;
2059 4647600 : yi = wkr * xi - wki * xr;
2060 4647600 : a[j] -= yr;
2061 4647600 : a[j + 1] = yi - a[j + 1];
2062 4647600 : a[k] += yr;
2063 4647600 : a[k + 1] = yi - a[k + 1];
2064 : }
2065 309840 : a[m + 1] = -a[m + 1];
2066 :
2067 309840 : return;
2068 : }
2069 :
2070 :
2071 1497215 : static void dctsub(
2072 : int16_t n,
2073 : float *a,
2074 : int16_t nc,
2075 : const float *c )
2076 : {
2077 : int16_t j, k, kk, ks, m;
2078 : float wkr, wki, xr;
2079 :
2080 1497215 : m = n >> 1;
2081 1497215 : ks = nc / n;
2082 1497215 : kk = 0;
2083 47910880 : for ( j = 1; j < m; j++ )
2084 : {
2085 46413665 : k = n - j;
2086 46413665 : kk += ks;
2087 46413665 : wkr = c[kk] - c[nc - kk];
2088 46413665 : wki = c[kk] + c[nc - kk];
2089 46413665 : xr = wki * a[j] - wkr * a[k];
2090 46413665 : a[j] = wkr * a[j] + wki * a[k];
2091 46413665 : a[k] = xr;
2092 : }
2093 1497215 : a[m] *= c[0];
2094 :
2095 1497215 : return;
2096 : }
2097 :
2098 :
2099 : /*-----------------------------------------------------------------*
2100 : * edct2()
2101 : *
2102 : * Transformation of the signal to DCT domain
2103 : * OR Inverse EDCT-II for short frames
2104 : *-----------------------------------------------------------------*/
2105 :
2106 1497215 : void edct2(
2107 : const int16_t n,
2108 : const int16_t isgn,
2109 : float *in,
2110 : float *a,
2111 : const int16_t *ip,
2112 : const float *w )
2113 : {
2114 : int16_t j, nw, nc;
2115 : float xr;
2116 :
2117 1497215 : mvr2r( in, a, n );
2118 :
2119 1497215 : nw = ip[0];
2120 1497215 : if ( n > ( nw << 2 ) )
2121 : {
2122 0 : nw = n >> 2;
2123 : }
2124 :
2125 1497215 : nc = ip[1];
2126 1497215 : if ( n > nc )
2127 : {
2128 0 : nc = n;
2129 : }
2130 :
2131 1497215 : if ( isgn < 0 )
2132 : {
2133 309840 : xr = a[n - 1];
2134 9914880 : for ( j = n - 2; j >= 2; j -= 2 )
2135 : {
2136 9605040 : a[j + 1] = a[j] - a[j - 1];
2137 9605040 : a[j] += a[j - 1];
2138 : }
2139 309840 : a[1] = a[0] - xr;
2140 309840 : a[0] += xr;
2141 :
2142 309840 : if ( n > 4 )
2143 : {
2144 309840 : rftbsub( n, a, nc, w + nw );
2145 309840 : bitrv2_SR( n, ip + 2, a );
2146 309840 : cftbsub( n, a, w );
2147 : }
2148 0 : else if ( n == 4 )
2149 : {
2150 0 : cftfsub( n, a, w );
2151 : }
2152 : }
2153 :
2154 1497215 : if ( isgn >= 0 )
2155 : {
2156 1187375 : a[0] *= 0.5f;
2157 : }
2158 :
2159 1497215 : dctsub( n, a, nc, w + nw );
2160 :
2161 1497215 : if ( isgn >= 0 )
2162 : {
2163 1187375 : if ( n > 4 )
2164 : {
2165 1187375 : bitrv2_SR( n, ip + 2, a );
2166 1187375 : cftfsub( n, a, w );
2167 1187375 : rftfsub( n, a, nc, w + nw );
2168 : }
2169 0 : else if ( n == 4 )
2170 : {
2171 0 : cftfsub( n, a, w );
2172 : }
2173 1187375 : xr = a[0] - a[1];
2174 1187375 : a[0] += a[1];
2175 37996000 : for ( j = 2; j < n; j += 2 )
2176 : {
2177 36808625 : a[j - 1] = a[j] - a[j + 1];
2178 36808625 : a[j] += a[j + 1];
2179 : }
2180 1187375 : a[n - 1] = xr;
2181 :
2182 77179375 : for ( j = 0; j < n; j++ )
2183 : {
2184 75992000 : a[j] /= 32.0f;
2185 : }
2186 : }
2187 1497215 : }
2188 :
2189 :
2190 155100552 : void DoRTFTn(
2191 : float *x, /* i/o: real part of input and output data */
2192 : float *y, /* i/o: imaginary part of input and output data */
2193 : const int16_t n /* i : size of the FFT up to 1024 */
2194 : )
2195 : {
2196 :
2197 : int16_t i;
2198 : float z[2048];
2199 :
2200 66961156488 : for ( i = 0; i < n; i++ )
2201 : {
2202 66806055936 : z[2 * i] = x[i];
2203 66806055936 : z[2 * i + 1] = y[i];
2204 : }
2205 :
2206 155100552 : switch ( n )
2207 : {
2208 26048 : case ( 16 ):
2209 26048 : cdftForw( 2 * n, z, Ip_fft16, w_fft16 );
2210 26048 : break;
2211 0 : case ( 32 ):
2212 0 : cdftForw( 2 * n, z, Ip_fft32, w_fft32 );
2213 0 : break;
2214 664 : case ( 64 ):
2215 664 : cdftForw( 2 * n, z, Ip_fft64, w_fft64 );
2216 664 : break;
2217 6 : case ( 128 ):
2218 6 : cdftForw( 2 * n, z, Ip_fft128, w_fft128 );
2219 6 : break;
2220 49188309 : case ( 256 ):
2221 49188309 : cdftForw( 2 * n, z, Ip_fft256, w_fft256 );
2222 49188309 : break;
2223 105885525 : case ( 512 ):
2224 105885525 : cdftForw( 2 * n, z, Ip_fft512, w_fft512 );
2225 105885525 : break;
2226 0 : default:
2227 0 : assert( 0 );
2228 : }
2229 :
2230 155100552 : x[0] = z[0];
2231 155100552 : y[0] = z[1];
2232 66806055936 : for ( i = 1; i < n; i++ )
2233 : {
2234 66650955384 : x[n - i] = z[2 * i];
2235 66650955384 : y[n - i] = z[2 * i + 1];
2236 : }
2237 :
2238 155100552 : return;
2239 : }
2240 :
2241 :
2242 6960 : void fft3(
2243 : const float X[],
2244 : float Y[],
2245 : const int16_t n )
2246 : {
2247 : float Z[PH_ECU_SPEC_SIZE];
2248 : float *Z0, *Z1, *Z2;
2249 : float *z0, *z1, *z2;
2250 : const float *x;
2251 6960 : const float *t_sin = sincos_t_rad3;
2252 : int16_t m, step, order;
2253 : int16_t i, j;
2254 : int16_t c1_ind, s1_ind, c2_ind, s2_ind;
2255 : int16_t c1_step, s1_step, c2_step, s2_step;
2256 : float *RY, *IY, *RZ0, *IZ0, *RZ1, *IZ1, *RZ2, *IZ2;
2257 :
2258 : /* Determine the order of the transform, the length of decimated */
2259 : /* transforms m, and the step for the sine and cosine tables. */
2260 6960 : switch ( n )
2261 : {
2262 2320 : case 1536:
2263 2320 : order = 9;
2264 2320 : m = 512;
2265 2320 : step = 1;
2266 2320 : break;
2267 4640 : case 384:
2268 4640 : order = 7;
2269 4640 : m = 128;
2270 4640 : step = 4;
2271 4640 : break;
2272 0 : default:
2273 0 : order = 9;
2274 0 : m = 512;
2275 0 : step = 1;
2276 : }
2277 :
2278 : /* Compose decimated sequences X[3i], X[3i+1],X[3i+2] */
2279 : /* compute their FFT of length m. */
2280 6960 : Z0 = &Z[0];
2281 6960 : z0 = &Z0[0];
2282 6960 : Z1 = &Z0[m];
2283 6960 : z1 = &Z1[0]; /* Z1 = &Z[ m]; */
2284 6960 : Z2 = &Z1[m];
2285 6960 : z2 = &Z2[0]; /* Z2 = &Z[2m]; */
2286 6960 : x = &X[0];
2287 1788720 : for ( i = 0; i < n / 3; i++ )
2288 : {
2289 1781760 : *z0++ = *x++; /* Z0[i] = X[3i]; */
2290 1781760 : *z1++ = *x++; /* Z1[i] = X[3i+1]; */
2291 1781760 : *z2++ = *x++; /* Z2[i] = X[3i+2]; */
2292 : }
2293 :
2294 6960 : fft_rel( &Z0[0], m, order );
2295 6960 : fft_rel( &Z1[0], m, order );
2296 6960 : fft_rel( &Z2[0], m, order );
2297 :
2298 : /* Butterflies of order 3. */
2299 : /* pointer initialization */
2300 6960 : RY = &Y[0];
2301 6960 : IY = &Y[n];
2302 6960 : RZ0 = &Z0[0];
2303 6960 : IZ0 = &Z0[m];
2304 6960 : RZ1 = &Z1[0];
2305 6960 : IZ1 = &Z1[m];
2306 6960 : RZ2 = &Z2[0];
2307 6960 : IZ2 = &Z2[m];
2308 :
2309 6960 : c1_step = -step;
2310 6960 : s1_step = step;
2311 6960 : c2_step = -2 * step;
2312 6960 : s2_step = 2 * step;
2313 6960 : c1_ind = T_SIN_PI_2 + c1_step;
2314 6960 : s1_ind = s1_step;
2315 6960 : c2_ind = T_SIN_PI_2 + c2_step;
2316 6960 : s2_ind = s2_step;
2317 :
2318 : /* special case: i = 0 */
2319 6960 : RY[0] = RZ0[0] + RZ1[0] + RZ2[0];
2320 :
2321 : /* first 3/12 */
2322 668160 : for ( i = 1; i < 3 * m / 8; i++, c1_ind += c1_step, s1_ind += s1_step, c2_ind += c2_step, s2_ind += s2_step )
2323 : {
2324 661200 : RY[i] = RZ0[i] + RZ1[i] * t_sin[c1_ind] + IZ1[-i] * t_sin[s1_ind] + RZ2[i] * t_sin[c2_ind] + IZ2[-i] * t_sin[s2_ind];
2325 661200 : IY[-i] = IZ0[-i] - RZ1[i] * t_sin[s1_ind] + IZ1[-i] * t_sin[c1_ind] - RZ2[i] * t_sin[s2_ind] + IZ2[-i] * t_sin[c2_ind];
2326 : }
2327 :
2328 : /* next 1/12 */
2329 229680 : for ( ; i < 4 * m / 8; i++, c1_ind += c1_step, s1_ind += s1_step, c2_ind -= c2_step, s2_ind -= s2_step )
2330 : {
2331 222720 : RY[i] = RZ0[i] + RZ1[i] * t_sin[c1_ind] + IZ1[-i] * t_sin[s1_ind] - RZ2[i] * t_sin[c2_ind] + IZ2[-i] * t_sin[s2_ind];
2332 222720 : IY[-i] = IZ0[-i] - RZ1[i] * t_sin[s1_ind] + IZ1[-i] * t_sin[c1_ind] - RZ2[i] * t_sin[s2_ind] - IZ2[-i] * t_sin[c2_ind];
2333 : }
2334 :
2335 : /* special case: i = m/2 i.e. 1/3 */
2336 6960 : RY[i] = RZ0[i] + RZ1[i] * t_sin[c1_ind] - RZ2[i] * t_sin[c2_ind];
2337 6960 : IY[-i] = -RZ1[i] * t_sin[s1_ind] - RZ2[i] * t_sin[s2_ind];
2338 6960 : i++;
2339 :
2340 6960 : c1_ind += c1_step, s1_ind += s1_step, c2_ind -= c2_step, s2_ind -= s2_step;
2341 :
2342 : /* next 2/12 */
2343 445440 : for ( j = i - 2; i < 6 * m / 8; i++, j--, c1_ind += c1_step, s1_ind += s1_step, c2_ind -= c2_step, s2_ind -= s2_step )
2344 : {
2345 438480 : RY[i] = RZ0[j] + RZ1[j] * t_sin[c1_ind] - IZ1[-j] * t_sin[s1_ind] - RZ2[j] * t_sin[c2_ind] - IZ2[-j] * t_sin[s2_ind];
2346 438480 : IY[-i] = -IZ0[-j] - RZ1[j] * t_sin[s1_ind] - IZ1[-j] * t_sin[c1_ind] - RZ2[j] * t_sin[s2_ind] + IZ2[-j] * t_sin[c2_ind];
2347 : }
2348 :
2349 : /*--------------------------half--------------------------*/
2350 : /* next 2/12 */
2351 452400 : for ( ; i < 8 * m / 8; i++, j--, c1_ind -= c1_step, s1_ind -= s1_step, c2_ind += c2_step, s2_ind += s2_step )
2352 : {
2353 445440 : RY[i] = RZ0[j] - RZ1[j] * t_sin[c1_ind] - IZ1[-j] * t_sin[s1_ind] - RZ2[j] * t_sin[c2_ind] + IZ2[-j] * t_sin[s2_ind];
2354 445440 : IY[-i] = -IZ0[-j] - RZ1[j] * t_sin[s1_ind] + IZ1[-j] * t_sin[c1_ind] + RZ2[j] * t_sin[s2_ind] + IZ2[-j] * t_sin[c2_ind];
2355 : }
2356 :
2357 : /* special case: i = m, i.e 2/3 */
2358 6960 : RY[i] = RZ0[j] - RZ1[j] * t_sin[c1_ind] - RZ2[j] * t_sin[c2_ind];
2359 6960 : IY[-i++] = -RZ1[j] * t_sin[s1_ind] + RZ2[j] * t_sin[s2_ind];
2360 6960 : c1_ind -= c1_step, s1_ind -= s1_step, c2_ind += c2_step, s2_ind += s2_step;
2361 :
2362 : /* next 1/12 */
2363 222720 : for ( j = 1; i < 9 * m / 8; i++, j++, c1_ind -= c1_step, s1_ind -= s1_step, c2_ind += c2_step, s2_ind += s2_step )
2364 : {
2365 215760 : RY[i] = RZ0[j] - RZ1[j] * t_sin[c1_ind] + IZ1[-j] * t_sin[s1_ind] - RZ2[j] * t_sin[c2_ind] - IZ2[-j] * t_sin[s2_ind];
2366 215760 : IY[-i] = IZ0[-j] - RZ1[j] * t_sin[s1_ind] - IZ1[-j] * t_sin[c1_ind] + RZ2[j] * t_sin[s2_ind] - IZ2[-j] * t_sin[c2_ind];
2367 : }
2368 :
2369 : /* last 3/12 */
2370 675120 : for ( ; i < 12 * m / 8; i++, j++, c1_ind -= c1_step, s1_ind -= s1_step, c2_ind -= c2_step, s2_ind -= s2_step )
2371 : {
2372 668160 : RY[i] = RZ0[j] - RZ1[j] * t_sin[c1_ind] + IZ1[-j] * t_sin[s1_ind] + RZ2[j] * t_sin[c2_ind] - IZ2[-j] * t_sin[s2_ind];
2373 668160 : IY[-i] = IZ0[-j] - RZ1[j] * t_sin[s1_ind] - IZ1[-j] * t_sin[c1_ind] + RZ2[j] * t_sin[s2_ind] + IZ2[-j] * t_sin[c2_ind];
2374 : }
2375 :
2376 : /* special case: i = 3*m/2 */
2377 6960 : RY[i] = RZ0[j] - RZ1[j] * t_sin[c1_ind] + RZ2[j] * t_sin[c2_ind];
2378 :
2379 6960 : return;
2380 : }
2381 :
2382 4636 : void ifft3(
2383 : const float Z[],
2384 : float X[],
2385 : const int16_t n )
2386 : {
2387 : float Y[PH_ECU_SPEC_SIZE];
2388 4636 : const float *t_sin = sincos_t_rad3;
2389 : int16_t m, step, step2, order;
2390 : int16_t i;
2391 : int16_t c0_ind, s0_ind, c1_ind, s1_ind, c2_ind, s2_ind;
2392 : float scale;
2393 : const float *RZ0, *IZ0, *RZ1, *IZ1, *RZ2, *IZ2;
2394 : float *RY0, *IY0, *RY1, *IY1, *RY2, *IY2, *y0, *y1, *y2;
2395 :
2396 : /* Determine the order of the transform, the length of decimated */
2397 : /* transforms m, and the step for the sine and cosine tables. */
2398 4636 : switch ( n )
2399 : {
2400 4636 : case 1536:
2401 4636 : order = 9;
2402 4636 : m = 512;
2403 4636 : step = 1;
2404 4636 : break;
2405 0 : case 384:
2406 0 : order = 7;
2407 0 : m = 128;
2408 0 : step = 4;
2409 0 : break;
2410 0 : default:
2411 0 : order = 9;
2412 0 : m = 512;
2413 0 : step = 1;
2414 : }
2415 :
2416 : /* pointer initialization */
2417 4636 : RY0 = &Y[0];
2418 4636 : IY0 = &RY0[m];
2419 4636 : RY1 = &RY0[m];
2420 4636 : IY1 = &RY1[m];
2421 4636 : RY2 = &RY1[m];
2422 4636 : IY2 = &RY2[m];
2423 :
2424 4636 : RZ0 = &Z[0];
2425 4636 : RZ1 = RZ0 + m;
2426 4636 : RZ2 = RZ0 + n / 2 - m / 2;
2427 4636 : IZ0 = &Z[n];
2428 4636 : IZ1 = IZ0 - m;
2429 4636 : IZ2 = IZ0 - n / 2 + m / 2;
2430 :
2431 : /* Inverse butterflies of order 3. */
2432 :
2433 : /* Construction of Y0 */
2434 4636 : RY0[0] = RZ0[0] + RZ1[0] + RZ2[0];
2435 1186816 : for ( i = 1; i < m / 2; i++ )
2436 : {
2437 1182180 : RY0[i] = RZ0[i] + RZ1[i] + RZ2[-i];
2438 1182180 : IY0[-i] = IZ0[-i] + IZ1[-i] - IZ2[i];
2439 : }
2440 :
2441 : /* m/2 */
2442 4636 : RY0[i] = RZ0[i] + RZ1[i] + RZ2[-i];
2443 :
2444 : /* Construction of Y1 */
2445 4636 : c0_ind = T_SIN_PI_2;
2446 4636 : s0_ind = 0;
2447 4636 : c1_ind = T_SIN_PI_2 * 1 / 3;
2448 4636 : s1_ind = T_SIN_PI_2 * 2 / 3;
2449 4636 : c2_ind = T_SIN_PI_2 * 1 / 3;
2450 4636 : s2_ind = T_SIN_PI_2 * 2 / 3;
2451 :
2452 4636 : RY1[0] = RZ0[0] * t_sin[c0_ind] - RZ1[0] * t_sin[c1_ind] - RZ2[0] * t_sin[c2_ind] - IZ1[0] * t_sin[s1_ind] - IZ2[0] * t_sin[s2_ind];
2453 :
2454 4636 : c0_ind -= step, s0_ind += step, c1_ind += step, s1_ind -= step, c2_ind -= step, s2_ind += step;
2455 593408 : for ( i = 1; i < m / 4; i++, c0_ind -= step, s0_ind += step, c1_ind += step, s1_ind -= step, c2_ind -= step, s2_ind += step )
2456 : {
2457 588772 : RY1[i] = RZ0[i] * t_sin[c0_ind] - RZ1[i] * t_sin[c1_ind] - RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] - IZ1[-i] * t_sin[s1_ind] - IZ2[i] * t_sin[s2_ind];
2458 588772 : IY1[-i] = IZ0[-i] * t_sin[c0_ind] - IZ1[-i] * t_sin[c1_ind] + IZ2[i] * t_sin[c2_ind] + RZ0[i] * t_sin[s0_ind] + RZ1[i] * t_sin[s1_ind] - RZ2[-i] * t_sin[s2_ind];
2459 : }
2460 :
2461 598044 : for ( ; i < m / 2; i++, c0_ind -= step, s0_ind += step, c1_ind += step, s1_ind -= step, c2_ind += step, s2_ind -= step )
2462 : {
2463 593408 : RY1[i] = RZ0[i] * t_sin[c0_ind] - RZ1[i] * t_sin[c1_ind] + RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] - IZ1[-i] * t_sin[s1_ind] - IZ2[i] * t_sin[s2_ind];
2464 593408 : IY1[-i] = IZ0[-i] * t_sin[c0_ind] - IZ1[-i] * t_sin[c1_ind] - IZ2[i] * t_sin[c2_ind] + RZ0[i] * t_sin[s0_ind] + RZ1[i] * t_sin[s1_ind] - RZ2[-i] * t_sin[s2_ind];
2465 : }
2466 :
2467 : /* m/2 */
2468 4636 : RY1[i] = RZ0[i] * t_sin[c0_ind] - RZ1[i] * t_sin[c1_ind] + RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] - IZ1[-i] * t_sin[s1_ind] - IZ2[i] * t_sin[s2_ind];
2469 :
2470 : /* Construction of Y2 */
2471 4636 : c0_ind = T_SIN_PI_2;
2472 4636 : s0_ind = 0;
2473 4636 : c1_ind = T_SIN_PI_2 * 1 / 3;
2474 4636 : s1_ind = T_SIN_PI_2 * 2 / 3;
2475 4636 : c2_ind = T_SIN_PI_2 * 1 / 3;
2476 4636 : s2_ind = T_SIN_PI_2 * 2 / 3;
2477 4636 : step2 = 2 * step;
2478 4636 : RY2[0] = RZ0[0] * t_sin[c0_ind] - RZ1[0] * t_sin[c1_ind] - RZ2[0] * t_sin[c2_ind] + IZ1[0] * t_sin[s1_ind] + IZ2[0] * t_sin[s2_ind];
2479 :
2480 4636 : c0_ind -= step2, s0_ind += step2, c1_ind -= step2, s1_ind += step2, c2_ind += step2, s2_ind -= step2;
2481 296704 : for ( i = 1; i < m / 8; i++, c0_ind -= step2, s0_ind += step2, c1_ind -= step2, s1_ind += step2, c2_ind += step2, s2_ind -= step2 )
2482 : {
2483 292068 : RY2[i] = RZ0[i] * t_sin[c0_ind] - RZ1[i] * t_sin[c1_ind] - RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] + IZ1[-i] * t_sin[s1_ind] + IZ2[i] * t_sin[s2_ind];
2484 292068 : IY2[-i] = IZ0[-i] * t_sin[c0_ind] - IZ1[-i] * t_sin[c1_ind] + IZ2[i] * t_sin[c2_ind] + RZ0[i] * t_sin[s0_ind] - RZ1[i] * t_sin[s1_ind] + RZ2[-i] * t_sin[s2_ind];
2485 : }
2486 :
2487 301340 : for ( ; i < m / 4; i++, c0_ind -= step2, s0_ind += step2, c1_ind += step2, s1_ind -= step2, c2_ind += step2, s2_ind -= step2 )
2488 : {
2489 296704 : RY2[i] = RZ0[i] * t_sin[c0_ind] + RZ1[i] * t_sin[c1_ind] - RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] + IZ1[-i] * t_sin[s1_ind] + IZ2[i] * t_sin[s2_ind];
2490 296704 : IY2[-i] = IZ0[-i] * t_sin[c0_ind] + IZ1[-i] * t_sin[c1_ind] + IZ2[i] * t_sin[c2_ind] + RZ0[i] * t_sin[s0_ind] - RZ1[i] * t_sin[s1_ind] + RZ2[-i] * t_sin[s2_ind];
2491 : }
2492 :
2493 301340 : for ( ; i < 3 * m / 8; i++, c0_ind -= step2, s0_ind += step2, c1_ind += step2, s1_ind -= step2, c2_ind -= step2, s2_ind += step2 )
2494 : {
2495 296704 : RY2[i] = RZ0[i] * t_sin[c0_ind] + RZ1[i] * t_sin[c1_ind] - RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] + IZ1[-i] * t_sin[s1_ind] - IZ2[i] * t_sin[s2_ind];
2496 296704 : IY2[-i] = IZ0[-i] * t_sin[c0_ind] + IZ1[-i] * t_sin[c1_ind] + IZ2[i] * t_sin[c2_ind] + RZ0[i] * t_sin[s0_ind] - RZ1[i] * t_sin[s1_ind] - RZ2[-i] * t_sin[s2_ind];
2497 : }
2498 :
2499 301340 : for ( ; i < m / 2; i++, c0_ind += step2, s0_ind -= step2, c1_ind += step2, s1_ind -= step2, c2_ind -= step2, s2_ind += step2 )
2500 : {
2501 296704 : RY2[i] = -RZ0[i] * t_sin[c0_ind] + RZ1[i] * t_sin[c1_ind] - RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] + IZ1[-i] * t_sin[s1_ind] - IZ2[i] * t_sin[s2_ind];
2502 296704 : IY2[-i] = -IZ0[-i] * t_sin[c0_ind] + IZ1[-i] * t_sin[c1_ind] + IZ2[i] * t_sin[c2_ind] + RZ0[i] * t_sin[s0_ind] - RZ1[i] * t_sin[s1_ind] - RZ2[-i] * t_sin[s2_ind];
2503 : }
2504 :
2505 : /* m/2 */
2506 4636 : RY2[i] = -RZ0[i] * t_sin[c0_ind] + RZ1[i] * t_sin[c1_ind] - RZ2[-i] * t_sin[c2_ind] - IZ0[-i] * t_sin[s0_ind] + IZ1[-i] * t_sin[s1_ind] - IZ2[i] * t_sin[s2_ind];
2507 :
2508 : /* Compute the inverse FFT for all 3 blocks. */
2509 4636 : ifft_rel( RY0, m, order );
2510 4636 : ifft_rel( RY1, m, order );
2511 4636 : ifft_rel( RY2, m, order );
2512 :
2513 4636 : y0 = RY0;
2514 4636 : y1 = RY1;
2515 4636 : y2 = RY2;
2516 :
2517 : /* Interlacing and scaling, scale = 1/3 */
2518 4636 : scale = 1.0f / 3;
2519 2378268 : for ( i = 0; i < n; )
2520 : {
2521 2373632 : X[i++] = ( *y0++ ) * scale;
2522 2373632 : X[i++] = ( *y1++ ) * scale;
2523 2373632 : X[i++] = ( *y2++ ) * scale;
2524 : }
2525 :
2526 4636 : return;
2527 : }
2528 :
2529 :
2530 2278905 : static void rfft_post(
2531 : const float *sine_table,
2532 : float *buf,
2533 : const int16_t len )
2534 : {
2535 : float tmp1, tmp2, tmp3, tmp4, s, c;
2536 2278905 : int16_t i = 0;
2537 :
2538 2278905 : tmp1 = buf[0] + buf[1];
2539 2278905 : buf[1] = buf[0] - buf[1];
2540 2278905 : buf[0] = tmp1;
2541 :
2542 366903705 : for ( i = 1; i <= ( len + 2 ) / 4; i++ )
2543 : {
2544 364624800 : s = sine_table[i]; /* sin(pi*i/(len/2)) */
2545 364624800 : c = sine_table[i + len / 4]; /* cos(pi*i/(len/2)) */
2546 :
2547 364624800 : tmp1 = buf[2 * i] - buf[len - 2 * i];
2548 364624800 : tmp2 = buf[2 * i + 1] + buf[len - 2 * i + 1];
2549 364624800 : tmp3 = s * tmp1 - c * tmp2; /* real part of j*W(k,N)*[T(k) - T'(N-k)] */
2550 364624800 : tmp4 = c * tmp1 + s * tmp2; /* imag part of j*W(k,N)*[T(k) - T'(N-k)] */
2551 364624800 : tmp1 = buf[2 * i] + buf[len - 2 * i];
2552 364624800 : tmp2 = buf[2 * i + 1] - buf[len - 2 * i + 1];
2553 :
2554 364624800 : buf[2 * i] = 0.5f * ( tmp1 - tmp3 );
2555 364624800 : buf[2 * i + 1] = 0.5f * ( tmp2 - tmp4 );
2556 364624800 : buf[len - 2 * i] = 0.5f * ( tmp1 + tmp3 );
2557 364624800 : buf[len - 2 * i + 1] = -0.5f * ( tmp2 + tmp4 );
2558 : }
2559 2278905 : }
2560 :
2561 2103071 : static void rfft_pre(
2562 : const float *sine_table,
2563 : float *buf,
2564 : const int16_t len )
2565 : {
2566 2103071 : const float scale = 1.0f / len;
2567 : float tmp1, tmp2, tmp3, tmp4, s, c;
2568 2103071 : int16_t i = 0;
2569 :
2570 2103071 : tmp1 = buf[0] + buf[1];
2571 2103071 : buf[1] = scale * ( buf[0] - buf[1] );
2572 2103071 : buf[0] = scale * tmp1;
2573 :
2574 338594431 : for ( i = 1; i <= ( len + 2 ) / 4; i++ )
2575 : {
2576 336491360 : s = sine_table[i]; /* sin(pi*i/(len/2)) */
2577 336491360 : c = sine_table[i + len / 4]; /* cos(pi*i/(len/2)) */
2578 :
2579 336491360 : tmp1 = buf[2 * i] - buf[len - 2 * i];
2580 336491360 : tmp2 = buf[2 * i + 1] + buf[len - 2 * i + 1];
2581 336491360 : tmp3 = s * tmp1 + c * tmp2; /* real part of j*W(k,N)*[T(k) - T'(N-k)] */
2582 336491360 : tmp4 = -c * tmp1 + s * tmp2; /* imag part of j*W(k,N)*[T(k) - T'(N-k)] */
2583 336491360 : tmp1 = buf[2 * i] + buf[len - 2 * i];
2584 336491360 : tmp2 = buf[2 * i + 1] - buf[len - 2 * i + 1];
2585 :
2586 336491360 : buf[2 * i] = scale * ( tmp1 + tmp3 );
2587 336491360 : buf[2 * i + 1] = -scale * ( tmp2 + tmp4 );
2588 336491360 : buf[len - 2 * i] = scale * ( tmp1 - tmp3 );
2589 336491360 : buf[len - 2 * i + 1] = scale * ( tmp2 - tmp4 );
2590 : }
2591 :
2592 2103071 : return;
2593 : }
2594 :
2595 7691798 : int16_t RFFTN(
2596 : float *data,
2597 : const float *sine_table,
2598 : const int16_t len,
2599 : const int16_t sign )
2600 : {
2601 7691798 : assert( len <= 640 && len > 0 );
2602 :
2603 7691798 : if ( len == 640 )
2604 : {
2605 : float x[320], y[320];
2606 : int16_t i;
2607 :
2608 4381976 : if ( sign != -1 )
2609 : {
2610 2103071 : rfft_pre( sine_table, data, len );
2611 : }
2612 :
2613 1406614296 : for ( i = 0; i < 320; i++ )
2614 : {
2615 1402232320 : x[i] = data[2 * i];
2616 1402232320 : y[i] = data[2 * i + 1];
2617 : }
2618 4381976 : DoRTFT320( x, y );
2619 1406614296 : for ( i = 0; i < 320; i++ )
2620 : {
2621 1402232320 : data[2 * i] = x[i];
2622 1402232320 : data[2 * i + 1] = y[i];
2623 : }
2624 :
2625 4381976 : if ( sign == -1 )
2626 : {
2627 2278905 : rfft_post( sine_table, data, len );
2628 : }
2629 : }
2630 : else
2631 : {
2632 3309822 : if ( len == 512 )
2633 : {
2634 : int16_t i;
2635 3309822 : const int16_t log2 = 9;
2636 : float reordered_data[512];
2637 :
2638 3309822 : if ( sign == -1 )
2639 : {
2640 2103659 : fft_rel( data, len, log2 );
2641 2103659 : reordered_data[0] = data[0];
2642 2103659 : reordered_data[1] = data[len / 2];
2643 538536704 : for ( i = 1; i < len / 2; i++ )
2644 : {
2645 536433045 : reordered_data[2 * i] = data[i];
2646 536433045 : reordered_data[2 * i + 1] = data[len - i];
2647 : }
2648 : }
2649 : else
2650 : {
2651 1206163 : reordered_data[0] = data[0];
2652 1206163 : reordered_data[len / 2] = data[1];
2653 308777728 : for ( i = 1; i < len / 2; i++ )
2654 : {
2655 307571565 : reordered_data[i] = data[2 * i];
2656 307571565 : reordered_data[len - i] = data[2 * i + 1];
2657 : }
2658 1206163 : ifft_rel( reordered_data, len, log2 );
2659 : }
2660 3309822 : mvr2r( reordered_data, data, len );
2661 : }
2662 : else
2663 : {
2664 0 : assert( !"Not supported FFT length!" );
2665 : }
2666 : }
2667 :
2668 7691798 : return 0;
2669 : }
2670 :
2671 499041450 : static void butterfly(
2672 : const float a,
2673 : const float b,
2674 : float *aPlusb,
2675 : float *aMinusb )
2676 : {
2677 499041450 : *aPlusb = a + b;
2678 499041450 : *aMinusb = a - b;
2679 :
2680 499041450 : return;
2681 : }
2682 :
2683 331322400 : static void fft2(
2684 : float *pInOut )
2685 : {
2686 : /* FFT MATRIX:
2687 : 1.0000 1.0000
2688 : 1.0000 -1.0000
2689 : */
2690 : float re1, im1;
2691 : float re2, im2;
2692 :
2693 331322400 : re1 = pInOut[0];
2694 331322400 : im1 = pInOut[1];
2695 331322400 : re2 = pInOut[2];
2696 331322400 : im2 = pInOut[3];
2697 331322400 : pInOut[0] = re1 + re2;
2698 331322400 : pInOut[1] = im1 + im2;
2699 :
2700 331322400 : pInOut[2] = re1 - re2;
2701 331322400 : pInOut[3] = im1 - im2;
2702 :
2703 331322400 : return;
2704 : }
2705 :
2706 : static const float C31 = 0.5f; /* cos(PI/3); sin(2*PI/3) */
2707 : static const float C32 = 0.866025403784439f; /* cos(PI/3); sin(2*PI/3) */
2708 :
2709 220975600 : static void fft3_2(
2710 : float *pInOut )
2711 : {
2712 : float re1, im1;
2713 : float re2, im2;
2714 : float re3, im3;
2715 :
2716 : float tmp1, tmp2;
2717 : float tmp3, tmp4;
2718 :
2719 220975600 : re1 = pInOut[0];
2720 220975600 : im1 = pInOut[1];
2721 220975600 : re2 = pInOut[2];
2722 220975600 : im2 = pInOut[3];
2723 220975600 : re3 = pInOut[4];
2724 220975600 : im3 = pInOut[5];
2725 :
2726 : /* FFT MATRIX:
2727 : 1.0000 1.0000 1.0000
2728 : C31 C32
2729 : 1.0000 -0.5000 - 0.8660i -0.5000 + 0.8660i
2730 : 1.0000 -0.5000 + 0.8660i -0.5000 - 0.8660i
2731 : */
2732 220975600 : tmp1 = re2 + re3;
2733 220975600 : tmp3 = im2 + im3;
2734 220975600 : tmp2 = re2 - re3;
2735 220975600 : tmp4 = im2 - im3;
2736 220975600 : pInOut[0] = re1 + tmp1;
2737 220975600 : pInOut[1] = im1 + tmp3;
2738 220975600 : pInOut[2] = re1 - C31 * tmp1 + C32 * tmp4;
2739 220975600 : pInOut[4] = re1 - C31 * tmp1 - C32 * tmp4;
2740 :
2741 220975600 : pInOut[3] = im1 - C32 * tmp2 - C31 * tmp3;
2742 220975600 : pInOut[5] = im1 + C32 * tmp2 - C31 * tmp3;
2743 220975600 : }
2744 :
2745 :
2746 1975 : static void fft4(
2747 : float *pInOut )
2748 : {
2749 : float re1, im1;
2750 : float re2, im2;
2751 : float re3, im3;
2752 : float re4, im4;
2753 :
2754 : float tmp1, tmp2;
2755 : float tmp3, tmp4;
2756 : float tmp5, tmp6;
2757 : float tmp7, tmp8;
2758 :
2759 1975 : re1 = pInOut[0];
2760 1975 : im1 = pInOut[1];
2761 1975 : re2 = pInOut[2];
2762 1975 : im2 = pInOut[3];
2763 1975 : re3 = pInOut[4];
2764 1975 : im3 = pInOut[5];
2765 1975 : re4 = pInOut[6];
2766 1975 : im4 = pInOut[7];
2767 :
2768 : /*
2769 : 1.0000 1.0000 1.0000 1.0000
2770 : 1.0000 -1.0000i -1.0000 1.0000i
2771 : 1.0000 -1.0000 1.0000 -1.0000
2772 : 1.0000 1.0000i -1.0000 -1.0000i
2773 : */
2774 1975 : tmp1 = re1 + re3;
2775 1975 : tmp3 = re2 + re4;
2776 1975 : tmp5 = im1 + im3;
2777 1975 : tmp7 = im2 + im4;
2778 1975 : pInOut[0] = tmp1 + tmp3;
2779 1975 : pInOut[4] = tmp1 - tmp3;
2780 :
2781 1975 : pInOut[1] = tmp5 + tmp7;
2782 1975 : pInOut[5] = tmp5 - tmp7;
2783 1975 : tmp2 = re1 - re3;
2784 1975 : tmp4 = re2 - re4;
2785 1975 : tmp6 = im1 - im3;
2786 1975 : tmp8 = im2 - im4;
2787 1975 : pInOut[2] = tmp2 + tmp8;
2788 1975 : pInOut[6] = tmp2 - tmp8;
2789 :
2790 1975 : pInOut[3] = -tmp4 + tmp6;
2791 1975 : pInOut[7] = tmp4 + tmp6;
2792 :
2793 1975 : return;
2794 : }
2795 :
2796 : static const float C51 = 0.309016994374947f; /* cos(2*PI/5); */
2797 : static const float C52 = 0.951056516295154f; /* sin(2*PI/5); */
2798 : static const float C53 = 0.809016994374947f; /* cos( PI/5); */
2799 : static const float C54 = 0.587785252292473f; /* sin( PI/5); */
2800 :
2801 133696120 : static void fft5(
2802 : float *pInOut )
2803 : {
2804 : float re1, im1;
2805 : float re2, im2;
2806 : float re3, im3;
2807 : float re4, im4;
2808 : float re5, im5;
2809 :
2810 : float tmp1, tmp2;
2811 : float tmp3, tmp4;
2812 : float tmp5, tmp6;
2813 : float tmp7, tmp8;
2814 :
2815 :
2816 133696120 : re1 = pInOut[0];
2817 133696120 : im1 = pInOut[1];
2818 133696120 : re2 = pInOut[2];
2819 133696120 : im2 = pInOut[3];
2820 133696120 : re3 = pInOut[4];
2821 133696120 : im3 = pInOut[5];
2822 133696120 : re4 = pInOut[6];
2823 133696120 : im4 = pInOut[7];
2824 133696120 : re5 = pInOut[8];
2825 133696120 : im5 = pInOut[9];
2826 :
2827 : /*
2828 : 1.0000 1.0000 1.0000 1.0000 1.0000
2829 : C51 C52 C53 C54
2830 : 1.0000 0.3090 - 0.9511i -0.8090 - 0.5878i -0.8090 + 0.5878i 0.3090 + 0.9511i
2831 : 1.0000 -0.8090 - 0.5878i 0.3090 + 0.9511i 0.3090 - 0.9511i -0.8090 + 0.5878i
2832 : 1.0000 -0.8090 + 0.5878i 0.3090 - 0.9511i 0.3090 + 0.9511i -0.8090 - 0.5878i
2833 : 1.0000 0.3090 + 0.9511i -0.8090 + 0.5878i -0.8090 - 0.5878i 0.3090 - 0.9511i
2834 : */
2835 133696120 : tmp1 = re2 + re5;
2836 133696120 : tmp2 = re2 - re5;
2837 133696120 : tmp3 = im2 + im5;
2838 133696120 : tmp4 = im2 - im5;
2839 133696120 : tmp5 = re3 + re4;
2840 133696120 : tmp6 = re3 - re4;
2841 133696120 : tmp7 = im3 + im4;
2842 133696120 : tmp8 = im3 - im4;
2843 :
2844 :
2845 133696120 : pInOut[0] = re1 + tmp1 + tmp5;
2846 133696120 : pInOut[1] = im1 + tmp3 + tmp7;
2847 :
2848 133696120 : pInOut[2] = re1 + C51 * tmp1 - C53 * tmp5 + C52 * tmp4 + C54 * tmp8;
2849 133696120 : pInOut[8] = re1 + C51 * tmp1 - C53 * tmp5 - C52 * tmp4 - C54 * tmp8;
2850 133696120 : pInOut[3] = im1 - C52 * tmp2 - C54 * tmp6 + C51 * tmp3 - C53 * tmp7;
2851 133696120 : pInOut[9] = im1 + C52 * tmp2 + C54 * tmp6 + C51 * tmp3 - C53 * tmp7;
2852 133696120 : pInOut[4] = re1 - C53 * tmp1 + C51 * tmp5 + C54 * tmp4 - C52 * tmp8;
2853 133696120 : pInOut[6] = re1 - C53 * tmp1 + C51 * tmp5 - C54 * tmp4 + C52 * tmp8;
2854 133696120 : pInOut[5] = im1 - C54 * tmp2 + C52 * tmp6 - C53 * tmp3 + C51 * tmp7;
2855 133696120 : pInOut[7] = im1 + C54 * tmp2 - C52 * tmp6 - C53 * tmp3 + C51 * tmp7;
2856 :
2857 133696120 : return;
2858 : }
2859 :
2860 : static const float C81 = 0.707106781186548f; /* cos(PI/4); */
2861 :
2862 83173575 : static void fft8_2(
2863 : float *pInOut )
2864 : {
2865 : float re0, im0, re4, im4;
2866 :
2867 : float re1_7p, re1_7m;
2868 : float im1_7p, im1_7m;
2869 : float re2_6p, re2_6m;
2870 : float im2_6p, im2_6m;
2871 : float re3_5p, re3_5m;
2872 : float im3_5p, im3_5m;
2873 :
2874 83173575 : re0 = pInOut[0];
2875 83173575 : im0 = pInOut[1];
2876 83173575 : re4 = pInOut[8];
2877 83173575 : im4 = pInOut[9];
2878 83173575 : butterfly( pInOut[1 * 2], pInOut[7 * 2], &re1_7p, &re1_7m );
2879 83173575 : butterfly( pInOut[1 * 2 + 1], pInOut[7 * 2 + 1], &im1_7p, &im1_7m );
2880 83173575 : butterfly( pInOut[2 * 2], pInOut[6 * 2], &re2_6p, &re2_6m );
2881 83173575 : butterfly( pInOut[2 * 2 + 1], pInOut[6 * 2 + 1], &im2_6p, &im2_6m );
2882 83173575 : butterfly( pInOut[3 * 2], pInOut[5 * 2], &re3_5p, &re3_5m );
2883 83173575 : butterfly( pInOut[3 * 2 + 1], pInOut[5 * 2 + 1], &im3_5p, &im3_5m );
2884 :
2885 : /*
2886 : 0: 1 + 0i 1 + 0i 1 + 0i 1 + 0i 1 + 0i 1 + 0i 1 + 0i 1 + 0i
2887 : 1: 1 + 0i C81 - C81i 0 - 1i -C81 - C81i -1 - 0i -C81 + C81i - 0 + 1i C81 + C81i
2888 : 2: 1 + 0i 0 - 1i -1 - 0i - 0 + 1i 1 + 0i 0 - 1i - 1 - 0i - 0 + 1i
2889 : 3: 1 + 0i -C81 - C81i -0 + 1i C81 - C81i -1 - 0i C81 + C81i 0 - 1i -C81 + C81i
2890 : 4: 1 + 0i - 1 - 0i 1 + 0i - 1 - 0i 1 + 0i - 1 - 0i 1 + 0i - 1 - 0i
2891 : 5: 1 + 0i -C81 + C81i 0 - 1i C81 + C81i -1 - 0i C81 - C81i - 0 + 1i -C81 - C81i
2892 : 6: 1 + 0i - 0 + 1i -1 - 0i 0 - 1i 1 + 0i - 0 + 1i - 1 - 0i - 0 - 1i
2893 : 7: 1 + 0i C81 + C81i -0 + 1i -C81 + C81i -1 - 0i -C81 - C81i - 0 - 1i C81 - C81i
2894 : */
2895 83173575 : pInOut[0] = re0 + re4 + re1_7p + re2_6p + re3_5p;
2896 83173575 : pInOut[1] = im0 + im4 + im1_7p + im2_6p + im3_5p;
2897 :
2898 83173575 : pInOut[2] = re0 + C81 * ( re1_7p - re3_5p ) - re4 + C81 * ( im1_7m + im3_5m ) + im2_6m;
2899 83173575 : pInOut[3] = im0 + C81 * ( im1_7p - im3_5p ) - im4 - C81 * ( re1_7m + re3_5m ) - re2_6m;
2900 :
2901 83173575 : pInOut[4] = re0 - re2_6p + re4 + im1_7m - im3_5m;
2902 83173575 : pInOut[5] = im0 - im2_6p + im4 - re1_7m + re3_5m;
2903 :
2904 83173575 : pInOut[6] = re0 + C81 * ( -re1_7p + re3_5p ) - re4 + C81 * ( im1_7m + im3_5m ) - im2_6m;
2905 83173575 : pInOut[7] = im0 + C81 * ( -im1_7p + im3_5p ) - im4 - C81 * ( re1_7m + re3_5m ) + re2_6m;
2906 :
2907 83173575 : pInOut[8] = re0 - re1_7p + re2_6p - re3_5p + re4;
2908 83173575 : pInOut[9] = im0 - im1_7p + im2_6p - im3_5p + im4;
2909 :
2910 83173575 : pInOut[10] = re0 + C81 * ( -re1_7p + re3_5p ) - re4 - C81 * ( im1_7m + im3_5m ) + im2_6m;
2911 83173575 : pInOut[11] = im0 + C81 * ( -im1_7p + im3_5p ) - im4 + C81 * ( re1_7m + re3_5m ) - re2_6m;
2912 :
2913 83173575 : pInOut[12] = re0 - re2_6p + re4 - im1_7m + im3_5m;
2914 83173575 : pInOut[13] = im0 - im2_6p + im4 + re1_7m - re3_5m;
2915 :
2916 83173575 : pInOut[14] = re0 + C81 * ( re1_7p - re3_5p ) - re4 - C81 * ( im1_7m + im3_5m ) - im2_6m;
2917 83173575 : pInOut[15] = im0 + C81 * ( im1_7p - im3_5p ) - im4 + C81 * ( re1_7m + re3_5m ) + re2_6m;
2918 :
2919 83173575 : return;
2920 : }
2921 :
2922 83447420 : static void nextFFT(
2923 : float *x,
2924 : const int16_t length )
2925 : {
2926 83447420 : switch ( length )
2927 : {
2928 0 : case 2:
2929 0 : fft2( x );
2930 0 : break;
2931 0 : case 3:
2932 0 : fft3_2( x );
2933 0 : break;
2934 0 : case 4:
2935 0 : fft4( x );
2936 0 : break;
2937 616820 : case 5:
2938 616820 : fft5( x );
2939 616820 : break;
2940 82830600 : case 8:
2941 82830600 : fft8_2( x );
2942 82830600 : break;
2943 0 : default:
2944 0 : assert( !"length not supported" );
2945 : break;
2946 : }
2947 :
2948 83447420 : return;
2949 : }
2950 :
2951 : static const int16_t CTFFTfactors[] = { 9, 8, 7, 5, 4, 3, 2, 0 };
2952 :
2953 41538664 : static __inline int16_t findFactor(
2954 : const int16_t length )
2955 : {
2956 41538664 : int16_t i = 0;
2957 41538664 : int16_t factor = 0;
2958 :
2959 83324056 : while ( CTFFTfactors[i] != 0 )
2960 : {
2961 83324056 : if ( 0 == ( length % CTFFTfactors[i] ) )
2962 : {
2963 41538664 : factor = CTFFTfactors[i];
2964 41538664 : break;
2965 : }
2966 41785392 : i++;
2967 : }
2968 41538664 : return factor;
2969 : }
2970 :
2971 41538664 : static __inline void twiddle(
2972 : float *x,
2973 : const int16_t length,
2974 : const int16_t n1,
2975 : const int16_t n2 )
2976 : {
2977 : int16_t i, ii;
2978 41538664 : double pi = 4. * atan( 1. );
2979 : float sinValOrg, cosValOrg;
2980 41538664 : float sinVal = 0.f, cosVal = 1.f;
2981 41538664 : float twReal = 0.f, twImag = 1.f;
2982 :
2983 41538664 : cosValOrg = (float) cos( -2 * pi * 1. / (double) length );
2984 41538664 : sinValOrg = (float) sin( -2 * pi * 1. / (double) length );
2985 331939220 : for ( i = 1; i < n1; i++ )
2986 : {
2987 : float tmp;
2988 290400556 : twReal = 1.f;
2989 290400556 : twImag = 0.f;
2990 290400556 : tmp = cosVal * cosValOrg - sinVal * sinValOrg;
2991 290400556 : sinVal = sinVal * cosValOrg + cosVal * sinValOrg;
2992 290400556 : cosVal = tmp;
2993 582281480 : for ( ii = 1; ii < n2; ii++ )
2994 : {
2995 : float xRe, xIm, tmpReal;
2996 : /* cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y); */
2997 : /* sin(x+y) = sin(x)*cos(y) + sin(y)*cos(x); */
2998 291880924 : tmpReal = twReal * cosVal - twImag * sinVal;
2999 291880924 : twImag = twImag * cosVal + sinVal * twReal;
3000 291880924 : twReal = tmpReal;
3001 291880924 : xRe = x[2 * ( i * n2 + ii )];
3002 291880924 : xIm = x[2 * ( i * n2 + ii ) + 1];
3003 291880924 : x[2 * ( i * n2 + ii )] = twReal * xRe - twImag * xIm;
3004 291880924 : x[2 * ( i * n2 + ii ) + 1] = twImag * xRe + twReal * xIm;
3005 : }
3006 290400556 : tmp = cosVal;
3007 : }
3008 :
3009 41538664 : return;
3010 : }
3011 :
3012 727260914 : static void cooleyTukeyFFT(
3013 : float *x,
3014 : const int16_t length,
3015 : float *scratch )
3016 : {
3017 : int16_t factor;
3018 : int16_t i, ii;
3019 : int16_t n1, n2;
3020 727260914 : int16_t cnt = 0;
3021 : float *src, *dest;
3022 :
3023 727260914 : switch ( length )
3024 : {
3025 0 : case 1:
3026 0 : break;
3027 331322400 : case 2:
3028 331322400 : fft2( x );
3029 331322400 : break;
3030 220975600 : case 3:
3031 220975600 : fft3_2( x );
3032 220975600 : break;
3033 1975 : case 4:
3034 1975 : fft4( x );
3035 1975 : break;
3036 133079300 : case 5:
3037 133079300 : fft5( x );
3038 133079300 : break;
3039 342975 : case 8:
3040 342975 : fft8_2( x );
3041 342975 : break;
3042 41538664 : default:
3043 : {
3044 41538664 : factor = findFactor( length );
3045 41538664 : if ( factor > 0 && ( length / factor > 1 ) )
3046 : {
3047 41538664 : n1 = factor;
3048 41538664 : n2 = length / factor;
3049 :
3050 : /* DATA Resorting for stage1 */
3051 41538664 : dest = scratch;
3052 373477884 : for ( i = 0; i < 2 * n1; i += 2 )
3053 : {
3054 331939220 : src = x + i;
3055 997668120 : for ( ii = 0; ii < n2; ii++ )
3056 : {
3057 : /* *dest++ = x[2*(i+ii*n1)]; */
3058 : /* *dest++ = x[2*(i+ii*n1)+1]; */
3059 665728900 : *dest++ = *src;
3060 665728900 : *dest++ = *( src + 1 );
3061 665728900 : src += 2 * n1;
3062 : }
3063 : }
3064 41538664 : src = scratch;
3065 41538664 : dest = x;
3066 707267564 : for ( i = 0; i < length; i++ )
3067 : {
3068 665728900 : *dest++ = *src++;
3069 665728900 : *dest++ = *src++;
3070 : }
3071 : /* perform n1 ffts of length n2 */
3072 373477884 : for ( i = 0; i < n1; i++ )
3073 : {
3074 331939220 : cooleyTukeyFFT( x + 2 * i * n2, n2, scratch + 2 * i * n2 );
3075 : }
3076 : /*data twiddeling */
3077 41538664 : twiddle( x, length, n1, n2 );
3078 : /* DATA Resorting for stage2 */
3079 41538664 : cnt = 0;
3080 124986084 : for ( i = 0; i < n2; i++ )
3081 : {
3082 749176320 : for ( ii = 0; ii < n1; ii++ )
3083 : {
3084 665728900 : scratch[2 * cnt] = x[2 * ( i + ii * n2 )];
3085 665728900 : scratch[2 * cnt + 1] = x[2 * ( i + ii * n2 ) + 1];
3086 665728900 : cnt++;
3087 : }
3088 : }
3089 : /* perform n2 ffts of length n1 */
3090 124986084 : for ( i = 0; i < n2; i++ )
3091 : {
3092 83447420 : nextFFT( scratch + 2 * i * n1, n1 );
3093 : }
3094 41538664 : cnt = 0;
3095 373477884 : for ( i = 0; i < n1; i++ )
3096 : {
3097 997668120 : for ( ii = 0; ii < n2; ii++ )
3098 : {
3099 665728900 : x[2 * cnt] = scratch[2 * ( i + ii * n1 )];
3100 665728900 : x[2 * cnt + 1] = scratch[2 * ( i + ii * n1 ) + 1];
3101 665728900 : cnt++;
3102 : }
3103 : }
3104 : }
3105 : else
3106 : {
3107 0 : assert( !"length not supported" );
3108 : }
3109 : }
3110 : }
3111 :
3112 727260914 : return;
3113 : }
3114 :
3115 268216501 : static void pfaDFT(
3116 : float *x,
3117 : const int16_t length,
3118 : float *scratch1,
3119 : const int16_t numFactors,
3120 : const int16_t *factor )
3121 : {
3122 : int16_t i, ii;
3123 : int16_t cnt;
3124 :
3125 268216501 : if ( numFactors > 1 )
3126 : {
3127 46951976 : float *tmp = scratch1;
3128 46951976 : int16_t n1_inv = 1, n2_inv = 1;
3129 46951976 : int16_t n2 = factor[0 /*idx*/];
3130 46951976 : int16_t n1 = length / n2;
3131 : int16_t idx, incr;
3132 :
3133 130049097 : while ( ( ( n1_inv * n1 ) % n2 ) != 1 )
3134 : {
3135 83097121 : n1_inv++;
3136 : }
3137 91138384 : while ( ( ( n2_inv * n2 ) % n1 ) != 1 )
3138 : {
3139 44186408 : n2_inv++;
3140 : }
3141 46951976 : idx = 0;
3142 46951976 : incr = n1 * n1_inv;
3143 46951976 : cnt = 0;
3144 221009145 : for ( i = 0; i < n1; i++ )
3145 : {
3146 1328323300 : for ( ii = 0; ii < n2 - 1; ii++ )
3147 : {
3148 1154266131 : tmp[cnt++] = x[2 * idx];
3149 1154266131 : tmp[cnt++] = x[2 * idx + 1];
3150 :
3151 1154266131 : idx += incr;
3152 1154266131 : if ( idx > length )
3153 : {
3154 758818430 : idx -= length;
3155 : }
3156 : }
3157 174057169 : tmp[cnt++] = x[2 * idx];
3158 174057169 : tmp[cnt++] = x[2 * idx + 1];
3159 174057169 : idx++;
3160 : }
3161 221009145 : for ( cnt = 0; cnt < length; cnt += n2 )
3162 : {
3163 174057169 : cooleyTukeyFFT( tmp + 2 * cnt, n2, x + 2 * cnt );
3164 : }
3165 221009145 : for ( cnt = 0; cnt < n1; cnt++ )
3166 : {
3167 1502380469 : for ( i = 0; i < n2; i++ )
3168 : {
3169 1328323300 : x[2 * ( cnt + i * n1 )] = tmp[2 * ( cnt * n2 + i )];
3170 1328323300 : x[2 * ( cnt + i * n1 ) + 1] = tmp[2 * ( cnt * n2 + i ) + 1];
3171 : }
3172 : }
3173 312396261 : for ( cnt = 0; cnt < length; cnt += n1 )
3174 : {
3175 265444285 : pfaDFT( x + 2 * cnt, n1, tmp, numFactors - 1, &factor[1] );
3176 : }
3177 46951976 : idx = 0;
3178 46951976 : cnt = 0;
3179 312396261 : for ( i = 0; i < n2; i++ )
3180 : {
3181 265444285 : idx = i * n1;
3182 1593767585 : for ( ii = 0; ii < n1; ii++ )
3183 : {
3184 1328323300 : tmp[2 * idx] = x[cnt++];
3185 1328323300 : tmp[2 * idx + 1] = x[cnt++];
3186 1328323300 : idx += n2;
3187 1328323300 : if ( idx > length )
3188 : {
3189 218492309 : idx -= length;
3190 : }
3191 : }
3192 : }
3193 1375275276 : for ( cnt = 0; cnt < length; cnt++ )
3194 : {
3195 1328323300 : x[2 * cnt] = tmp[2 * cnt];
3196 1328323300 : x[2 * cnt + 1] = tmp[2 * cnt + 1];
3197 : }
3198 : }
3199 : else
3200 : {
3201 221264525 : cooleyTukeyFFT( x, length, scratch1 );
3202 : }
3203 :
3204 268216501 : return;
3205 : }
3206 :
3207 2772216 : static void fftf_interleave(
3208 : float *re,
3209 : float *im,
3210 : float *out,
3211 : const int16_t len )
3212 : {
3213 2772216 : int16_t i = 0;
3214 :
3215 668168716 : for ( i = 0; i < len; i++ )
3216 : {
3217 665396500 : *out++ = *re++;
3218 665396500 : *out++ = *im++;
3219 : }
3220 :
3221 2772216 : return;
3222 : }
3223 :
3224 2772216 : static void fftf_deinterleave(
3225 : float *in,
3226 : float *re,
3227 : float *im,
3228 : const int16_t len )
3229 : {
3230 2772216 : int16_t i = 0;
3231 :
3232 668168716 : for ( i = 0; i < len; i++ )
3233 : {
3234 665396500 : *re++ = *in++;
3235 665396500 : *im++ = *in++;
3236 : }
3237 :
3238 2772216 : return;
3239 : }
3240 :
3241 1024 : static void DoRTFT600(
3242 : float *x, /* i/o: real part of input and output data */
3243 : float *y /* i/o: imaginary part of input and output data */
3244 : )
3245 : {
3246 : float scratch[1200], cmplx[1200];
3247 1024 : const int16_t factors[3] = { 25, 8, 3 };
3248 :
3249 1024 : fftf_interleave( x, y, cmplx, 600 );
3250 1024 : pfaDFT( cmplx, 600, scratch, 3, factors );
3251 1024 : fftf_deinterleave( cmplx, x, y, 600 );
3252 :
3253 1024 : return;
3254 : }
3255 :
3256 831 : static void DoRTFT400(
3257 : float *x, /* i/o: real part of input and output data */
3258 : float *y /* i/o: imaginary part of input and output data */
3259 : )
3260 : {
3261 : float scratch[800], cmplx[800];
3262 831 : const int16_t factors[2] = { 25, 16 };
3263 :
3264 831 : fftf_interleave( x, y, cmplx, 400 );
3265 831 : pfaDFT( cmplx, 400, scratch, 2, factors );
3266 831 : fftf_deinterleave( cmplx, x, y, 400 );
3267 :
3268 :
3269 831 : return;
3270 : }
3271 :
3272 2759635 : static void DoRTFT240(
3273 : float *x, /* i/o: real part of input and output data */
3274 : float *y /* i/o: imaginary part of input and output data */
3275 : )
3276 : {
3277 : float scratch[480], cmplx[480];
3278 2759635 : const int16_t factors[3] = { 16, 5, 3 };
3279 :
3280 2759635 : fftf_interleave( x, y, cmplx, 240 );
3281 2759635 : pfaDFT( cmplx, 240, scratch, 3, factors );
3282 2759635 : fftf_deinterleave( cmplx, x, y, 240 );
3283 :
3284 2759635 : return;
3285 : }
3286 :
3287 10647 : static void DoRTFT200(
3288 : float *x, /* i/o: real part of input and output data */
3289 : float *y /* i/o: imaginary part of input and output data */
3290 : )
3291 : {
3292 : float scratch[400], cmplx[400];
3293 10647 : const int16_t factors[2] = { 25, 8 };
3294 :
3295 10647 : fftf_interleave( x, y, cmplx, 200 );
3296 10647 : pfaDFT( cmplx, 200, scratch, 2, factors );
3297 10647 : fftf_deinterleave( cmplx, x, y, 200 );
3298 :
3299 10647 : return;
3300 : }
3301 :
3302 79 : static void DoRTFT100(
3303 : float *x, /* i/o: real part of input and output data */
3304 : float *y /* i/o: imaginary part of input and output data */
3305 : )
3306 : {
3307 : float scratch[200], cmplx[200];
3308 79 : const int16_t factors[2] = { 25, 4 };
3309 :
3310 79 : fftf_interleave( x, y, cmplx, 100 );
3311 79 : pfaDFT( cmplx, 100, scratch, 2, factors );
3312 79 : fftf_deinterleave( cmplx, x, y, 100 );
3313 :
3314 79 : return;
3315 : }
3316 :
3317 :
3318 16742508 : void DoFFT(
3319 : float *re2,
3320 : float *im2,
3321 : const int16_t length )
3322 : {
3323 16742508 : switch ( length )
3324 : {
3325 1024 : case 600:
3326 1024 : DoRTFT600( re2, im2 );
3327 1024 : break;
3328 263309 : case 480:
3329 263309 : DoRTFT480( re2, im2 );
3330 263309 : break;
3331 831 : case 400:
3332 831 : DoRTFT400( re2, im2 );
3333 831 : break;
3334 482136 : case 320:
3335 482136 : DoRTFT320( re2, im2 );
3336 482136 : break;
3337 6423 : case 256:
3338 6423 : DoRTFTn( re2, im2, 256 );
3339 6423 : break;
3340 2759635 : case 240:
3341 2759635 : DoRTFT240( re2, im2 );
3342 2759635 : break;
3343 10647 : case 200:
3344 10647 : DoRTFT200( re2, im2 );
3345 10647 : break;
3346 304824 : case 160:
3347 304824 : DoRTFT160( re2, im2 );
3348 304824 : break;
3349 12680384 : case 128:
3350 12680384 : DoRTFT128( re2, im2 );
3351 12680384 : break;
3352 10490 : case 120:
3353 10490 : DoRTFT120( re2, im2 );
3354 10490 : break;
3355 79 : case 100:
3356 79 : DoRTFT100( re2, im2 );
3357 79 : break;
3358 218218 : case 80:
3359 218218 : DoRTFT80( re2, im2 );
3360 218218 : break;
3361 568 : case 64:
3362 568 : DoRTFTn( re2, im2, 64 );
3363 568 : break;
3364 3548 : case 40:
3365 3548 : DoRTFT40( re2, im2 );
3366 3548 : break;
3367 392 : case 20:
3368 392 : DoRTFT20( re2, im2 );
3369 392 : break;
3370 0 : default:
3371 0 : assert( !"fft is not supported!" );
3372 : }
3373 :
3374 16742508 : return;
3375 : }
3376 :
3377 : /*-----------------------------------------------------------------*
3378 : * Low-complexity implementation of FFT
3379 : *-----------------------------------------------------------------*/
3380 :
3381 3105320 : static void fft_len5(
3382 : float *re,
3383 : float *im,
3384 : const int16_t s )
3385 : {
3386 : float x0, x1, x2, x3, x4;
3387 : float r1, r2, r3, r4;
3388 : float s1, s2, s3, s4;
3389 : float t;
3390 :
3391 3105320 : x0 = re[s * 0];
3392 3105320 : x1 = re[s * 1];
3393 3105320 : x2 = re[s * 2];
3394 3105320 : x3 = re[s * 3];
3395 3105320 : x4 = re[s * 4];
3396 :
3397 3105320 : r1 = ( x1 + x4 );
3398 3105320 : r4 = ( x1 - x4 );
3399 3105320 : r3 = ( x2 + x3 );
3400 3105320 : r2 = ( x2 - x3 );
3401 3105320 : t = ( ( r1 - r3 ) * FFT_C54 );
3402 3105320 : r1 = ( r1 + r3 );
3403 3105320 : re[0] = ( x0 + r1 );
3404 :
3405 3105320 : r1 = ( re[0] + ( ( r1 * FFT_C55 ) ) );
3406 3105320 : r3 = ( r1 - t );
3407 3105320 : r1 = ( r1 + t );
3408 3105320 : t = ( ( r4 + r2 ) * FFT_C51 );
3409 :
3410 3105320 : r4 = ( t + ( r4 * FFT_C52 ) );
3411 3105320 : r2 = ( t + ( r2 * FFT_C53 ) );
3412 :
3413 3105320 : x0 = im[s * 0];
3414 3105320 : x1 = im[s * 1];
3415 3105320 : x2 = im[s * 2];
3416 3105320 : x3 = im[s * 3];
3417 3105320 : x4 = im[s * 4];
3418 :
3419 3105320 : s1 = ( x1 + x4 );
3420 3105320 : s4 = ( x1 - x4 );
3421 3105320 : s3 = ( x2 + x3 );
3422 3105320 : s2 = ( x2 - x3 );
3423 3105320 : t = ( ( s1 - s3 ) * FFT_C54 );
3424 3105320 : s1 = ( s1 + s3 );
3425 3105320 : im[0] = ( x0 + s1 );
3426 :
3427 3105320 : s1 = ( im[0] + ( s1 * FFT_C55 ) );
3428 3105320 : s3 = ( s1 - t );
3429 3105320 : s1 = ( s1 + t );
3430 3105320 : t = ( ( s4 + s2 ) * FFT_C51 );
3431 :
3432 3105320 : s4 = ( t + ( s4 * FFT_C52 ) );
3433 3105320 : s2 = ( t + ( s2 * FFT_C53 ) );
3434 :
3435 3105320 : re[s * 1] = ( r1 + s2 );
3436 3105320 : re[s * 4] = ( r1 - s2 );
3437 3105320 : re[s * 2] = ( r3 - s4 );
3438 3105320 : re[s * 3] = ( r3 + s4 );
3439 :
3440 3105320 : im[s * 1] = ( s1 - r2 );
3441 3105320 : im[s * 4] = ( s1 + r2 );
3442 3105320 : im[s * 2] = ( s3 + r4 );
3443 3105320 : im[s * 3] = ( s3 - r4 );
3444 :
3445 3105320 : return;
3446 : }
3447 :
3448 5777160 : static void fft_len8(
3449 : float *re,
3450 : float *im,
3451 : const int16_t s )
3452 : {
3453 : float x00, x01, x02, x03, x04, x05, x06, x07;
3454 : float x08, x09, x10, x11, x12, x13, x14, x15;
3455 : float t00, t01, t02, t03, t04, t05, t06, t07;
3456 : float t08, t09, t10, t11, t12, t13, t14, t15;
3457 : float s00, s01, s02, s03, s04, s05, s06, s07;
3458 : float s08, s09, s10, s11, s12, s13, s14, s15;
3459 :
3460 5777160 : x00 = re[s * 0];
3461 5777160 : x01 = im[s * 0];
3462 5777160 : x02 = re[s * 1];
3463 5777160 : x03 = im[s * 1];
3464 5777160 : x04 = re[s * 2];
3465 5777160 : x05 = im[s * 2];
3466 5777160 : x06 = re[s * 3];
3467 5777160 : x07 = im[s * 3];
3468 5777160 : x08 = re[s * 4];
3469 5777160 : x09 = im[s * 4];
3470 5777160 : x10 = re[s * 5];
3471 5777160 : x11 = im[s * 5];
3472 5777160 : x12 = re[s * 6];
3473 5777160 : x13 = im[s * 6];
3474 5777160 : x14 = re[s * 7];
3475 5777160 : x15 = im[s * 7];
3476 :
3477 5777160 : t00 = ( x00 + x08 );
3478 5777160 : t02 = ( x00 - x08 );
3479 5777160 : t01 = ( x01 + x09 );
3480 5777160 : t03 = ( x01 - x09 );
3481 5777160 : t04 = ( x02 + x10 );
3482 5777160 : t06 = ( x02 - x10 );
3483 5777160 : t05 = ( x03 + x11 );
3484 5777160 : t07 = ( x03 - x11 );
3485 5777160 : t08 = ( x04 + x12 );
3486 5777160 : t10 = ( x04 - x12 );
3487 5777160 : t09 = ( x05 + x13 );
3488 5777160 : t11 = ( x05 - x13 );
3489 5777160 : t12 = ( x06 + x14 );
3490 5777160 : t14 = ( x06 - x14 );
3491 5777160 : t13 = ( x07 + x15 );
3492 5777160 : t15 = ( x07 - x15 );
3493 :
3494 5777160 : s00 = ( t00 + t08 );
3495 5777160 : s04 = ( t00 - t08 );
3496 5777160 : s01 = ( t01 + t09 );
3497 5777160 : s05 = ( t01 - t09 );
3498 5777160 : s08 = ( t02 - t11 );
3499 5777160 : s10 = ( t02 + t11 );
3500 5777160 : s09 = ( t03 + t10 );
3501 5777160 : s11 = ( t03 - t10 );
3502 5777160 : s02 = ( t04 + t12 );
3503 5777160 : s07 = ( t04 - t12 );
3504 5777160 : s03 = ( t05 + t13 );
3505 5777160 : s06 = ( t13 - t05 );
3506 :
3507 5777160 : t01 = ( t06 + t14 );
3508 5777160 : t02 = ( t06 - t14 );
3509 5777160 : t00 = ( t07 + t15 );
3510 5777160 : t03 = ( t07 - t15 );
3511 :
3512 5777160 : s12 = ( ( t00 + t02 ) * FFT_C81 );
3513 5777160 : s14 = ( ( t00 - t02 ) * FFT_C81 );
3514 5777160 : s13 = ( ( t03 - t01 ) * FFT_C81 );
3515 5777160 : s15 = ( ( t01 + t03 ) * FFT_C82 );
3516 :
3517 5777160 : re[s * 0] = ( s00 + s02 );
3518 5777160 : re[s * 4] = ( s00 - s02 );
3519 5777160 : im[s * 0] = ( s01 + s03 );
3520 5777160 : im[s * 4] = ( s01 - s03 );
3521 5777160 : re[s * 2] = ( s04 - s06 );
3522 5777160 : re[s * 6] = ( s04 + s06 );
3523 5777160 : im[s * 2] = ( s05 - s07 );
3524 5777160 : im[s * 6] = ( s05 + s07 );
3525 5777160 : re[s * 3] = ( s08 + s14 );
3526 5777160 : re[s * 7] = ( s08 - s14 );
3527 5777160 : im[s * 3] = ( s09 + s15 );
3528 5777160 : im[s * 7] = ( s09 - s15 );
3529 5777160 : re[s * 1] = ( s10 + s12 );
3530 5777160 : re[s * 5] = ( s10 - s12 );
3531 5777160 : im[s * 1] = ( s11 + s13 );
3532 5777160 : im[s * 5] = ( s11 - s13 );
3533 :
3534 5777160 : return;
3535 : }
3536 :
3537 1942113356 : static void fft_len10(
3538 : float *re,
3539 : float *im,
3540 : const int16_t s )
3541 : {
3542 : float t;
3543 : float x0, x1, x2, x3, x4;
3544 : float r1, r2, r3, r4;
3545 : float s1, s2, s3, s4;
3546 : float y00, y01, y02, y03, y04, y05, y06, y07, y08, y09;
3547 : float y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
3548 :
3549 1942113356 : x0 = re[s * 0];
3550 1942113356 : x1 = re[s * 2];
3551 1942113356 : x2 = re[s * 4];
3552 1942113356 : x3 = re[s * 6];
3553 1942113356 : x4 = re[s * 8];
3554 :
3555 1942113356 : r1 = ( x3 + x2 );
3556 1942113356 : r4 = ( x3 - x2 );
3557 1942113356 : r3 = ( x1 + x4 );
3558 1942113356 : r2 = ( x1 - x4 );
3559 1942113356 : t = ( ( r1 - r3 ) * FFT_C54 );
3560 1942113356 : r1 = ( r1 + r3 );
3561 1942113356 : y00 = ( x0 + r1 );
3562 1942113356 : r1 = ( y00 + ( ( r1 * FFT_C55 ) ) );
3563 1942113356 : r3 = ( r1 - t );
3564 1942113356 : r1 = ( r1 + t );
3565 1942113356 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
3566 1942113356 : r4 = ( t + ( r4 * FFT_C52 ) );
3567 1942113356 : r2 = ( t + ( r2 * FFT_C53 ) );
3568 :
3569 1942113356 : x0 = im[s * 0];
3570 1942113356 : x1 = im[s * 2];
3571 1942113356 : x2 = im[s * 4];
3572 1942113356 : x3 = im[s * 6];
3573 1942113356 : x4 = im[s * 8];
3574 :
3575 1942113356 : s1 = ( x3 + x2 );
3576 1942113356 : s4 = ( x3 - x2 );
3577 1942113356 : s3 = ( x1 + x4 );
3578 1942113356 : s2 = ( x1 - x4 );
3579 1942113356 : t = ( ( s1 - s3 ) * FFT_C54 );
3580 1942113356 : s1 = ( s1 + s3 );
3581 1942113356 : y01 = ( x0 + s1 );
3582 1942113356 : s1 = ( y01 + ( s1 * FFT_C55 ) );
3583 1942113356 : s3 = ( s1 - t );
3584 1942113356 : s1 = ( s1 + t );
3585 1942113356 : t = ( ( s4 + s2 ) * FFT_C51 );
3586 1942113356 : s4 = ( t + ( s4 * FFT_C52 ) );
3587 1942113356 : s2 = ( t + ( s2 * FFT_C53 ) );
3588 :
3589 1942113356 : y04 = ( r1 + s2 );
3590 1942113356 : y16 = ( r1 - s2 );
3591 1942113356 : y08 = ( r3 - s4 );
3592 1942113356 : y12 = ( r3 + s4 );
3593 :
3594 1942113356 : y05 = ( s1 - r2 );
3595 1942113356 : y17 = ( s1 + r2 );
3596 1942113356 : y09 = ( s3 + r4 );
3597 1942113356 : y13 = ( s3 - r4 );
3598 :
3599 1942113356 : x0 = re[s * 5];
3600 1942113356 : x1 = re[s * 1];
3601 1942113356 : x2 = re[s * 3];
3602 1942113356 : x3 = re[s * 7];
3603 1942113356 : x4 = re[s * 9];
3604 :
3605 1942113356 : r1 = ( x1 + x4 );
3606 1942113356 : r4 = ( x1 - x4 );
3607 1942113356 : r3 = ( x3 + x2 );
3608 1942113356 : r2 = ( x3 - x2 );
3609 1942113356 : t = ( ( r1 - r3 ) * FFT_C54 );
3610 1942113356 : r1 = ( r1 + r3 );
3611 1942113356 : y02 = ( x0 + r1 );
3612 1942113356 : r1 = ( y02 + ( ( r1 * FFT_C55 ) ) );
3613 1942113356 : r3 = ( r1 - t );
3614 1942113356 : r1 = ( r1 + t );
3615 1942113356 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
3616 1942113356 : r4 = ( t + ( r4 * FFT_C52 ) );
3617 1942113356 : r2 = ( t + ( r2 * FFT_C53 ) );
3618 :
3619 1942113356 : x0 = im[s * 5];
3620 1942113356 : x1 = im[s * 1];
3621 1942113356 : x2 = im[s * 3];
3622 1942113356 : x3 = im[s * 7];
3623 1942113356 : x4 = im[s * 9];
3624 :
3625 1942113356 : s1 = ( x1 + x4 );
3626 1942113356 : s4 = ( x1 - x4 );
3627 1942113356 : s3 = ( x3 + x2 );
3628 1942113356 : s2 = ( x3 - x2 );
3629 1942113356 : t = ( ( s1 - s3 ) * FFT_C54 );
3630 1942113356 : s1 = ( s1 + s3 );
3631 1942113356 : y03 = ( x0 + s1 );
3632 1942113356 : s1 = ( y03 + ( s1 * FFT_C55 ) );
3633 1942113356 : s3 = ( s1 - t );
3634 1942113356 : s1 = ( s1 + t );
3635 1942113356 : t = ( ( s4 + s2 ) * FFT_C51 );
3636 1942113356 : s4 = ( t + ( s4 * FFT_C52 ) );
3637 1942113356 : s2 = ( t + ( s2 * FFT_C53 ) );
3638 :
3639 1942113356 : y06 = ( r1 + s2 );
3640 1942113356 : y18 = ( r1 - s2 );
3641 1942113356 : y10 = ( r3 - s4 );
3642 1942113356 : y14 = ( r3 + s4 );
3643 :
3644 1942113356 : y07 = ( s1 - r2 );
3645 1942113356 : y19 = ( s1 + r2 );
3646 1942113356 : y11 = ( s3 + r4 );
3647 1942113356 : y15 = ( s3 - r4 );
3648 :
3649 1942113356 : re[s * 0] = ( y00 + y02 );
3650 1942113356 : im[s * 0] = ( y01 + y03 );
3651 1942113356 : re[s * 5] = ( y00 - y02 );
3652 1942113356 : im[s * 5] = ( y01 - y03 );
3653 :
3654 1942113356 : re[s * 2] = ( y04 + y06 );
3655 1942113356 : im[s * 2] = ( y05 + y07 );
3656 1942113356 : re[s * 7] = ( y04 - y06 );
3657 1942113356 : im[s * 7] = ( y05 - y07 );
3658 :
3659 1942113356 : re[s * 4] = ( y08 + y10 );
3660 1942113356 : im[s * 4] = ( y09 + y11 );
3661 1942113356 : re[s * 9] = ( y08 - y10 );
3662 1942113356 : im[s * 9] = ( y09 - y11 );
3663 :
3664 1942113356 : re[s * 6] = ( y12 + y14 );
3665 1942113356 : im[s * 6] = ( y13 + y15 );
3666 1942113356 : re[s * 1] = ( y12 - y14 );
3667 1942113356 : im[s * 1] = ( y13 - y15 );
3668 :
3669 1942113356 : re[s * 8] = ( y16 + y18 );
3670 1942113356 : im[s * 8] = ( y17 + y19 );
3671 1942113356 : re[s * 3] = ( y16 - y18 );
3672 1942113356 : im[s * 3] = ( y17 - y19 );
3673 :
3674 1942113356 : return;
3675 : }
3676 :
3677 59295016 : static void fft_len15(
3678 : float *re,
3679 : float *im,
3680 : const int16_t s )
3681 : {
3682 : float t;
3683 : float r1, r2, r3, r4;
3684 : float s1, s2, s3, s4;
3685 : float x00, x01, x02, x03, x04, x05, x06, x07, x08, x09;
3686 : float x10, x11, x12, x13, x14, x15, x16, x17, x18, x19;
3687 : float x20, x21, x22, x23, x24, x25, x26, x27, x28, x29;
3688 : float y00, y01, y02, y03, y04, y05, y06, y07, y08, y09;
3689 : float y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
3690 : float y20, y21, y22, y23, y24, y25, y26, y27, y28, y29;
3691 :
3692 59295016 : x00 = re[s * 0];
3693 59295016 : x01 = im[s * 0];
3694 59295016 : x02 = re[s * 3];
3695 59295016 : x03 = im[s * 3];
3696 59295016 : x04 = re[s * 6];
3697 59295016 : x05 = im[s * 6];
3698 59295016 : x06 = re[s * 9];
3699 59295016 : x07 = im[s * 9];
3700 59295016 : x08 = re[s * 12];
3701 59295016 : x09 = im[s * 12];
3702 :
3703 59295016 : x10 = re[s * 5];
3704 59295016 : x11 = im[s * 5];
3705 59295016 : x12 = re[s * 8];
3706 59295016 : x13 = im[s * 8];
3707 59295016 : x14 = re[s * 11];
3708 59295016 : x15 = im[s * 11];
3709 59295016 : x16 = re[s * 14];
3710 59295016 : x17 = im[s * 14];
3711 59295016 : x18 = re[s * 2];
3712 59295016 : x19 = im[s * 2];
3713 :
3714 59295016 : x20 = re[s * 10];
3715 59295016 : x21 = im[s * 10];
3716 59295016 : x22 = re[s * 13];
3717 59295016 : x23 = im[s * 13];
3718 59295016 : x24 = re[s * 1];
3719 59295016 : x25 = im[s * 1];
3720 59295016 : x26 = re[s * 4];
3721 59295016 : x27 = im[s * 4];
3722 59295016 : x28 = re[s * 7];
3723 59295016 : x29 = im[s * 7];
3724 :
3725 59295016 : r1 = ( x02 + x08 );
3726 59295016 : r4 = ( x02 - x08 );
3727 59295016 : r3 = ( x04 + x06 );
3728 59295016 : r2 = ( x04 - x06 );
3729 59295016 : t = ( ( r1 - r3 ) * FFT_C54 );
3730 59295016 : r1 = ( r1 + r3 );
3731 59295016 : y00 = ( x00 + r1 );
3732 59295016 : r1 = ( y00 + ( ( r1 * FFT_C55 ) ) );
3733 59295016 : r3 = ( r1 - t );
3734 59295016 : r1 = ( r1 + t );
3735 59295016 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
3736 59295016 : r4 = ( t + ( r4 * FFT_C52 ) );
3737 59295016 : r2 = ( t + ( r2 * FFT_C53 ) );
3738 :
3739 59295016 : s1 = ( x03 + x09 );
3740 59295016 : s4 = ( x03 - x09 );
3741 59295016 : s3 = ( x05 + x07 );
3742 59295016 : s2 = ( x05 - x07 );
3743 59295016 : t = ( ( s1 - s3 ) * FFT_C54 );
3744 59295016 : s1 = ( s1 + s3 );
3745 59295016 : y01 = ( x01 + s1 );
3746 59295016 : s1 = ( y01 + ( s1 * FFT_C55 ) );
3747 59295016 : s3 = ( s1 - t );
3748 59295016 : s1 = ( s1 + t );
3749 59295016 : t = ( ( s4 + s2 ) * FFT_C51 );
3750 59295016 : s4 = ( t + ( s4 * FFT_C52 ) );
3751 59295016 : s2 = ( t + ( s2 * FFT_C53 ) );
3752 :
3753 59295016 : y02 = ( r1 + s2 );
3754 59295016 : y08 = ( r1 - s2 );
3755 59295016 : y04 = ( r3 - s4 );
3756 59295016 : y06 = ( r3 + s4 );
3757 :
3758 59295016 : y03 = ( s1 - r2 );
3759 59295016 : y09 = ( s1 + r2 );
3760 59295016 : y05 = ( s3 + r4 );
3761 59295016 : y07 = ( s3 - r4 );
3762 :
3763 59295016 : r1 = ( x12 + x18 );
3764 59295016 : r4 = ( x12 - x18 );
3765 59295016 : r3 = ( x14 + x16 );
3766 59295016 : r2 = ( x14 - x16 );
3767 59295016 : t = ( ( r1 - r3 ) * FFT_C54 );
3768 59295016 : r1 = ( r1 + r3 );
3769 59295016 : y10 = ( x10 + r1 );
3770 59295016 : r1 = ( y10 + ( ( r1 * FFT_C55 ) ) );
3771 59295016 : r3 = ( r1 - t );
3772 59295016 : r1 = ( r1 + t );
3773 59295016 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
3774 59295016 : r4 = ( t + ( r4 * FFT_C52 ) );
3775 59295016 : r2 = ( t + ( r2 * FFT_C53 ) );
3776 :
3777 59295016 : s1 = ( x13 + x19 );
3778 59295016 : s4 = ( x13 - x19 );
3779 59295016 : s3 = ( x15 + x17 );
3780 59295016 : s2 = ( x15 - x17 );
3781 59295016 : t = ( ( s1 - s3 ) * FFT_C54 );
3782 59295016 : s1 = ( s1 + s3 );
3783 59295016 : y11 = ( x11 + s1 );
3784 59295016 : s1 = ( y11 + ( s1 * FFT_C55 ) );
3785 59295016 : s3 = ( s1 - t );
3786 59295016 : s1 = ( s1 + t );
3787 59295016 : t = ( ( s4 + s2 ) * FFT_C51 );
3788 59295016 : s4 = ( t + ( s4 * FFT_C52 ) );
3789 59295016 : s2 = ( t + ( s2 * FFT_C53 ) );
3790 :
3791 59295016 : y12 = ( r1 + s2 );
3792 59295016 : y18 = ( r1 - s2 );
3793 59295016 : y14 = ( r3 - s4 );
3794 59295016 : y16 = ( r3 + s4 );
3795 :
3796 59295016 : y13 = ( s1 - r2 );
3797 59295016 : y19 = ( s1 + r2 );
3798 59295016 : y15 = ( s3 + r4 );
3799 59295016 : y17 = ( s3 - r4 );
3800 :
3801 59295016 : r1 = ( x22 + x28 );
3802 59295016 : r4 = ( x22 - x28 );
3803 59295016 : r3 = ( x24 + x26 );
3804 59295016 : r2 = ( x24 - x26 );
3805 59295016 : t = ( ( r1 - r3 ) * FFT_C54 );
3806 59295016 : r1 = ( r1 + r3 );
3807 59295016 : y20 = ( x20 + r1 );
3808 59295016 : r1 = ( y20 + ( ( r1 * FFT_C55 ) ) );
3809 59295016 : r3 = ( r1 - t );
3810 59295016 : r1 = ( r1 + t );
3811 59295016 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
3812 59295016 : r4 = ( t + ( r4 * FFT_C52 ) );
3813 59295016 : r2 = ( t + ( r2 * FFT_C53 ) );
3814 :
3815 59295016 : s1 = ( x23 + x29 );
3816 59295016 : s4 = ( x23 - x29 );
3817 59295016 : s3 = ( x25 + x27 );
3818 59295016 : s2 = ( x25 - x27 );
3819 59295016 : t = ( ( s1 - s3 ) * FFT_C54 );
3820 59295016 : s1 = ( s1 + s3 );
3821 59295016 : y21 = ( x21 + s1 );
3822 59295016 : s1 = ( y21 + ( s1 * FFT_C55 ) );
3823 59295016 : s3 = ( s1 - t );
3824 59295016 : s1 = ( s1 + t );
3825 59295016 : t = ( ( s4 + s2 ) * FFT_C51 );
3826 59295016 : s4 = ( t + ( s4 * FFT_C52 ) );
3827 59295016 : s2 = ( t + ( s2 * FFT_C53 ) );
3828 :
3829 59295016 : y22 = ( r1 + s2 );
3830 59295016 : y28 = ( r1 - s2 );
3831 59295016 : y24 = ( r3 - s4 );
3832 59295016 : y26 = ( r3 + s4 );
3833 :
3834 59295016 : y23 = ( s1 - r2 );
3835 59295016 : y29 = ( s1 + r2 );
3836 59295016 : y25 = ( s3 + r4 );
3837 59295016 : y27 = ( s3 - r4 );
3838 :
3839 59295016 : r1 = ( y10 + y20 );
3840 59295016 : r2 = ( ( y10 - y20 ) * FFT_C31 );
3841 59295016 : re[s * 0] = ( y00 + r1 );
3842 59295016 : r1 = ( y00 - r1 * 0.5f );
3843 :
3844 59295016 : s1 = ( y11 + y21 );
3845 59295016 : s2 = ( ( y11 - y21 ) * FFT_C31 );
3846 59295016 : im[s * 0] = ( y01 + s1 );
3847 59295016 : s1 = ( y01 - s1 * 0.5f );
3848 :
3849 59295016 : re[s * 10] = ( r1 - s2 );
3850 59295016 : re[s * 5] = ( r1 + s2 );
3851 59295016 : im[s * 10] = ( s1 + r2 );
3852 59295016 : im[s * 5] = ( s1 - r2 );
3853 :
3854 59295016 : r1 = ( y12 + y22 );
3855 59295016 : r2 = ( ( y12 - y22 ) * FFT_C31 );
3856 59295016 : re[s * 6] = ( y02 + r1 );
3857 59295016 : r1 = ( y02 - r1 * 0.5f );
3858 :
3859 59295016 : s1 = ( y13 + y23 );
3860 59295016 : s2 = ( ( y13 - y23 ) * FFT_C31 );
3861 59295016 : im[s * 6] = ( y03 + s1 );
3862 59295016 : s1 = ( y03 - s1 * 0.5f );
3863 :
3864 59295016 : re[s * 1] = ( r1 - s2 );
3865 59295016 : re[s * 11] = ( r1 + s2 );
3866 59295016 : im[s * 1] = ( s1 + r2 );
3867 59295016 : im[s * 11] = ( s1 - r2 );
3868 :
3869 59295016 : r1 = ( y14 + y24 );
3870 59295016 : r2 = ( ( y14 - y24 ) * FFT_C31 );
3871 59295016 : re[s * 12] = ( y04 + r1 );
3872 59295016 : r1 = ( y04 - r1 * 0.5f );
3873 :
3874 59295016 : s1 = ( y15 + y25 );
3875 59295016 : s2 = ( ( y15 - y25 ) * FFT_C31 );
3876 59295016 : im[s * 12] = ( y05 + s1 );
3877 59295016 : s1 = ( y05 - s1 * 0.5f );
3878 :
3879 59295016 : re[s * 7] = ( r1 - s2 );
3880 59295016 : re[s * 2] = ( r1 + s2 );
3881 59295016 : im[s * 7] = ( s1 + r2 );
3882 59295016 : im[s * 2] = ( s1 - r2 );
3883 :
3884 59295016 : r1 = ( y16 + y26 );
3885 59295016 : r2 = ( ( y16 - y26 ) * FFT_C31 );
3886 59295016 : re[s * 3] = ( y06 + r1 );
3887 59295016 : r1 = ( y06 - r1 * 0.5f );
3888 :
3889 59295016 : s1 = ( y17 + y27 );
3890 59295016 : s2 = ( ( y17 - y27 ) * FFT_C31 );
3891 59295016 : im[s * 3] = ( y07 + s1 );
3892 59295016 : s1 = ( y07 - s1 * 0.5f );
3893 :
3894 59295016 : re[s * 13] = ( r1 - s2 );
3895 59295016 : re[s * 8] = ( r1 + s2 );
3896 59295016 : im[s * 13] = ( s1 + r2 );
3897 59295016 : im[s * 8] = ( s1 - r2 );
3898 :
3899 59295016 : r1 = ( y18 + y28 );
3900 59295016 : r2 = ( ( y18 - y28 ) * FFT_C31 );
3901 59295016 : re[s * 9] = ( y08 + r1 );
3902 59295016 : r1 = ( y08 - r1 * 0.5f );
3903 :
3904 59295016 : s1 = ( y19 + y29 );
3905 59295016 : s2 = ( ( y19 - y29 ) * FFT_C31 );
3906 59295016 : im[s * 9] = ( y09 + s1 );
3907 59295016 : s1 = ( y09 - s1 * 0.5f );
3908 :
3909 59295016 : re[s * 4] = ( r1 - s2 );
3910 59295016 : re[s * 14] = ( r1 + s2 );
3911 59295016 : im[s * 4] = ( s1 + r2 );
3912 59295016 : im[s * 14] = ( s1 - r2 );
3913 :
3914 59295016 : return;
3915 : }
3916 :
3917 2062212220 : static void fft_len16(
3918 : float *re,
3919 : float *im,
3920 : const int16_t s )
3921 : {
3922 : float x0, x1, x2, x3, x4, x5, x6, x7;
3923 : float t0, t1, t2, t3, t4, t5, t6, t7;
3924 : float y00, y01, y02, y03, y04, y05, y06, y07;
3925 : float y08, y09, y10, y11, y12, y13, y14, y15;
3926 : float y16, y17, y18, y19, y20, y21, y22, y23;
3927 : float y24, y25, y26, y27, y28, y29, y30, y31;
3928 :
3929 2062212220 : x0 = re[s * 0];
3930 2062212220 : x1 = im[s * 0];
3931 2062212220 : x2 = re[s * 4];
3932 2062212220 : x3 = im[s * 4];
3933 2062212220 : x4 = re[s * 8];
3934 2062212220 : x5 = im[s * 8];
3935 2062212220 : x6 = re[s * 12];
3936 2062212220 : x7 = im[s * 12];
3937 :
3938 2062212220 : t0 = ( x0 + x4 );
3939 2062212220 : t2 = ( x0 - x4 );
3940 2062212220 : t1 = ( x1 + x5 );
3941 2062212220 : t3 = ( x1 - x5 );
3942 2062212220 : t4 = ( x2 + x6 );
3943 2062212220 : t7 = ( x2 - x6 );
3944 2062212220 : t5 = ( x7 + x3 );
3945 2062212220 : t6 = ( x7 - x3 );
3946 :
3947 2062212220 : y00 = ( t0 + t4 );
3948 2062212220 : y01 = ( t1 + t5 );
3949 2062212220 : y02 = ( t2 - t6 );
3950 2062212220 : y03 = ( t3 - t7 );
3951 2062212220 : y04 = ( t0 - t4 );
3952 2062212220 : y05 = ( t1 - t5 );
3953 2062212220 : y06 = ( t2 + t6 );
3954 2062212220 : y07 = ( t3 + t7 );
3955 :
3956 2062212220 : x0 = re[s * 1];
3957 2062212220 : x1 = im[s * 1];
3958 2062212220 : x2 = re[s * 5];
3959 2062212220 : x3 = im[s * 5];
3960 2062212220 : x4 = re[s * 9];
3961 2062212220 : x5 = im[s * 9];
3962 2062212220 : x6 = re[s * 13];
3963 2062212220 : x7 = im[s * 13];
3964 :
3965 2062212220 : t0 = ( x0 + x4 );
3966 2062212220 : t2 = ( x0 - x4 );
3967 2062212220 : t1 = ( x1 + x5 );
3968 2062212220 : t3 = ( x1 - x5 );
3969 2062212220 : t4 = ( x2 + x6 );
3970 2062212220 : t7 = ( x2 - x6 );
3971 2062212220 : t5 = ( x7 + x3 );
3972 2062212220 : t6 = ( x7 - x3 );
3973 :
3974 2062212220 : y08 = ( t0 + t4 );
3975 2062212220 : y09 = ( t1 + t5 );
3976 2062212220 : y10 = ( t2 - t6 );
3977 2062212220 : y11 = ( t3 - t7 );
3978 2062212220 : y12 = ( t0 - t4 );
3979 2062212220 : y13 = ( t1 - t5 );
3980 2062212220 : y14 = ( t2 + t6 );
3981 2062212220 : y15 = ( t3 + t7 );
3982 :
3983 2062212220 : x0 = re[s * 2];
3984 2062212220 : x1 = im[s * 2];
3985 2062212220 : x2 = re[s * 6];
3986 2062212220 : x3 = im[s * 6];
3987 2062212220 : x4 = re[s * 10];
3988 2062212220 : x5 = im[s * 10];
3989 2062212220 : x6 = re[s * 14];
3990 2062212220 : x7 = im[s * 14];
3991 :
3992 2062212220 : t0 = ( x0 + x4 );
3993 2062212220 : t2 = ( x0 - x4 );
3994 2062212220 : t1 = ( x1 + x5 );
3995 2062212220 : t3 = ( x1 - x5 );
3996 2062212220 : t4 = ( x2 + x6 );
3997 2062212220 : t7 = ( x2 - x6 );
3998 2062212220 : t5 = ( x7 + x3 );
3999 2062212220 : t6 = ( x7 - x3 );
4000 :
4001 2062212220 : y16 = ( t0 + t4 );
4002 2062212220 : y17 = ( t1 + t5 );
4003 2062212220 : y18 = ( t2 - t6 );
4004 2062212220 : y19 = ( t3 - t7 );
4005 2062212220 : y20 = ( t1 - t5 );
4006 2062212220 : y21 = ( t4 - t0 );
4007 2062212220 : y22 = ( t2 + t6 );
4008 2062212220 : y23 = ( t3 + t7 );
4009 :
4010 2062212220 : x0 = re[s * 3];
4011 2062212220 : x1 = im[s * 3];
4012 2062212220 : x2 = re[s * 7];
4013 2062212220 : x3 = im[s * 7];
4014 2062212220 : x4 = re[s * 11];
4015 2062212220 : x5 = im[s * 11];
4016 2062212220 : x6 = re[s * 15];
4017 2062212220 : x7 = im[s * 15];
4018 :
4019 2062212220 : t0 = ( x0 + x4 );
4020 2062212220 : t2 = ( x0 - x4 );
4021 2062212220 : t1 = ( x1 + x5 );
4022 2062212220 : t3 = ( x1 - x5 );
4023 2062212220 : t4 = ( x2 + x6 );
4024 2062212220 : t7 = ( x2 - x6 );
4025 2062212220 : t5 = ( x7 + x3 );
4026 2062212220 : t6 = ( x7 - x3 );
4027 :
4028 2062212220 : y24 = ( t0 + t4 );
4029 2062212220 : y25 = ( t1 + t5 );
4030 2062212220 : y26 = ( t2 - t6 );
4031 2062212220 : y27 = ( t3 - t7 );
4032 2062212220 : y28 = ( t0 - t4 );
4033 2062212220 : y29 = ( t1 - t5 );
4034 2062212220 : y30 = ( t2 + t6 );
4035 2062212220 : y31 = ( t3 + t7 );
4036 :
4037 2062212220 : x0 = ( y22 * FFT_C162 );
4038 2062212220 : x1 = ( y23 * FFT_C162 );
4039 2062212220 : y22 = ( x0 - x1 );
4040 2062212220 : y23 = ( x0 + x1 );
4041 :
4042 2062212220 : x0 = ( y28 * FFT_C162 );
4043 2062212220 : x1 = ( y29 * FFT_C162 );
4044 2062212220 : y28 = ( x0 - x1 );
4045 2062212220 : y29 = ( x0 + x1 );
4046 :
4047 2062212220 : x0 = ( y12 * FFT_C161 );
4048 2062212220 : x1 = ( y13 * FFT_C161 );
4049 2062212220 : y12 = ( x0 + x1 );
4050 2062212220 : y13 = ( x1 - x0 );
4051 :
4052 2062212220 : x0 = ( y18 * FFT_C161 );
4053 2062212220 : x1 = ( y19 * FFT_C161 );
4054 2062212220 : y18 = ( x0 + x1 );
4055 2062212220 : y19 = ( x1 - x0 );
4056 :
4057 2062212220 : x0 = ( y10 * FFT_C163 );
4058 2062212220 : x1 = ( y11 * FFT_C166 );
4059 2062212220 : x2 = ( y10 * FFT_C166 );
4060 2062212220 : x3 = ( y11 * FFT_C163 );
4061 2062212220 : y10 = ( x0 - x1 );
4062 2062212220 : y11 = ( x2 + x3 );
4063 :
4064 2062212220 : x0 = ( y14 * FFT_C165 );
4065 2062212220 : x1 = ( y15 * FFT_C164 );
4066 2062212220 : x2 = ( y14 * FFT_C164 );
4067 2062212220 : x3 = ( y15 * FFT_C165 );
4068 2062212220 : y14 = ( x0 - x1 );
4069 2062212220 : y15 = ( x2 + x3 );
4070 :
4071 2062212220 : x0 = ( y26 * FFT_C165 );
4072 2062212220 : x1 = ( y27 * FFT_C164 );
4073 2062212220 : x2 = ( y26 * FFT_C164 );
4074 2062212220 : x3 = ( y27 * FFT_C165 );
4075 2062212220 : y26 = ( x0 - x1 );
4076 2062212220 : y27 = ( x2 + x3 );
4077 :
4078 2062212220 : x0 = ( y30 * FFT_C164 );
4079 2062212220 : x1 = ( y31 * FFT_C165 );
4080 2062212220 : x2 = ( y30 * FFT_C165 );
4081 2062212220 : x3 = ( y31 * FFT_C164 );
4082 2062212220 : y30 = ( x0 - x1 );
4083 2062212220 : y31 = ( x2 + x3 );
4084 :
4085 2062212220 : t0 = ( y00 + y16 );
4086 2062212220 : t2 = ( y00 - y16 );
4087 2062212220 : t1 = ( y01 + y17 );
4088 2062212220 : t3 = ( y01 - y17 );
4089 2062212220 : t4 = ( y08 + y24 );
4090 2062212220 : t7 = ( y08 - y24 );
4091 2062212220 : t5 = ( y25 + y09 );
4092 2062212220 : t6 = ( y25 - y09 );
4093 :
4094 2062212220 : re[s * 0] = ( t0 + t4 );
4095 2062212220 : im[s * 0] = ( t1 + t5 );
4096 2062212220 : re[s * 4] = ( t2 - t6 );
4097 2062212220 : im[s * 4] = ( t3 - t7 );
4098 2062212220 : re[s * 8] = ( t0 - t4 );
4099 2062212220 : im[s * 8] = ( t1 - t5 );
4100 2062212220 : re[s * 12] = ( t2 + t6 );
4101 2062212220 : im[s * 12] = ( t3 + t7 );
4102 :
4103 2062212220 : t0 = ( y02 + y18 );
4104 2062212220 : t2 = ( y02 - y18 );
4105 2062212220 : t1 = ( y03 + y19 );
4106 2062212220 : t3 = ( y03 - y19 );
4107 2062212220 : t4 = ( y10 + y26 );
4108 2062212220 : t7 = ( y10 - y26 );
4109 2062212220 : t5 = ( y27 + y11 );
4110 2062212220 : t6 = ( y27 - y11 );
4111 :
4112 2062212220 : re[s * 1] = ( t0 + t4 );
4113 2062212220 : im[s * 1] = ( t1 + t5 );
4114 2062212220 : re[s * 5] = ( t2 - t6 );
4115 2062212220 : im[s * 5] = ( t3 - t7 );
4116 2062212220 : re[s * 9] = ( t0 - t4 );
4117 2062212220 : im[s * 9] = ( t1 - t5 );
4118 2062212220 : re[s * 13] = ( t2 + t6 );
4119 2062212220 : im[s * 13] = ( t3 + t7 );
4120 :
4121 2062212220 : t0 = ( y04 + y20 );
4122 2062212220 : t2 = ( y04 - y20 );
4123 2062212220 : t1 = ( y05 + y21 );
4124 2062212220 : t3 = ( y05 - y21 );
4125 2062212220 : t4 = ( y12 + y28 );
4126 2062212220 : t7 = ( y12 - y28 );
4127 2062212220 : t5 = ( y29 + y13 );
4128 2062212220 : t6 = ( y29 - y13 );
4129 :
4130 2062212220 : re[s * 2] = ( t0 + t4 );
4131 2062212220 : im[s * 2] = ( t1 + t5 );
4132 2062212220 : re[s * 6] = ( t2 - t6 );
4133 2062212220 : im[s * 6] = ( t3 - t7 );
4134 2062212220 : re[s * 10] = ( t0 - t4 );
4135 2062212220 : im[s * 10] = ( t1 - t5 );
4136 2062212220 : re[s * 14] = ( t2 + t6 );
4137 2062212220 : im[s * 14] = ( t3 + t7 );
4138 :
4139 2062212220 : t0 = ( y06 + y22 );
4140 2062212220 : t2 = ( y06 - y22 );
4141 2062212220 : t1 = ( y07 + y23 );
4142 2062212220 : t3 = ( y07 - y23 );
4143 2062212220 : t4 = ( y14 + y30 );
4144 2062212220 : t7 = ( y14 - y30 );
4145 2062212220 : t5 = ( y31 + y15 );
4146 2062212220 : t6 = ( y31 - y15 );
4147 :
4148 2062212220 : re[s * 3] = ( t0 + t4 );
4149 2062212220 : im[s * 3] = ( t1 + t5 );
4150 2062212220 : re[s * 7] = ( t2 - t6 );
4151 2062212220 : im[s * 7] = ( t3 - t7 );
4152 2062212220 : re[s * 11] = ( t0 - t4 );
4153 2062212220 : im[s * 11] = ( t1 - t5 );
4154 2062212220 : re[s * 15] = ( t2 + t6 );
4155 2062212220 : im[s * 15] = ( t3 + t7 );
4156 :
4157 2062212220 : return;
4158 : }
4159 :
4160 2890270706 : static void fft_len20(
4161 : float *re,
4162 : float *im,
4163 : const int16_t s )
4164 : {
4165 : float r1, r2, r3, r4;
4166 : float s1, s2, s3, s4;
4167 : float x0, x1, x2, x3, x4;
4168 : float t, t0, t1, t2, t3, t4, t5, t6, t7;
4169 : float y00, y01, y02, y03, y04, y05, y06, y07, y08, y09;
4170 : float y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
4171 : float y20, y21, y22, y23, y24, y25, y26, y27, y28, y29;
4172 : float y30, y31, y32, y33, y34, y35, y36, y37, y38, y39;
4173 :
4174 2890270706 : x0 = re[s * 0];
4175 2890270706 : x1 = re[s * 16];
4176 2890270706 : x2 = re[s * 12];
4177 2890270706 : x3 = re[s * 8];
4178 2890270706 : x4 = re[s * 4];
4179 :
4180 2890270706 : r1 = ( x1 + x4 );
4181 2890270706 : r4 = ( x1 - x4 );
4182 2890270706 : r3 = ( x2 + x3 );
4183 2890270706 : r2 = ( x2 - x3 );
4184 2890270706 : t = ( ( r1 - r3 ) * FFT_C54 );
4185 2890270706 : r1 = ( r1 + r3 );
4186 2890270706 : y00 = ( x0 + r1 );
4187 2890270706 : r1 = ( y00 + ( ( r1 * FFT_C55 ) ) );
4188 2890270706 : r3 = ( r1 - t );
4189 2890270706 : r1 = ( r1 + t );
4190 2890270706 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4191 2890270706 : r4 = ( t + ( r4 * FFT_C52 ) );
4192 2890270706 : r2 = ( t + ( r2 * FFT_C53 ) );
4193 :
4194 2890270706 : x0 = im[s * 0];
4195 2890270706 : x1 = im[s * 16];
4196 2890270706 : x2 = im[s * 12];
4197 2890270706 : x3 = im[s * 8];
4198 2890270706 : x4 = im[s * 4];
4199 :
4200 2890270706 : s1 = ( x1 + x4 );
4201 2890270706 : s4 = ( x1 - x4 );
4202 2890270706 : s3 = ( x2 + x3 );
4203 2890270706 : s2 = ( x2 - x3 );
4204 2890270706 : t = ( ( s1 - s3 ) * FFT_C54 );
4205 2890270706 : s1 = ( s1 + s3 );
4206 2890270706 : y01 = ( x0 + s1 );
4207 2890270706 : s1 = ( y01 + ( s1 * FFT_C55 ) );
4208 2890270706 : s3 = ( s1 - t );
4209 2890270706 : s1 = ( s1 + t );
4210 2890270706 : t = ( ( s4 + s2 ) * FFT_C51 );
4211 2890270706 : s4 = ( t + ( s4 * FFT_C52 ) );
4212 2890270706 : s2 = ( t + ( s2 * FFT_C53 ) );
4213 :
4214 2890270706 : y08 = ( r1 + s2 );
4215 2890270706 : y32 = ( r1 - s2 );
4216 2890270706 : y16 = ( r3 - s4 );
4217 2890270706 : y24 = ( r3 + s4 );
4218 :
4219 2890270706 : y09 = ( s1 - r2 );
4220 2890270706 : y33 = ( s1 + r2 );
4221 2890270706 : y17 = ( s3 + r4 );
4222 2890270706 : y25 = ( s3 - r4 );
4223 :
4224 2890270706 : x0 = re[s * 5];
4225 2890270706 : x1 = re[s * 1];
4226 2890270706 : x2 = re[s * 17];
4227 2890270706 : x3 = re[s * 13];
4228 2890270706 : x4 = re[s * 9];
4229 :
4230 2890270706 : r1 = ( x1 + x4 );
4231 2890270706 : r4 = ( x1 - x4 );
4232 2890270706 : r3 = ( x2 + x3 );
4233 2890270706 : r2 = ( x2 - x3 );
4234 2890270706 : t = ( ( r1 - r3 ) * FFT_C54 );
4235 2890270706 : r1 = ( r1 + r3 );
4236 2890270706 : y02 = ( x0 + r1 );
4237 2890270706 : r1 = ( y02 + ( ( r1 * FFT_C55 ) ) );
4238 2890270706 : r3 = ( r1 - t );
4239 2890270706 : r1 = ( r1 + t );
4240 2890270706 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4241 2890270706 : r4 = ( t + ( r4 * FFT_C52 ) );
4242 2890270706 : r2 = ( t + ( r2 * FFT_C53 ) );
4243 :
4244 2890270706 : x0 = im[s * 5];
4245 2890270706 : x1 = im[s * 1];
4246 2890270706 : x2 = im[s * 17];
4247 2890270706 : x3 = im[s * 13];
4248 2890270706 : x4 = im[s * 9];
4249 :
4250 2890270706 : s1 = ( x1 + x4 );
4251 2890270706 : s4 = ( x1 - x4 );
4252 2890270706 : s3 = ( x2 + x3 );
4253 2890270706 : s2 = ( x2 - x3 );
4254 2890270706 : t = ( ( s1 - s3 ) * FFT_C54 );
4255 2890270706 : s1 = ( s1 + s3 );
4256 2890270706 : y03 = ( x0 + s1 );
4257 2890270706 : s1 = ( y03 + ( s1 * FFT_C55 ) );
4258 2890270706 : s3 = ( s1 - t );
4259 2890270706 : s1 = ( s1 + t );
4260 2890270706 : t = ( ( s4 + s2 ) * FFT_C51 );
4261 2890270706 : s4 = ( t + ( s4 * FFT_C52 ) );
4262 2890270706 : s2 = ( t + ( s2 * FFT_C53 ) );
4263 :
4264 2890270706 : y10 = ( r1 + s2 );
4265 2890270706 : y34 = ( r1 - s2 );
4266 2890270706 : y18 = ( r3 - s4 );
4267 2890270706 : y26 = ( r3 + s4 );
4268 :
4269 2890270706 : y11 = ( s1 - r2 );
4270 2890270706 : y35 = ( s1 + r2 );
4271 2890270706 : y19 = ( s3 + r4 );
4272 2890270706 : y27 = ( s3 - r4 );
4273 :
4274 2890270706 : x0 = re[s * 10];
4275 2890270706 : x1 = re[s * 6];
4276 2890270706 : x2 = re[s * 2];
4277 2890270706 : x3 = re[s * 18];
4278 2890270706 : x4 = re[s * 14];
4279 :
4280 2890270706 : r1 = ( x1 + x4 );
4281 2890270706 : r4 = ( x1 - x4 );
4282 2890270706 : r3 = ( x2 + x3 );
4283 2890270706 : r2 = ( x2 - x3 );
4284 2890270706 : t = ( ( r1 - r3 ) * FFT_C54 );
4285 2890270706 : r1 = ( r1 + r3 );
4286 2890270706 : y04 = ( x0 + r1 );
4287 2890270706 : r1 = ( y04 + ( ( r1 * FFT_C55 ) ) );
4288 2890270706 : r3 = ( r1 - t );
4289 2890270706 : r1 = ( r1 + t );
4290 2890270706 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4291 2890270706 : r4 = ( t + ( r4 * FFT_C52 ) );
4292 2890270706 : r2 = ( t + ( r2 * FFT_C53 ) );
4293 :
4294 2890270706 : x0 = im[s * 10];
4295 2890270706 : x1 = im[s * 6];
4296 2890270706 : x2 = im[s * 2];
4297 2890270706 : x3 = im[s * 18];
4298 2890270706 : x4 = im[s * 14];
4299 :
4300 2890270706 : s1 = ( x1 + x4 );
4301 2890270706 : s4 = ( x1 - x4 );
4302 2890270706 : s3 = ( x2 + x3 );
4303 2890270706 : s2 = ( x2 - x3 );
4304 2890270706 : t = ( ( s1 - s3 ) * FFT_C54 );
4305 2890270706 : s1 = ( s1 + s3 );
4306 2890270706 : y05 = ( x0 + s1 );
4307 2890270706 : s1 = ( y05 + ( s1 * FFT_C55 ) );
4308 2890270706 : s3 = ( s1 - t );
4309 2890270706 : s1 = ( s1 + t );
4310 2890270706 : t = ( ( s4 + s2 ) * FFT_C51 );
4311 2890270706 : s4 = ( t + ( s4 * FFT_C52 ) );
4312 2890270706 : s2 = ( t + ( s2 * FFT_C53 ) );
4313 :
4314 2890270706 : y12 = ( r1 + s2 );
4315 2890270706 : y36 = ( r1 - s2 );
4316 2890270706 : y20 = ( r3 - s4 );
4317 2890270706 : y28 = ( r3 + s4 );
4318 :
4319 2890270706 : y13 = ( s1 - r2 );
4320 2890270706 : y37 = ( s1 + r2 );
4321 2890270706 : y21 = ( s3 + r4 );
4322 2890270706 : y29 = ( s3 - r4 );
4323 :
4324 2890270706 : x0 = re[s * 15];
4325 2890270706 : x1 = re[s * 11];
4326 2890270706 : x2 = re[s * 7];
4327 2890270706 : x3 = re[s * 3];
4328 2890270706 : x4 = re[s * 19];
4329 :
4330 2890270706 : r1 = ( x1 + x4 );
4331 2890270706 : r4 = ( x1 - x4 );
4332 2890270706 : r3 = ( x2 + x3 );
4333 2890270706 : r2 = ( x2 - x3 );
4334 2890270706 : t = ( ( r1 - r3 ) * FFT_C54 );
4335 2890270706 : r1 = ( r1 + r3 );
4336 2890270706 : y06 = ( x0 + r1 );
4337 2890270706 : r1 = ( y06 + ( ( r1 * FFT_C55 ) ) );
4338 2890270706 : r3 = ( r1 - t );
4339 2890270706 : r1 = ( r1 + t );
4340 2890270706 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4341 2890270706 : r4 = ( t + ( r4 * FFT_C52 ) );
4342 2890270706 : r2 = ( t + ( r2 * FFT_C53 ) );
4343 :
4344 2890270706 : x0 = im[s * 15];
4345 2890270706 : x1 = im[s * 11];
4346 2890270706 : x2 = im[s * 7];
4347 2890270706 : x3 = im[s * 3];
4348 2890270706 : x4 = im[s * 19];
4349 :
4350 2890270706 : s1 = ( x1 + x4 );
4351 2890270706 : s4 = ( x1 - x4 );
4352 2890270706 : s3 = ( x2 + x3 );
4353 2890270706 : s2 = ( x2 - x3 );
4354 2890270706 : t = ( ( s1 - s3 ) * FFT_C54 );
4355 2890270706 : s1 = ( s1 + s3 );
4356 2890270706 : y07 = ( x0 + s1 );
4357 2890270706 : s1 = ( y07 + ( s1 * FFT_C55 ) );
4358 2890270706 : s3 = ( s1 - t );
4359 2890270706 : s1 = ( s1 + t );
4360 2890270706 : t = ( ( s4 + s2 ) * FFT_C51 );
4361 2890270706 : s4 = ( t + ( s4 * FFT_C52 ) );
4362 2890270706 : s2 = ( t + ( s2 * FFT_C53 ) );
4363 :
4364 2890270706 : y14 = ( r1 + s2 );
4365 2890270706 : y38 = ( r1 - s2 );
4366 2890270706 : y22 = ( r3 - s4 );
4367 2890270706 : y30 = ( r3 + s4 );
4368 :
4369 2890270706 : y15 = ( s1 - r2 );
4370 2890270706 : y39 = ( s1 + r2 );
4371 2890270706 : y23 = ( s3 + r4 );
4372 2890270706 : y31 = ( s3 - r4 );
4373 :
4374 2890270706 : t0 = ( y00 + y04 );
4375 2890270706 : t2 = ( y00 - y04 );
4376 2890270706 : t1 = ( y01 + y05 );
4377 2890270706 : t3 = ( y01 - y05 );
4378 2890270706 : t4 = ( y02 + y06 );
4379 2890270706 : t7 = ( y02 - y06 );
4380 2890270706 : t5 = ( y07 + y03 );
4381 2890270706 : t6 = ( y07 - y03 );
4382 :
4383 2890270706 : re[s * 0] = ( t0 + t4 );
4384 2890270706 : im[s * 0] = ( t1 + t5 );
4385 2890270706 : re[s * 5] = ( t2 - t6 );
4386 2890270706 : im[s * 5] = ( t3 - t7 );
4387 2890270706 : re[s * 10] = ( t0 - t4 );
4388 2890270706 : im[s * 10] = ( t1 - t5 );
4389 2890270706 : re[s * 15] = ( t2 + t6 );
4390 2890270706 : im[s * 15] = ( t3 + t7 );
4391 :
4392 2890270706 : t0 = ( y08 + y12 );
4393 2890270706 : t2 = ( y08 - y12 );
4394 2890270706 : t1 = ( y09 + y13 );
4395 2890270706 : t3 = ( y09 - y13 );
4396 2890270706 : t4 = ( y10 + y14 );
4397 2890270706 : t7 = ( y10 - y14 );
4398 2890270706 : t5 = ( y15 + y11 );
4399 2890270706 : t6 = ( y15 - y11 );
4400 :
4401 2890270706 : re[s * 4] = ( t0 + t4 );
4402 2890270706 : im[s * 4] = ( t1 + t5 );
4403 2890270706 : re[s * 9] = ( t2 - t6 );
4404 2890270706 : im[s * 9] = ( t3 - t7 );
4405 2890270706 : re[s * 14] = ( t0 - t4 );
4406 2890270706 : im[s * 14] = ( t1 - t5 );
4407 2890270706 : re[s * 19] = ( t2 + t6 );
4408 2890270706 : im[s * 19] = ( t3 + t7 );
4409 :
4410 2890270706 : t0 = ( y16 + y20 );
4411 2890270706 : t2 = ( y16 - y20 );
4412 2890270706 : t1 = ( y17 + y21 );
4413 2890270706 : t3 = ( y17 - y21 );
4414 2890270706 : t4 = ( y18 + y22 );
4415 2890270706 : t7 = ( y18 - y22 );
4416 2890270706 : t5 = ( y23 + y19 );
4417 2890270706 : t6 = ( y23 - y19 );
4418 :
4419 2890270706 : re[s * 8] = ( t0 + t4 );
4420 2890270706 : im[s * 8] = ( t1 + t5 );
4421 2890270706 : re[s * 13] = ( t2 - t6 );
4422 2890270706 : im[s * 13] = ( t3 - t7 );
4423 2890270706 : re[s * 18] = ( t0 - t4 );
4424 2890270706 : im[s * 18] = ( t1 - t5 );
4425 2890270706 : re[s * 3] = ( t2 + t6 );
4426 2890270706 : im[s * 3] = ( t3 + t7 );
4427 :
4428 2890270706 : t0 = ( y24 + y28 );
4429 2890270706 : t2 = ( y24 - y28 );
4430 2890270706 : t1 = ( y25 + y29 );
4431 2890270706 : t3 = ( y25 - y29 );
4432 2890270706 : t4 = ( y26 + y30 );
4433 2890270706 : t7 = ( y26 - y30 );
4434 2890270706 : t5 = ( y31 + y27 );
4435 2890270706 : t6 = ( y31 - y27 );
4436 :
4437 2890270706 : re[s * 12] = ( t0 + t4 );
4438 2890270706 : im[s * 12] = ( t1 + t5 );
4439 2890270706 : re[s * 17] = ( t2 - t6 );
4440 2890270706 : im[s * 17] = ( t3 - t7 );
4441 2890270706 : re[s * 2] = ( t0 - t4 );
4442 2890270706 : im[s * 2] = ( t1 - t5 );
4443 2890270706 : re[s * 7] = ( t2 + t6 );
4444 2890270706 : im[s * 7] = ( t3 + t7 );
4445 :
4446 2890270706 : t0 = ( y32 + y36 );
4447 2890270706 : t2 = ( y32 - y36 );
4448 2890270706 : t1 = ( y33 + y37 );
4449 2890270706 : t3 = ( y33 - y37 );
4450 2890270706 : t4 = ( y34 + y38 );
4451 2890270706 : t7 = ( y34 - y38 );
4452 2890270706 : t5 = ( y39 + y35 );
4453 2890270706 : t6 = ( y39 - y35 );
4454 :
4455 2890270706 : re[s * 16] = ( t0 + t4 );
4456 2890270706 : im[s * 16] = ( t1 + t5 );
4457 2890270706 : re[s * 1] = ( t2 - t6 );
4458 2890270706 : im[s * 1] = ( t3 - t7 );
4459 2890270706 : re[s * 6] = ( t0 - t4 );
4460 2890270706 : im[s * 6] = ( t1 - t5 );
4461 2890270706 : re[s * 11] = ( t2 + t6 );
4462 2890270706 : im[s * 11] = ( t3 + t7 );
4463 :
4464 2890270706 : return;
4465 : }
4466 :
4467 3772637552 : static void fft_len30(
4468 : float *re,
4469 : float *im,
4470 : const int16_t s )
4471 : {
4472 : float t;
4473 : float r1, r2, r3, r4;
4474 : float s1, s2, s3, s4;
4475 : float x00, x01, x02, x03, x04, x05, x06, x07, x08, x09;
4476 : float x10, x11, x12, x13, x14, x15, x16, x17, x18, x19;
4477 : float x20, x21, x22, x23, x24, x25, x26, x27, x28, x29;
4478 :
4479 : float y00, y01, y02, y03, y04, y05, y06, y07, y08, y09;
4480 : float y10, y11, y12, y13, y14, y15, y16, y17, y18, y19;
4481 : float y20, y21, y22, y23, y24, y25, y26, y27, y28, y29;
4482 :
4483 : float z00, z01, z02, z03, z04, z05, z06, z07, z08, z09;
4484 : float z10, z11, z12, z13, z14, z15, z16, z17, z18, z19;
4485 : float z20, z21, z22, z23, z24, z25, z26, z27, z28, z29;
4486 : float z30, z31, z32, z33, z34, z35, z36, z37, z38, z39;
4487 : float z40, z41, z42, z43, z44, z45, z46, z47, z48, z49;
4488 : float z50, z51, z52, z53, z54, z55, z56, z57, z58, z59;
4489 :
4490 : float *rel, *reh, *iml, *imh;
4491 :
4492 3772637552 : rel = &re[s * 0];
4493 3772637552 : reh = &re[s * 15];
4494 3772637552 : iml = &im[s * 0];
4495 3772637552 : imh = &im[s * 15];
4496 :
4497 3772637552 : x00 = re[s * 0];
4498 3772637552 : x01 = im[s * 0];
4499 3772637552 : x02 = re[s * 18];
4500 3772637552 : x03 = im[s * 18];
4501 3772637552 : x04 = re[s * 6];
4502 3772637552 : x05 = im[s * 6];
4503 3772637552 : x06 = re[s * 24];
4504 3772637552 : x07 = im[s * 24];
4505 3772637552 : x08 = re[s * 12];
4506 3772637552 : x09 = im[s * 12];
4507 :
4508 3772637552 : x10 = re[s * 20];
4509 3772637552 : x11 = im[s * 20];
4510 3772637552 : x12 = re[s * 8];
4511 3772637552 : x13 = im[s * 8];
4512 3772637552 : x14 = re[s * 26];
4513 3772637552 : x15 = im[s * 26];
4514 3772637552 : x16 = re[s * 14];
4515 3772637552 : x17 = im[s * 14];
4516 3772637552 : x18 = re[s * 2];
4517 3772637552 : x19 = im[s * 2];
4518 :
4519 3772637552 : x20 = re[s * 10];
4520 3772637552 : x21 = im[s * 10];
4521 3772637552 : x22 = re[s * 28];
4522 3772637552 : x23 = im[s * 28];
4523 3772637552 : x24 = re[s * 16];
4524 3772637552 : x25 = im[s * 16];
4525 3772637552 : x26 = re[s * 4];
4526 3772637552 : x27 = im[s * 4];
4527 3772637552 : x28 = re[s * 22];
4528 3772637552 : x29 = im[s * 22];
4529 :
4530 3772637552 : r1 = ( x02 + x08 );
4531 3772637552 : r4 = ( x02 - x08 );
4532 3772637552 : r3 = ( x04 + x06 );
4533 3772637552 : r2 = ( x04 - x06 );
4534 3772637552 : t = ( ( r1 - r3 ) * FFT_C54 );
4535 3772637552 : r1 = ( r1 + r3 );
4536 3772637552 : y00 = ( x00 + r1 );
4537 3772637552 : r1 = ( y00 + ( ( r1 * FFT_C55 ) ) );
4538 3772637552 : r3 = ( r1 - t );
4539 3772637552 : r1 = ( r1 + t );
4540 3772637552 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4541 3772637552 : r4 = ( t + ( r4 * FFT_C52 ) );
4542 3772637552 : r2 = ( t + ( r2 * FFT_C53 ) );
4543 :
4544 3772637552 : s1 = ( x03 + x09 );
4545 3772637552 : s4 = ( x03 - x09 );
4546 3772637552 : s3 = ( x05 + x07 );
4547 3772637552 : s2 = ( x05 - x07 );
4548 3772637552 : t = ( ( s1 - s3 ) * FFT_C54 );
4549 3772637552 : s1 = ( s1 + s3 );
4550 3772637552 : y01 = ( x01 + s1 );
4551 3772637552 : s1 = ( y01 + ( s1 * FFT_C55 ) );
4552 3772637552 : s3 = ( s1 - t );
4553 3772637552 : s1 = ( s1 + t );
4554 3772637552 : t = ( ( s4 + s2 ) * FFT_C51 );
4555 3772637552 : s4 = ( t + ( s4 * FFT_C52 ) );
4556 3772637552 : s2 = ( t + ( s2 * FFT_C53 ) );
4557 :
4558 3772637552 : y02 = ( r1 + s2 );
4559 3772637552 : y08 = ( r1 - s2 );
4560 3772637552 : y04 = ( r3 - s4 );
4561 3772637552 : y06 = ( r3 + s4 );
4562 :
4563 3772637552 : y03 = ( s1 - r2 );
4564 3772637552 : y09 = ( s1 + r2 );
4565 3772637552 : y05 = ( s3 + r4 );
4566 3772637552 : y07 = ( s3 - r4 );
4567 :
4568 3772637552 : r1 = ( x12 + x18 );
4569 3772637552 : r4 = ( x12 - x18 );
4570 3772637552 : r3 = ( x14 + x16 );
4571 3772637552 : r2 = ( x14 - x16 );
4572 3772637552 : t = ( ( r1 - r3 ) * FFT_C54 );
4573 3772637552 : r1 = ( r1 + r3 );
4574 3772637552 : y10 = ( x10 + r1 );
4575 3772637552 : r1 = ( y10 + ( ( r1 * FFT_C55 ) ) );
4576 3772637552 : r3 = ( r1 - t );
4577 3772637552 : r1 = ( r1 + t );
4578 3772637552 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4579 3772637552 : r4 = ( t + ( r4 * FFT_C52 ) );
4580 3772637552 : r2 = ( t + ( r2 * FFT_C53 ) );
4581 :
4582 3772637552 : s1 = ( x13 + x19 );
4583 3772637552 : s4 = ( x13 - x19 );
4584 3772637552 : s3 = ( x15 + x17 );
4585 3772637552 : s2 = ( x15 - x17 );
4586 3772637552 : t = ( ( s1 - s3 ) * FFT_C54 );
4587 3772637552 : s1 = ( s1 + s3 );
4588 3772637552 : y11 = ( x11 + s1 );
4589 3772637552 : s1 = ( y11 + ( s1 * FFT_C55 ) );
4590 3772637552 : s3 = ( s1 - t );
4591 3772637552 : s1 = ( s1 + t );
4592 3772637552 : t = ( ( s4 + s2 ) * FFT_C51 );
4593 3772637552 : s4 = ( t + ( s4 * FFT_C52 ) );
4594 3772637552 : s2 = ( t + ( s2 * FFT_C53 ) );
4595 :
4596 3772637552 : y12 = ( r1 + s2 );
4597 3772637552 : y18 = ( r1 - s2 );
4598 3772637552 : y14 = ( r3 - s4 );
4599 3772637552 : y16 = ( r3 + s4 );
4600 :
4601 3772637552 : y13 = ( s1 - r2 );
4602 3772637552 : y19 = ( s1 + r2 );
4603 3772637552 : y15 = ( s3 + r4 );
4604 3772637552 : y17 = ( s3 - r4 );
4605 :
4606 3772637552 : r1 = ( x22 + x28 );
4607 3772637552 : r4 = ( x22 - x28 );
4608 3772637552 : r3 = ( x24 + x26 );
4609 3772637552 : r2 = ( x24 - x26 );
4610 3772637552 : t = ( ( r1 - r3 ) * FFT_C54 );
4611 3772637552 : r1 = ( r1 + r3 );
4612 3772637552 : y20 = ( x20 + r1 );
4613 3772637552 : r1 = ( y20 + ( ( r1 * FFT_C55 ) ) );
4614 3772637552 : r3 = ( r1 - t );
4615 3772637552 : r1 = ( r1 + t );
4616 3772637552 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4617 3772637552 : r4 = ( t + ( r4 * FFT_C52 ) );
4618 3772637552 : r2 = ( t + ( r2 * FFT_C53 ) );
4619 :
4620 3772637552 : s1 = ( x23 + x29 );
4621 3772637552 : s4 = ( x23 - x29 );
4622 3772637552 : s3 = ( x25 + x27 );
4623 3772637552 : s2 = ( x25 - x27 );
4624 3772637552 : t = ( ( s1 - s3 ) * FFT_C54 );
4625 3772637552 : s1 = ( s1 + s3 );
4626 3772637552 : y21 = ( x21 + s1 );
4627 3772637552 : s1 = ( y21 + ( s1 * FFT_C55 ) );
4628 3772637552 : s3 = ( s1 - t );
4629 3772637552 : s1 = ( s1 + t );
4630 3772637552 : t = ( ( s4 + s2 ) * FFT_C51 );
4631 3772637552 : s4 = ( t + ( s4 * FFT_C52 ) );
4632 3772637552 : s2 = ( t + ( s2 * FFT_C53 ) );
4633 :
4634 3772637552 : y22 = ( r1 + s2 );
4635 3772637552 : y28 = ( r1 - s2 );
4636 3772637552 : y24 = ( r3 - s4 );
4637 3772637552 : y26 = ( r3 + s4 );
4638 :
4639 3772637552 : y23 = ( s1 - r2 );
4640 3772637552 : y29 = ( s1 + r2 );
4641 3772637552 : y25 = ( s3 + r4 );
4642 3772637552 : y27 = ( s3 - r4 );
4643 :
4644 3772637552 : r1 = ( y10 + y20 );
4645 3772637552 : r2 = ( ( y10 - y20 ) * FFT_C31 );
4646 3772637552 : z00 = ( y00 + r1 );
4647 3772637552 : r1 = ( y00 - r1 * 0.5f );
4648 :
4649 3772637552 : s1 = ( y11 + y21 );
4650 3772637552 : s2 = ( ( y11 - y21 ) * FFT_C31 );
4651 3772637552 : z01 = ( y01 + s1 );
4652 3772637552 : s1 = ( y01 - s1 * 0.5f );
4653 :
4654 3772637552 : z20 = ( r1 - s2 );
4655 3772637552 : z10 = ( r1 + s2 );
4656 3772637552 : z21 = ( s1 + r2 );
4657 3772637552 : z11 = ( s1 - r2 );
4658 :
4659 3772637552 : r1 = ( y12 + y22 );
4660 3772637552 : r2 = ( ( y12 - y22 ) * FFT_C31 );
4661 3772637552 : z12 = ( y02 + r1 );
4662 3772637552 : r1 = ( y02 - r1 * 0.5f );
4663 :
4664 3772637552 : s1 = ( y13 + y23 );
4665 3772637552 : s2 = ( ( y13 - y23 ) * FFT_C31 );
4666 3772637552 : z13 = ( y03 + s1 );
4667 3772637552 : s1 = ( y03 - s1 * 0.5f );
4668 :
4669 3772637552 : z02 = ( r1 - s2 );
4670 3772637552 : z22 = ( r1 + s2 );
4671 3772637552 : z03 = ( s1 + r2 );
4672 3772637552 : z23 = ( s1 - r2 );
4673 :
4674 3772637552 : r1 = ( y14 + y24 );
4675 3772637552 : r2 = ( ( y14 - y24 ) * FFT_C31 );
4676 3772637552 : z24 = ( y04 + r1 );
4677 3772637552 : r1 = ( y04 - r1 * 0.5f );
4678 :
4679 3772637552 : s1 = ( y15 + y25 );
4680 3772637552 : s2 = ( ( y15 - y25 ) * FFT_C31 );
4681 3772637552 : z25 = ( y05 + s1 );
4682 3772637552 : s1 = ( y05 - s1 * 0.5f );
4683 :
4684 3772637552 : z14 = ( r1 - s2 );
4685 3772637552 : z04 = ( r1 + s2 );
4686 3772637552 : z15 = ( s1 + r2 );
4687 3772637552 : z05 = ( s1 - r2 );
4688 :
4689 3772637552 : r1 = ( y16 + y26 );
4690 3772637552 : r2 = ( ( y16 - y26 ) * FFT_C31 );
4691 3772637552 : z06 = ( y06 + r1 );
4692 3772637552 : r1 = ( y06 - r1 * 0.5f );
4693 :
4694 3772637552 : s1 = ( y17 + y27 );
4695 3772637552 : s2 = ( ( y17 - y27 ) * FFT_C31 );
4696 3772637552 : z07 = ( y07 + s1 );
4697 3772637552 : s1 = ( y07 - s1 * 0.5f );
4698 :
4699 3772637552 : z26 = ( r1 - s2 );
4700 3772637552 : z16 = ( r1 + s2 );
4701 3772637552 : z27 = ( s1 + r2 );
4702 3772637552 : z17 = ( s1 - r2 );
4703 :
4704 3772637552 : r1 = ( y18 + y28 );
4705 3772637552 : r2 = ( ( y18 - y28 ) * FFT_C31 );
4706 3772637552 : z18 = ( y08 + r1 );
4707 3772637552 : r1 = ( y08 - r1 * 0.5f );
4708 :
4709 3772637552 : s1 = ( y19 + y29 );
4710 3772637552 : s2 = ( ( y19 - y29 ) * FFT_C31 );
4711 3772637552 : z19 = ( y09 + s1 );
4712 3772637552 : s1 = ( y09 - s1 * 0.5f );
4713 :
4714 3772637552 : z08 = ( r1 - s2 );
4715 3772637552 : z28 = ( r1 + s2 );
4716 3772637552 : z09 = ( s1 + r2 );
4717 3772637552 : z29 = ( s1 - r2 );
4718 :
4719 3772637552 : x00 = re[s * 15];
4720 3772637552 : x01 = im[s * 15];
4721 3772637552 : x02 = re[s * 3];
4722 3772637552 : x03 = im[s * 3];
4723 3772637552 : x04 = re[s * 21];
4724 3772637552 : x05 = im[s * 21];
4725 3772637552 : x06 = re[s * 9];
4726 3772637552 : x07 = im[s * 9];
4727 3772637552 : x08 = re[s * 27];
4728 3772637552 : x09 = im[s * 27];
4729 :
4730 3772637552 : x10 = re[s * 5];
4731 3772637552 : x11 = im[s * 5];
4732 3772637552 : x12 = re[s * 23];
4733 3772637552 : x13 = im[s * 23];
4734 3772637552 : x14 = re[s * 11];
4735 3772637552 : x15 = im[s * 11];
4736 3772637552 : x16 = re[s * 29];
4737 3772637552 : x17 = im[s * 29];
4738 3772637552 : x18 = re[s * 17];
4739 3772637552 : x19 = im[s * 17];
4740 :
4741 3772637552 : x20 = re[s * 25];
4742 3772637552 : x21 = im[s * 25];
4743 3772637552 : x22 = re[s * 13];
4744 3772637552 : x23 = im[s * 13];
4745 3772637552 : x24 = re[s * 1];
4746 3772637552 : x25 = im[s * 1];
4747 3772637552 : x26 = re[s * 19];
4748 3772637552 : x27 = im[s * 19];
4749 3772637552 : x28 = re[s * 7];
4750 3772637552 : x29 = im[s * 7];
4751 :
4752 3772637552 : r1 = ( x02 + x08 );
4753 3772637552 : r4 = ( x02 - x08 );
4754 3772637552 : r3 = ( x04 + x06 );
4755 3772637552 : r2 = ( x04 - x06 );
4756 3772637552 : t = ( ( r1 - r3 ) * FFT_C54 );
4757 3772637552 : r1 = ( r1 + r3 );
4758 3772637552 : y00 = ( x00 + r1 );
4759 3772637552 : r1 = ( y00 + ( ( r1 * FFT_C55 ) ) );
4760 3772637552 : r3 = ( r1 - t );
4761 3772637552 : r1 = ( r1 + t );
4762 3772637552 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4763 3772637552 : r4 = ( t + ( r4 * FFT_C52 ) );
4764 3772637552 : r2 = ( t + ( r2 * FFT_C53 ) );
4765 :
4766 3772637552 : s1 = ( x03 + x09 );
4767 3772637552 : s4 = ( x03 - x09 );
4768 3772637552 : s3 = ( x05 + x07 );
4769 3772637552 : s2 = ( x05 - x07 );
4770 3772637552 : t = ( ( s1 - s3 ) * FFT_C54 );
4771 3772637552 : s1 = ( s1 + s3 );
4772 3772637552 : y01 = ( x01 + s1 );
4773 3772637552 : s1 = ( y01 + ( s1 * FFT_C55 ) );
4774 3772637552 : s3 = ( s1 - t );
4775 3772637552 : s1 = ( s1 + t );
4776 3772637552 : t = ( ( s4 + s2 ) * FFT_C51 );
4777 3772637552 : s4 = ( t + ( s4 * FFT_C52 ) );
4778 3772637552 : s2 = ( t + ( s2 * FFT_C53 ) );
4779 :
4780 3772637552 : y02 = ( r1 + s2 );
4781 3772637552 : y08 = ( r1 - s2 );
4782 3772637552 : y04 = ( r3 - s4 );
4783 3772637552 : y06 = ( r3 + s4 );
4784 :
4785 3772637552 : y03 = ( s1 - r2 );
4786 3772637552 : y09 = ( s1 + r2 );
4787 3772637552 : y05 = ( s3 + r4 );
4788 3772637552 : y07 = ( s3 - r4 );
4789 :
4790 3772637552 : r1 = ( x12 + x18 );
4791 3772637552 : r4 = ( x12 - x18 );
4792 3772637552 : r3 = ( x14 + x16 );
4793 3772637552 : r2 = ( x14 - x16 );
4794 3772637552 : t = ( ( r1 - r3 ) * FFT_C54 );
4795 3772637552 : r1 = ( r1 + r3 );
4796 3772637552 : y10 = ( x10 + r1 );
4797 3772637552 : r1 = ( y10 + ( ( r1 * FFT_C55 ) ) );
4798 3772637552 : r3 = ( r1 - t );
4799 3772637552 : r1 = ( r1 + t );
4800 3772637552 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4801 3772637552 : r4 = ( t + ( r4 * FFT_C52 ) );
4802 3772637552 : r2 = ( t + ( r2 * FFT_C53 ) );
4803 :
4804 3772637552 : s1 = ( x13 + x19 );
4805 3772637552 : s4 = ( x13 - x19 );
4806 3772637552 : s3 = ( x15 + x17 );
4807 3772637552 : s2 = ( x15 - x17 );
4808 3772637552 : t = ( ( s1 - s3 ) * FFT_C54 );
4809 3772637552 : s1 = ( s1 + s3 );
4810 3772637552 : y11 = ( x11 + s1 );
4811 3772637552 : s1 = ( y11 + ( s1 * FFT_C55 ) );
4812 3772637552 : s3 = ( s1 - t );
4813 3772637552 : s1 = ( s1 + t );
4814 3772637552 : t = ( ( s4 + s2 ) * FFT_C51 );
4815 3772637552 : s4 = ( t + ( s4 * FFT_C52 ) );
4816 3772637552 : s2 = ( t + ( s2 * FFT_C53 ) );
4817 :
4818 3772637552 : y12 = ( r1 + s2 );
4819 3772637552 : y18 = ( r1 - s2 );
4820 3772637552 : y14 = ( r3 - s4 );
4821 3772637552 : y16 = ( r3 + s4 );
4822 :
4823 3772637552 : y13 = ( s1 - r2 );
4824 3772637552 : y19 = ( s1 + r2 );
4825 3772637552 : y15 = ( s3 + r4 );
4826 3772637552 : y17 = ( s3 - r4 );
4827 :
4828 3772637552 : r1 = ( x22 + x28 );
4829 3772637552 : r4 = ( x22 - x28 );
4830 3772637552 : r3 = ( x24 + x26 );
4831 3772637552 : r2 = ( x24 - x26 );
4832 3772637552 : t = ( ( r1 - r3 ) * FFT_C54 );
4833 3772637552 : r1 = ( r1 + r3 );
4834 3772637552 : y20 = ( x20 + r1 );
4835 3772637552 : r1 = ( y20 + ( ( r1 * FFT_C55 ) ) );
4836 3772637552 : r3 = ( r1 - t );
4837 3772637552 : r1 = ( r1 + t );
4838 3772637552 : t = ( ( ( r4 + r2 ) ) * FFT_C51 );
4839 3772637552 : r4 = ( t + ( r4 * FFT_C52 ) );
4840 3772637552 : r2 = ( t + ( r2 * FFT_C53 ) );
4841 :
4842 3772637552 : s1 = ( x23 + x29 );
4843 3772637552 : s4 = ( x23 - x29 );
4844 3772637552 : s3 = ( x25 + x27 );
4845 3772637552 : s2 = ( x25 - x27 );
4846 3772637552 : t = ( ( s1 - s3 ) * FFT_C54 );
4847 3772637552 : s1 = ( s1 + s3 );
4848 3772637552 : y21 = ( x21 + s1 );
4849 3772637552 : s1 = ( y21 + ( s1 * FFT_C55 ) );
4850 3772637552 : s3 = ( s1 - t );
4851 3772637552 : s1 = ( s1 + t );
4852 3772637552 : t = ( ( s4 + s2 ) * FFT_C51 );
4853 3772637552 : s4 = ( t + ( s4 * FFT_C52 ) );
4854 3772637552 : s2 = ( t + ( s2 * FFT_C53 ) );
4855 :
4856 3772637552 : y22 = ( r1 + s2 );
4857 3772637552 : y28 = ( r1 - s2 );
4858 3772637552 : y24 = ( r3 - s4 );
4859 3772637552 : y26 = ( r3 + s4 );
4860 :
4861 3772637552 : y23 = ( s1 - r2 );
4862 3772637552 : y29 = ( s1 + r2 );
4863 3772637552 : y25 = ( s3 + r4 );
4864 3772637552 : y27 = ( s3 - r4 );
4865 :
4866 3772637552 : r1 = ( y10 + y20 );
4867 3772637552 : r2 = ( ( y10 - y20 ) * FFT_C31 );
4868 3772637552 : z30 = ( y00 + r1 );
4869 3772637552 : r1 = ( y00 - r1 * 0.5f );
4870 :
4871 3772637552 : s1 = ( y11 + y21 );
4872 3772637552 : s2 = ( ( y11 - y21 ) * FFT_C31 );
4873 3772637552 : z31 = ( y01 + s1 );
4874 3772637552 : s1 = ( y01 - s1 * 0.5f );
4875 :
4876 3772637552 : z50 = ( r1 - s2 );
4877 3772637552 : z40 = ( r1 + s2 );
4878 3772637552 : z51 = ( s1 + r2 );
4879 3772637552 : z41 = ( s1 - r2 );
4880 :
4881 3772637552 : r1 = ( y12 + y22 );
4882 3772637552 : r2 = ( ( y12 - y22 ) * FFT_C31 );
4883 3772637552 : z42 = ( y02 + r1 );
4884 3772637552 : r1 = ( y02 - r1 * 0.5f );
4885 :
4886 3772637552 : s1 = ( y13 + y23 );
4887 3772637552 : s2 = ( ( y13 - y23 ) * FFT_C31 );
4888 3772637552 : z43 = ( y03 + s1 );
4889 3772637552 : s1 = ( y03 - s1 * 0.5f );
4890 :
4891 3772637552 : z32 = ( r1 - s2 );
4892 3772637552 : z52 = ( r1 + s2 );
4893 3772637552 : z33 = ( s1 + r2 );
4894 3772637552 : z53 = ( s1 - r2 );
4895 :
4896 3772637552 : r1 = ( y14 + y24 );
4897 3772637552 : r2 = ( ( y14 - y24 ) * FFT_C31 );
4898 3772637552 : z54 = ( y04 + r1 );
4899 3772637552 : r1 = ( y04 - r1 * 0.5f );
4900 :
4901 3772637552 : s1 = ( y15 + y25 );
4902 3772637552 : s2 = ( ( y15 - y25 ) * FFT_C31 );
4903 3772637552 : z55 = ( y05 + s1 );
4904 3772637552 : s1 = ( y05 - s1 * 0.5f );
4905 :
4906 3772637552 : z44 = ( r1 - s2 );
4907 3772637552 : z34 = ( r1 + s2 );
4908 3772637552 : z45 = ( s1 + r2 );
4909 3772637552 : z35 = ( s1 - r2 );
4910 :
4911 3772637552 : r1 = ( y16 + y26 );
4912 3772637552 : r2 = ( ( y16 - y26 ) * FFT_C31 );
4913 3772637552 : z36 = ( y06 + r1 );
4914 3772637552 : r1 = ( y06 - r1 * 0.5f );
4915 :
4916 3772637552 : s1 = ( y17 + y27 );
4917 3772637552 : s2 = ( ( y17 - y27 ) * FFT_C31 );
4918 3772637552 : z37 = ( y07 + s1 );
4919 3772637552 : s1 = ( y07 - s1 * 0.5f );
4920 :
4921 3772637552 : z56 = ( r1 - s2 );
4922 3772637552 : z46 = ( r1 + s2 );
4923 3772637552 : z57 = ( s1 + r2 );
4924 3772637552 : z47 = ( s1 - r2 );
4925 :
4926 3772637552 : r1 = ( y18 + y28 );
4927 3772637552 : r2 = ( ( y18 - y28 ) * FFT_C31 );
4928 3772637552 : z48 = ( y08 + r1 );
4929 3772637552 : r1 = ( y08 - r1 * 0.5f );
4930 :
4931 3772637552 : s1 = ( y19 + y29 );
4932 3772637552 : s2 = ( ( y19 - y29 ) * FFT_C31 );
4933 3772637552 : z49 = ( y09 + s1 );
4934 3772637552 : s1 = ( y09 - s1 * 0.5f );
4935 :
4936 3772637552 : z38 = ( r1 - s2 );
4937 3772637552 : z58 = ( r1 + s2 );
4938 3772637552 : z39 = ( s1 + r2 );
4939 3772637552 : z59 = ( s1 - r2 );
4940 :
4941 3772637552 : r1 = z00;
4942 3772637552 : r2 = z30;
4943 3772637552 : r3 = z01;
4944 3772637552 : r4 = z31;
4945 3772637552 : *rel = ( r1 + r2 );
4946 3772637552 : *reh = ( r1 - r2 );
4947 3772637552 : *iml = ( r3 + r4 );
4948 3772637552 : *imh = ( r3 - r4 );
4949 3772637552 : rel += s, reh += s, iml += s;
4950 3772637552 : imh += s;
4951 :
4952 3772637552 : r1 = z16;
4953 3772637552 : r2 = z46;
4954 3772637552 : r3 = z17;
4955 3772637552 : r4 = z47;
4956 3772637552 : *reh = ( r1 + r2 );
4957 3772637552 : *rel = ( r1 - r2 );
4958 3772637552 : *imh = ( r3 + r4 );
4959 3772637552 : *iml = ( r3 - r4 );
4960 3772637552 : rel += s, reh += s, iml += s;
4961 3772637552 : imh += s;
4962 :
4963 3772637552 : r1 = z02;
4964 3772637552 : r2 = z32;
4965 3772637552 : r3 = z03;
4966 3772637552 : r4 = z33;
4967 3772637552 : *rel = ( r1 + r2 );
4968 3772637552 : *reh = ( r1 - r2 );
4969 3772637552 : *iml = ( r3 + r4 );
4970 3772637552 : *imh = ( r3 - r4 );
4971 3772637552 : rel += s, reh += s, iml += s;
4972 3772637552 : imh += s;
4973 :
4974 3772637552 : r1 = z18;
4975 3772637552 : r2 = z48;
4976 3772637552 : r3 = z19;
4977 3772637552 : r4 = z49;
4978 3772637552 : *reh = ( r1 + r2 );
4979 3772637552 : *rel = ( r1 - r2 );
4980 3772637552 : *imh = ( r3 + r4 );
4981 3772637552 : *iml = ( r3 - r4 );
4982 3772637552 : rel += s, reh += s, iml += s;
4983 3772637552 : imh += s;
4984 :
4985 3772637552 : r1 = z04;
4986 3772637552 : r2 = z34;
4987 3772637552 : r3 = z05;
4988 3772637552 : r4 = z35;
4989 3772637552 : *rel = ( r1 + r2 );
4990 3772637552 : *reh = ( r1 - r2 );
4991 3772637552 : *iml = ( r3 + r4 );
4992 3772637552 : *imh = ( r3 - r4 );
4993 3772637552 : rel += s, reh += s, iml += s;
4994 3772637552 : imh += s;
4995 :
4996 3772637552 : r1 = z20;
4997 3772637552 : r2 = z50;
4998 3772637552 : r3 = z21;
4999 3772637552 : r4 = z51;
5000 3772637552 : *reh = ( r1 + r2 );
5001 3772637552 : *rel = ( r1 - r2 );
5002 3772637552 : *imh = ( r3 + r4 );
5003 3772637552 : *iml = ( r3 - r4 );
5004 3772637552 : rel += s, reh += s, iml += s;
5005 3772637552 : imh += s;
5006 :
5007 3772637552 : r1 = z06;
5008 3772637552 : r2 = z36;
5009 3772637552 : r3 = z07;
5010 3772637552 : r4 = z37;
5011 3772637552 : *rel = ( r1 + r2 );
5012 3772637552 : *reh = ( r1 - r2 );
5013 3772637552 : *iml = ( r3 + r4 );
5014 3772637552 : *imh = ( r3 - r4 );
5015 3772637552 : rel += s, reh += s, iml += s;
5016 3772637552 : imh += s;
5017 :
5018 3772637552 : r1 = z22;
5019 3772637552 : r2 = z52;
5020 3772637552 : r3 = z23;
5021 3772637552 : r4 = z53;
5022 3772637552 : *reh = ( r1 + r2 );
5023 3772637552 : *rel = ( r1 - r2 );
5024 3772637552 : *imh = ( r3 + r4 );
5025 3772637552 : *iml = ( r3 - r4 );
5026 3772637552 : rel += s, reh += s, iml += s;
5027 3772637552 : imh += s;
5028 :
5029 3772637552 : r1 = z08;
5030 3772637552 : r2 = z38;
5031 3772637552 : r3 = z09;
5032 3772637552 : r4 = z39;
5033 3772637552 : *rel = ( r1 + r2 );
5034 3772637552 : *reh = ( r1 - r2 );
5035 3772637552 : *iml = ( r3 + r4 );
5036 3772637552 : *imh = ( r3 - r4 );
5037 3772637552 : rel += s, reh += s, iml += s;
5038 3772637552 : imh += s;
5039 :
5040 3772637552 : r1 = z24;
5041 3772637552 : r2 = z54;
5042 3772637552 : r3 = z25;
5043 3772637552 : r4 = z55;
5044 3772637552 : *reh = ( r1 + r2 );
5045 3772637552 : *rel = ( r1 - r2 );
5046 3772637552 : *imh = ( r3 + r4 );
5047 3772637552 : *iml = ( r3 - r4 );
5048 3772637552 : rel += s, reh += s, iml += s;
5049 3772637552 : imh += s;
5050 :
5051 3772637552 : r1 = z10;
5052 3772637552 : r2 = z40;
5053 3772637552 : r3 = z11;
5054 3772637552 : r4 = z41;
5055 3772637552 : *rel = ( r1 + r2 );
5056 3772637552 : *reh = ( r1 - r2 );
5057 3772637552 : *iml = ( r3 + r4 );
5058 3772637552 : *imh = ( r3 - r4 );
5059 3772637552 : rel += s, reh += s, iml += s;
5060 3772637552 : imh += s;
5061 :
5062 3772637552 : r1 = z26;
5063 3772637552 : r2 = z56;
5064 3772637552 : r3 = z27;
5065 3772637552 : r4 = z57;
5066 3772637552 : *reh = ( r1 + r2 );
5067 3772637552 : *rel = ( r1 - r2 );
5068 3772637552 : *imh = ( r3 + r4 );
5069 3772637552 : *iml = ( r3 - r4 );
5070 3772637552 : rel += s, reh += s, iml += s;
5071 3772637552 : imh += s;
5072 :
5073 3772637552 : r1 = z12;
5074 3772637552 : r2 = z42;
5075 3772637552 : r3 = z13;
5076 3772637552 : r4 = z43;
5077 3772637552 : *rel = ( r1 + r2 );
5078 3772637552 : *reh = ( r1 - r2 );
5079 3772637552 : *iml = ( r3 + r4 );
5080 3772637552 : *imh = ( r3 - r4 );
5081 3772637552 : rel += s, reh += s, iml += s;
5082 3772637552 : imh += s;
5083 :
5084 3772637552 : r1 = z28;
5085 3772637552 : r2 = z58;
5086 3772637552 : r3 = z29;
5087 3772637552 : r4 = z59;
5088 3772637552 : *reh = ( r1 + r2 );
5089 3772637552 : *rel = ( r1 - r2 );
5090 3772637552 : *imh = ( r3 + r4 );
5091 3772637552 : *iml = ( r3 - r4 );
5092 3772637552 : rel += s, reh += s, iml += s;
5093 3772637552 : imh += s;
5094 :
5095 3772637552 : r1 = z14;
5096 3772637552 : r2 = z44;
5097 3772637552 : r3 = z15;
5098 3772637552 : r4 = z45;
5099 3772637552 : *rel = ( r1 + r2 );
5100 3772637552 : *reh = ( r1 - r2 );
5101 3772637552 : *iml = ( r3 + r4 );
5102 3772637552 : *imh = ( r3 - r4 );
5103 3772637552 : rel += s, reh += s, iml += s;
5104 3772637552 : imh += s;
5105 :
5106 3772637552 : return;
5107 : }
5108 :
5109 434861094 : static void fft_len32(
5110 : float *re,
5111 : float *im,
5112 : const int16_t s )
5113 : {
5114 : float as, bs;
5115 : float x00, x01, x02, x03, x04, x05, x06, x07;
5116 : float x08, x09, x10, x11, x12, x13, x14, x15;
5117 : float t00, t01, t02, t03, t04, t05, t06, t07;
5118 : float t08, t09, t10, t11, t12, t13, t14, t15;
5119 : float s00, s01, s02, s03, s04, s05, s06, s07;
5120 : float s08, s09, s10, s11, s12, s13, s14, s15;
5121 :
5122 : float y00, y01, y02, y03, y04, y05, y06, y07;
5123 : float y08, y09, y10, y11, y12, y13, y14, y15;
5124 : float y16, y17, y18, y19, y20, y21, y22, y23;
5125 : float y24, y25, y26, y27, y28, y29, y30, y31;
5126 : float y32, y33, y34, y35, y36, y37, y38, y39;
5127 : float y40, y41, y42, y43, y44, y45, y46, y47;
5128 : float y48, y49, y50, y51, y52, y53, y54, y55;
5129 : float y56, y57, y58, y59, y60, y61, y62, y63;
5130 :
5131 434861094 : x00 = re[s * 0];
5132 434861094 : x01 = im[s * 0];
5133 434861094 : x02 = re[s * 4];
5134 434861094 : x03 = im[s * 4];
5135 434861094 : x04 = re[s * 8];
5136 434861094 : x05 = im[s * 8];
5137 434861094 : x06 = re[s * 12];
5138 434861094 : x07 = im[s * 12];
5139 434861094 : x08 = re[s * 16];
5140 434861094 : x09 = im[s * 16];
5141 434861094 : x10 = re[s * 20];
5142 434861094 : x11 = im[s * 20];
5143 434861094 : x12 = re[s * 24];
5144 434861094 : x13 = im[s * 24];
5145 434861094 : x14 = re[s * 28];
5146 434861094 : x15 = im[s * 28];
5147 :
5148 434861094 : t00 = ( x00 + x08 );
5149 434861094 : t02 = ( x00 - x08 );
5150 434861094 : t01 = ( x01 + x09 );
5151 434861094 : t03 = ( x01 - x09 );
5152 434861094 : t04 = ( x02 + x10 );
5153 434861094 : t06 = ( x02 - x10 );
5154 434861094 : t05 = ( x03 + x11 );
5155 434861094 : t07 = ( x03 - x11 );
5156 434861094 : t08 = ( x04 + x12 );
5157 434861094 : t10 = ( x04 - x12 );
5158 434861094 : t09 = ( x05 + x13 );
5159 434861094 : t11 = ( x05 - x13 );
5160 434861094 : t12 = ( x06 + x14 );
5161 434861094 : t14 = ( x06 - x14 );
5162 434861094 : t13 = ( x07 + x15 );
5163 434861094 : t15 = ( x07 - x15 );
5164 :
5165 434861094 : s00 = ( t00 + t08 );
5166 434861094 : s04 = ( t00 - t08 );
5167 434861094 : s01 = ( t01 + t09 );
5168 434861094 : s05 = ( t01 - t09 );
5169 434861094 : s08 = ( t02 - t11 );
5170 434861094 : s10 = ( t02 + t11 );
5171 434861094 : s09 = ( t03 + t10 );
5172 434861094 : s11 = ( t03 - t10 );
5173 434861094 : s02 = ( t04 + t12 );
5174 434861094 : s07 = ( t04 - t12 );
5175 434861094 : s03 = ( t05 + t13 );
5176 434861094 : s06 = ( t13 - t05 );
5177 434861094 : t01 = ( t06 + t14 );
5178 434861094 : t02 = ( t06 - t14 );
5179 434861094 : t00 = ( t07 + t15 );
5180 434861094 : t03 = ( t07 - t15 );
5181 :
5182 : {
5183 434861094 : s12 = ( ( t00 + t02 ) * FFT_C81 );
5184 434861094 : s14 = ( ( t00 - t02 ) * FFT_C81 );
5185 434861094 : s13 = ( ( t03 - t01 ) * FFT_C81 );
5186 434861094 : s15 = ( ( t01 + t03 ) * FFT_C82 );
5187 : };
5188 :
5189 434861094 : y00 = ( s00 + s02 );
5190 434861094 : y08 = ( s00 - s02 );
5191 434861094 : y01 = ( s01 + s03 );
5192 434861094 : y09 = ( s01 - s03 );
5193 434861094 : y04 = ( s04 - s06 );
5194 434861094 : y12 = ( s04 + s06 );
5195 434861094 : y05 = ( s05 - s07 );
5196 434861094 : y13 = ( s05 + s07 );
5197 434861094 : y06 = ( s08 + s14 );
5198 434861094 : y14 = ( s08 - s14 );
5199 434861094 : y07 = ( s09 + s15 );
5200 434861094 : y15 = ( s09 - s15 );
5201 434861094 : y02 = ( s10 + s12 );
5202 434861094 : y10 = ( s10 - s12 );
5203 434861094 : y03 = ( s11 + s13 );
5204 434861094 : y11 = ( s11 - s13 );
5205 :
5206 434861094 : x00 = re[s * 1];
5207 434861094 : x01 = im[s * 1];
5208 434861094 : x02 = re[s * 5];
5209 434861094 : x03 = im[s * 5];
5210 434861094 : x04 = re[s * 9];
5211 434861094 : x05 = im[s * 9];
5212 434861094 : x06 = re[s * 13];
5213 434861094 : x07 = im[s * 13];
5214 434861094 : x08 = re[s * 17];
5215 434861094 : x09 = im[s * 17];
5216 434861094 : x10 = re[s * 21];
5217 434861094 : x11 = im[s * 21];
5218 434861094 : x12 = re[s * 25];
5219 434861094 : x13 = im[s * 25];
5220 434861094 : x14 = re[s * 29];
5221 434861094 : x15 = im[s * 29];
5222 :
5223 434861094 : t00 = ( x00 + x08 );
5224 434861094 : t02 = ( x00 - x08 );
5225 434861094 : t01 = ( x01 + x09 );
5226 434861094 : t03 = ( x01 - x09 );
5227 434861094 : t04 = ( x02 + x10 );
5228 434861094 : t06 = ( x02 - x10 );
5229 434861094 : t05 = ( x03 + x11 );
5230 434861094 : t07 = ( x03 - x11 );
5231 434861094 : t08 = ( x04 + x12 );
5232 434861094 : t10 = ( x04 - x12 );
5233 434861094 : t09 = ( x05 + x13 );
5234 434861094 : t11 = ( x05 - x13 );
5235 434861094 : t12 = ( x06 + x14 );
5236 434861094 : t14 = ( x06 - x14 );
5237 434861094 : t13 = ( x07 + x15 );
5238 434861094 : t15 = ( x07 - x15 );
5239 :
5240 434861094 : s00 = ( t00 + t08 );
5241 434861094 : s04 = ( t00 - t08 );
5242 434861094 : s01 = ( t01 + t09 );
5243 434861094 : s05 = ( t01 - t09 );
5244 434861094 : s08 = ( t02 - t11 );
5245 434861094 : s10 = ( t02 + t11 );
5246 434861094 : s09 = ( t03 + t10 );
5247 434861094 : s11 = ( t03 - t10 );
5248 434861094 : s02 = ( t04 + t12 );
5249 434861094 : s07 = ( t04 - t12 );
5250 434861094 : s03 = ( t05 + t13 );
5251 434861094 : s06 = ( t13 - t05 );
5252 434861094 : t01 = ( t06 + t14 );
5253 434861094 : t02 = ( t06 - t14 );
5254 434861094 : t00 = ( t07 + t15 );
5255 434861094 : t03 = ( t07 - t15 );
5256 :
5257 : {
5258 434861094 : s12 = ( ( t00 + t02 ) * FFT_C81 );
5259 434861094 : s14 = ( ( t00 - t02 ) * FFT_C81 );
5260 434861094 : s13 = ( ( t03 - t01 ) * FFT_C81 );
5261 434861094 : s15 = ( ( t01 + t03 ) * FFT_C82 );
5262 : };
5263 :
5264 434861094 : y16 = ( s00 + s02 );
5265 434861094 : y24 = ( s00 - s02 );
5266 434861094 : y17 = ( s01 + s03 );
5267 434861094 : y25 = ( s01 - s03 );
5268 434861094 : y20 = ( s04 - s06 );
5269 434861094 : y28 = ( s04 + s06 );
5270 434861094 : y21 = ( s05 - s07 );
5271 434861094 : y29 = ( s05 + s07 );
5272 434861094 : y22 = ( s08 + s14 );
5273 434861094 : y30 = ( s08 - s14 );
5274 434861094 : y23 = ( s09 + s15 );
5275 434861094 : y31 = ( s09 - s15 );
5276 434861094 : y18 = ( s10 + s12 );
5277 434861094 : y26 = ( s10 - s12 );
5278 434861094 : y19 = ( s11 + s13 );
5279 434861094 : y27 = ( s11 - s13 );
5280 :
5281 434861094 : x00 = re[s * 2];
5282 434861094 : x01 = im[s * 2];
5283 434861094 : x02 = re[s * 6];
5284 434861094 : x03 = im[s * 6];
5285 434861094 : x04 = re[s * 10];
5286 434861094 : x05 = im[s * 10];
5287 434861094 : x06 = re[s * 14];
5288 434861094 : x07 = im[s * 14];
5289 434861094 : x08 = re[s * 18];
5290 434861094 : x09 = im[s * 18];
5291 434861094 : x10 = re[s * 22];
5292 434861094 : x11 = im[s * 22];
5293 434861094 : x12 = re[s * 26];
5294 434861094 : x13 = im[s * 26];
5295 434861094 : x14 = re[s * 30];
5296 434861094 : x15 = im[s * 30];
5297 :
5298 434861094 : t00 = ( x00 + x08 );
5299 434861094 : t02 = ( x00 - x08 );
5300 434861094 : t01 = ( x01 + x09 );
5301 434861094 : t03 = ( x01 - x09 );
5302 434861094 : t04 = ( x02 + x10 );
5303 434861094 : t06 = ( x02 - x10 );
5304 434861094 : t05 = ( x03 + x11 );
5305 434861094 : t07 = ( x03 - x11 );
5306 434861094 : t08 = ( x04 + x12 );
5307 434861094 : t10 = ( x04 - x12 );
5308 434861094 : t09 = ( x05 + x13 );
5309 434861094 : t11 = ( x05 - x13 );
5310 434861094 : t12 = ( x06 + x14 );
5311 434861094 : t14 = ( x06 - x14 );
5312 434861094 : t13 = ( x07 + x15 );
5313 434861094 : t15 = ( x07 - x15 );
5314 :
5315 434861094 : s00 = ( t00 + t08 );
5316 434861094 : s04 = ( t00 - t08 );
5317 434861094 : s01 = ( t01 + t09 );
5318 434861094 : s05 = ( t01 - t09 );
5319 434861094 : s08 = ( t02 - t11 );
5320 434861094 : s10 = ( t02 + t11 );
5321 434861094 : s09 = ( t03 + t10 );
5322 434861094 : s11 = ( t03 - t10 );
5323 434861094 : s02 = ( t04 + t12 );
5324 434861094 : s07 = ( t04 - t12 );
5325 434861094 : s03 = ( t05 + t13 );
5326 434861094 : s06 = ( t13 - t05 );
5327 434861094 : t01 = ( t06 + t14 );
5328 434861094 : t02 = ( t06 - t14 );
5329 434861094 : t00 = ( t07 + t15 );
5330 434861094 : t03 = ( t07 - t15 );
5331 :
5332 : {
5333 434861094 : s12 = ( ( t00 + t02 ) * FFT_C81 );
5334 434861094 : s14 = ( ( t00 - t02 ) * FFT_C81 );
5335 434861094 : s13 = ( ( t03 - t01 ) * FFT_C81 );
5336 434861094 : s15 = ( ( t01 + t03 ) * FFT_C82 );
5337 : };
5338 :
5339 434861094 : y32 = ( s00 + s02 );
5340 434861094 : y40 = ( s00 - s02 );
5341 434861094 : y33 = ( s01 + s03 );
5342 434861094 : y41 = ( s01 - s03 );
5343 434861094 : y36 = ( s04 - s06 );
5344 434861094 : y44 = ( s04 + s06 );
5345 434861094 : y37 = ( s05 - s07 );
5346 434861094 : y45 = ( s05 + s07 );
5347 434861094 : y38 = ( s08 + s14 );
5348 434861094 : y46 = ( s08 - s14 );
5349 434861094 : y39 = ( s09 + s15 );
5350 434861094 : y47 = ( s09 - s15 );
5351 434861094 : y34 = ( s10 + s12 );
5352 434861094 : y42 = ( s10 - s12 );
5353 434861094 : y35 = ( s11 + s13 );
5354 434861094 : y43 = ( s11 - s13 );
5355 :
5356 434861094 : x00 = re[s * 3];
5357 434861094 : x01 = im[s * 3];
5358 434861094 : x02 = re[s * 7];
5359 434861094 : x03 = im[s * 7];
5360 434861094 : x04 = re[s * 11];
5361 434861094 : x05 = im[s * 11];
5362 434861094 : x06 = re[s * 15];
5363 434861094 : x07 = im[s * 15];
5364 434861094 : x08 = re[s * 19];
5365 434861094 : x09 = im[s * 19];
5366 434861094 : x10 = re[s * 23];
5367 434861094 : x11 = im[s * 23];
5368 434861094 : x12 = re[s * 27];
5369 434861094 : x13 = im[s * 27];
5370 434861094 : x14 = re[s * 31];
5371 434861094 : x15 = im[s * 31];
5372 :
5373 434861094 : t00 = ( x00 + x08 );
5374 434861094 : t02 = ( x00 - x08 );
5375 434861094 : t01 = ( x01 + x09 );
5376 434861094 : t03 = ( x01 - x09 );
5377 434861094 : t04 = ( x02 + x10 );
5378 434861094 : t06 = ( x02 - x10 );
5379 434861094 : t05 = ( x03 + x11 );
5380 434861094 : t07 = ( x03 - x11 );
5381 434861094 : t08 = ( x04 + x12 );
5382 434861094 : t10 = ( x04 - x12 );
5383 434861094 : t09 = ( x05 + x13 );
5384 434861094 : t11 = ( x05 - x13 );
5385 434861094 : t12 = ( x06 + x14 );
5386 434861094 : t14 = ( x06 - x14 );
5387 434861094 : t13 = ( x07 + x15 );
5388 434861094 : t15 = ( x07 - x15 );
5389 :
5390 434861094 : s00 = ( t00 + t08 );
5391 434861094 : s04 = ( t00 - t08 );
5392 434861094 : s01 = ( t01 + t09 );
5393 434861094 : s05 = ( t01 - t09 );
5394 434861094 : s08 = ( t02 - t11 );
5395 434861094 : s10 = ( t02 + t11 );
5396 434861094 : s09 = ( t03 + t10 );
5397 434861094 : s11 = ( t03 - t10 );
5398 434861094 : s02 = ( t04 + t12 );
5399 434861094 : s07 = ( t04 - t12 );
5400 434861094 : s03 = ( t05 + t13 );
5401 434861094 : s06 = ( t13 - t05 );
5402 434861094 : t01 = ( t06 + t14 );
5403 434861094 : t02 = ( t06 - t14 );
5404 434861094 : t00 = ( t07 + t15 );
5405 434861094 : t03 = ( t07 - t15 );
5406 :
5407 : {
5408 434861094 : s12 = ( ( t00 + t02 ) * FFT_C81 );
5409 434861094 : s14 = ( ( t00 - t02 ) * FFT_C81 );
5410 434861094 : s13 = ( ( t03 - t01 ) * FFT_C81 );
5411 434861094 : s15 = ( ( t01 + t03 ) * FFT_C82 );
5412 : };
5413 :
5414 434861094 : y48 = ( s00 + s02 );
5415 434861094 : y56 = ( s00 - s02 );
5416 434861094 : y49 = ( s01 + s03 );
5417 434861094 : y57 = ( s01 - s03 );
5418 434861094 : y52 = ( s04 - s06 );
5419 434861094 : y60 = ( s04 + s06 );
5420 434861094 : y53 = ( s05 - s07 );
5421 434861094 : y61 = ( s05 + s07 );
5422 434861094 : y54 = ( s08 + s14 );
5423 434861094 : y62 = ( s08 - s14 );
5424 434861094 : y55 = ( s09 + s15 );
5425 434861094 : y63 = ( s09 - s15 );
5426 434861094 : y50 = ( s10 + s12 );
5427 434861094 : y58 = ( s10 - s12 );
5428 434861094 : y51 = ( s11 + s13 );
5429 434861094 : y59 = ( s11 - s13 );
5430 :
5431 :
5432 : {
5433 434861094 : as = y18;
5434 434861094 : bs = y19;
5435 434861094 : y18 = ( ( as * FFT_RotVector_32[2 * 0 + 0] ) - ( bs * FFT_RotVector_32[2 * 0 + 1] ) );
5436 434861094 : y19 = ( ( as * FFT_RotVector_32[2 * 0 + 1] ) + ( bs * FFT_RotVector_32[2 * 0 + 0] ) );
5437 : };
5438 : {
5439 434861094 : as = y20;
5440 434861094 : bs = y21;
5441 434861094 : y20 = ( ( as * FFT_RotVector_32[2 * 1 + 0] ) - ( bs * FFT_RotVector_32[2 * 1 + 1] ) );
5442 434861094 : y21 = ( ( as * FFT_RotVector_32[2 * 1 + 1] ) + ( bs * FFT_RotVector_32[2 * 1 + 0] ) );
5443 : };
5444 : {
5445 434861094 : as = y22;
5446 434861094 : bs = y23;
5447 434861094 : y22 = ( ( as * FFT_RotVector_32[2 * 2 + 0] ) - ( bs * FFT_RotVector_32[2 * 2 + 1] ) );
5448 434861094 : y23 = ( ( as * FFT_RotVector_32[2 * 2 + 1] ) + ( bs * FFT_RotVector_32[2 * 2 + 0] ) );
5449 : };
5450 : {
5451 434861094 : as = y24;
5452 434861094 : bs = y25;
5453 434861094 : y24 = ( ( as * FFT_RotVector_32[2 * 3 + 0] ) - ( bs * FFT_RotVector_32[2 * 3 + 1] ) );
5454 434861094 : y25 = ( ( as * FFT_RotVector_32[2 * 3 + 1] ) + ( bs * FFT_RotVector_32[2 * 3 + 0] ) );
5455 : };
5456 : {
5457 434861094 : as = y26;
5458 434861094 : bs = y27;
5459 434861094 : y26 = ( ( as * FFT_RotVector_32[2 * 4 + 0] ) - ( bs * FFT_RotVector_32[2 * 4 + 1] ) );
5460 434861094 : y27 = ( ( as * FFT_RotVector_32[2 * 4 + 1] ) + ( bs * FFT_RotVector_32[2 * 4 + 0] ) );
5461 : };
5462 : {
5463 434861094 : as = y28;
5464 434861094 : bs = y29;
5465 434861094 : y28 = ( ( as * FFT_RotVector_32[2 * 5 + 0] ) - ( bs * FFT_RotVector_32[2 * 5 + 1] ) );
5466 434861094 : y29 = ( ( as * FFT_RotVector_32[2 * 5 + 1] ) + ( bs * FFT_RotVector_32[2 * 5 + 0] ) );
5467 : };
5468 : {
5469 434861094 : as = y30;
5470 434861094 : bs = y31;
5471 434861094 : y30 = ( ( as * FFT_RotVector_32[2 * 6 + 0] ) - ( bs * FFT_RotVector_32[2 * 6 + 1] ) );
5472 434861094 : y31 = ( ( as * FFT_RotVector_32[2 * 6 + 1] ) + ( bs * FFT_RotVector_32[2 * 6 + 0] ) );
5473 : };
5474 : {
5475 434861094 : as = y34;
5476 434861094 : bs = y35;
5477 434861094 : y34 = ( ( as * FFT_RotVector_32[2 * 7 + 0] ) - ( bs * FFT_RotVector_32[2 * 7 + 1] ) );
5478 434861094 : y35 = ( ( as * FFT_RotVector_32[2 * 7 + 1] ) + ( bs * FFT_RotVector_32[2 * 7 + 0] ) );
5479 : };
5480 : {
5481 434861094 : as = y36;
5482 434861094 : bs = y37;
5483 434861094 : y36 = ( ( as * FFT_RotVector_32[2 * 8 + 0] ) - ( bs * FFT_RotVector_32[2 * 8 + 1] ) );
5484 434861094 : y37 = ( ( as * FFT_RotVector_32[2 * 8 + 1] ) + ( bs * FFT_RotVector_32[2 * 8 + 0] ) );
5485 : };
5486 : {
5487 434861094 : as = y38;
5488 434861094 : bs = y39;
5489 434861094 : y38 = ( ( as * FFT_RotVector_32[2 * 9 + 0] ) - ( bs * FFT_RotVector_32[2 * 9 + 1] ) );
5490 434861094 : y39 = ( ( as * FFT_RotVector_32[2 * 9 + 1] ) + ( bs * FFT_RotVector_32[2 * 9 + 0] ) );
5491 : };
5492 : {
5493 434861094 : as = y42;
5494 434861094 : bs = y43;
5495 434861094 : y42 = ( ( as * FFT_RotVector_32[2 * 10 + 0] ) - ( bs * FFT_RotVector_32[2 * 10 + 1] ) );
5496 434861094 : y43 = ( ( as * FFT_RotVector_32[2 * 10 + 1] ) + ( bs * FFT_RotVector_32[2 * 10 + 0] ) );
5497 : };
5498 : {
5499 434861094 : as = y44;
5500 434861094 : bs = y45;
5501 434861094 : y44 = ( ( as * FFT_RotVector_32[2 * 11 + 0] ) - ( bs * FFT_RotVector_32[2 * 11 + 1] ) );
5502 434861094 : y45 = ( ( as * FFT_RotVector_32[2 * 11 + 1] ) + ( bs * FFT_RotVector_32[2 * 11 + 0] ) );
5503 : };
5504 : {
5505 434861094 : as = y46;
5506 434861094 : bs = y47;
5507 434861094 : y46 = ( ( as * FFT_RotVector_32[2 * 12 + 0] ) - ( bs * FFT_RotVector_32[2 * 12 + 1] ) );
5508 434861094 : y47 = ( ( as * FFT_RotVector_32[2 * 12 + 1] ) + ( bs * FFT_RotVector_32[2 * 12 + 0] ) );
5509 : };
5510 : {
5511 434861094 : as = y50;
5512 434861094 : bs = y51;
5513 434861094 : y50 = ( ( as * FFT_RotVector_32[2 * 13 + 0] ) - ( bs * FFT_RotVector_32[2 * 13 + 1] ) );
5514 434861094 : y51 = ( ( as * FFT_RotVector_32[2 * 13 + 1] ) + ( bs * FFT_RotVector_32[2 * 13 + 0] ) );
5515 : };
5516 : {
5517 434861094 : as = y52;
5518 434861094 : bs = y53;
5519 434861094 : y52 = ( ( as * FFT_RotVector_32[2 * 14 + 0] ) - ( bs * FFT_RotVector_32[2 * 14 + 1] ) );
5520 434861094 : y53 = ( ( as * FFT_RotVector_32[2 * 14 + 1] ) + ( bs * FFT_RotVector_32[2 * 14 + 0] ) );
5521 : };
5522 : {
5523 434861094 : as = y54;
5524 434861094 : bs = y55;
5525 434861094 : y54 = ( ( as * FFT_RotVector_32[2 * 15 + 0] ) - ( bs * FFT_RotVector_32[2 * 15 + 1] ) );
5526 434861094 : y55 = ( ( as * FFT_RotVector_32[2 * 15 + 1] ) + ( bs * FFT_RotVector_32[2 * 15 + 0] ) );
5527 : };
5528 : {
5529 434861094 : as = y56;
5530 434861094 : bs = y57;
5531 434861094 : y56 = ( ( as * FFT_RotVector_32[2 * 16 + 0] ) - ( bs * FFT_RotVector_32[2 * 16 + 1] ) );
5532 434861094 : y57 = ( ( as * FFT_RotVector_32[2 * 16 + 1] ) + ( bs * FFT_RotVector_32[2 * 16 + 0] ) );
5533 : };
5534 : {
5535 434861094 : as = y58;
5536 434861094 : bs = y59;
5537 434861094 : y58 = ( ( as * FFT_RotVector_32[2 * 17 + 0] ) - ( bs * FFT_RotVector_32[2 * 17 + 1] ) );
5538 434861094 : y59 = ( ( as * FFT_RotVector_32[2 * 17 + 1] ) + ( bs * FFT_RotVector_32[2 * 17 + 0] ) );
5539 : };
5540 : {
5541 434861094 : as = y60;
5542 434861094 : bs = y61;
5543 434861094 : y60 = ( ( as * FFT_RotVector_32[2 * 18 + 0] ) - ( bs * FFT_RotVector_32[2 * 18 + 1] ) );
5544 434861094 : y61 = ( ( as * FFT_RotVector_32[2 * 18 + 1] ) + ( bs * FFT_RotVector_32[2 * 18 + 0] ) );
5545 : };
5546 : {
5547 434861094 : as = y62;
5548 434861094 : bs = y63;
5549 434861094 : y62 = ( ( as * FFT_RotVector_32[2 * 19 + 0] ) - ( bs * FFT_RotVector_32[2 * 19 + 1] ) );
5550 434861094 : y63 = ( ( as * FFT_RotVector_32[2 * 19 + 1] ) + ( bs * FFT_RotVector_32[2 * 19 + 0] ) );
5551 : };
5552 :
5553 434861094 : t00 = ( y00 + y32 );
5554 434861094 : t02 = ( y00 - y32 );
5555 434861094 : t01 = ( y01 + y33 );
5556 434861094 : t03 = ( y01 - y33 );
5557 434861094 : t04 = ( y16 + y48 );
5558 434861094 : t07 = ( y16 - y48 );
5559 434861094 : t05 = ( y49 + y17 );
5560 434861094 : t06 = ( y49 - y17 );
5561 :
5562 434861094 : re[s * 0] = ( t00 + t04 );
5563 434861094 : im[s * 0] = ( t01 + t05 );
5564 434861094 : re[s * 8] = ( t02 - t06 );
5565 434861094 : im[s * 8] = ( t03 - t07 );
5566 434861094 : re[s * 16] = ( t00 - t04 );
5567 434861094 : im[s * 16] = ( t01 - t05 );
5568 434861094 : re[s * 24] = ( t02 + t06 );
5569 434861094 : im[s * 24] = ( t03 + t07 );
5570 :
5571 434861094 : t00 = ( y02 + y34 );
5572 434861094 : t02 = ( y02 - y34 );
5573 434861094 : t01 = ( y03 + y35 );
5574 434861094 : t03 = ( y03 - y35 );
5575 434861094 : t04 = ( y18 + y50 );
5576 434861094 : t07 = ( y18 - y50 );
5577 434861094 : t05 = ( y51 + y19 );
5578 434861094 : t06 = ( y51 - y19 );
5579 :
5580 434861094 : re[s * 1] = ( t00 + t04 );
5581 434861094 : im[s * 1] = ( t01 + t05 );
5582 434861094 : re[s * 9] = ( t02 - t06 );
5583 434861094 : im[s * 9] = ( t03 - t07 );
5584 434861094 : re[s * 17] = ( t00 - t04 );
5585 434861094 : im[s * 17] = ( t01 - t05 );
5586 434861094 : re[s * 25] = ( t02 + t06 );
5587 434861094 : im[s * 25] = ( t03 + t07 );
5588 :
5589 434861094 : t00 = ( y04 + y36 );
5590 434861094 : t02 = ( y04 - y36 );
5591 434861094 : t01 = ( y05 + y37 );
5592 434861094 : t03 = ( y05 - y37 );
5593 434861094 : t04 = ( y20 + y52 );
5594 434861094 : t07 = ( y20 - y52 );
5595 434861094 : t05 = ( y53 + y21 );
5596 434861094 : t06 = ( y53 - y21 );
5597 :
5598 434861094 : re[s * 2] = ( t00 + t04 );
5599 434861094 : im[s * 2] = ( t01 + t05 );
5600 434861094 : re[s * 10] = ( t02 - t06 );
5601 434861094 : im[s * 10] = ( t03 - t07 );
5602 434861094 : re[s * 18] = ( t00 - t04 );
5603 434861094 : im[s * 18] = ( t01 - t05 );
5604 434861094 : re[s * 26] = ( t02 + t06 );
5605 434861094 : im[s * 26] = ( t03 + t07 );
5606 :
5607 434861094 : t00 = ( y06 + y38 );
5608 434861094 : t02 = ( y06 - y38 );
5609 434861094 : t01 = ( y07 + y39 );
5610 434861094 : t03 = ( y07 - y39 );
5611 434861094 : t04 = ( y22 + y54 );
5612 434861094 : t07 = ( y22 - y54 );
5613 434861094 : t05 = ( y55 + y23 );
5614 434861094 : t06 = ( y55 - y23 );
5615 :
5616 434861094 : re[s * 3] = ( t00 + t04 );
5617 434861094 : im[s * 3] = ( t01 + t05 );
5618 434861094 : re[s * 11] = ( t02 - t06 );
5619 434861094 : im[s * 11] = ( t03 - t07 );
5620 434861094 : re[s * 19] = ( t00 - t04 );
5621 434861094 : im[s * 19] = ( t01 - t05 );
5622 434861094 : re[s * 27] = ( t02 + t06 );
5623 434861094 : im[s * 27] = ( t03 + t07 );
5624 :
5625 434861094 : t00 = ( y08 + y41 );
5626 434861094 : t02 = ( y08 - y41 );
5627 434861094 : t01 = ( y09 - y40 );
5628 434861094 : t03 = ( y09 + y40 );
5629 434861094 : t04 = ( y24 + y56 );
5630 434861094 : t07 = ( y24 - y56 );
5631 434861094 : t05 = ( y57 + y25 );
5632 434861094 : t06 = ( y57 - y25 );
5633 :
5634 434861094 : re[s * 4] = ( t00 + t04 );
5635 434861094 : im[s * 4] = ( t01 + t05 );
5636 434861094 : re[s * 12] = ( t02 - t06 );
5637 434861094 : im[s * 12] = ( t03 - t07 );
5638 434861094 : re[s * 20] = ( t00 - t04 );
5639 434861094 : im[s * 20] = ( t01 - t05 );
5640 434861094 : re[s * 28] = ( t02 + t06 );
5641 434861094 : im[s * 28] = ( t03 + t07 );
5642 :
5643 434861094 : t00 = ( y10 + y42 );
5644 434861094 : t02 = ( y10 - y42 );
5645 434861094 : t01 = ( y11 + y43 );
5646 434861094 : t03 = ( y11 - y43 );
5647 434861094 : t04 = ( y26 + y58 );
5648 434861094 : t07 = ( y26 - y58 );
5649 434861094 : t05 = ( y59 + y27 );
5650 434861094 : t06 = ( y59 - y27 );
5651 :
5652 434861094 : re[s * 5] = ( t00 + t04 );
5653 434861094 : im[s * 5] = ( t01 + t05 );
5654 434861094 : re[s * 13] = ( t02 - t06 );
5655 434861094 : im[s * 13] = ( t03 - t07 );
5656 434861094 : re[s * 21] = ( t00 - t04 );
5657 434861094 : im[s * 21] = ( t01 - t05 );
5658 434861094 : re[s * 29] = ( t02 + t06 );
5659 434861094 : im[s * 29] = ( t03 + t07 );
5660 :
5661 434861094 : t00 = ( y12 + y44 );
5662 434861094 : t02 = ( y12 - y44 );
5663 434861094 : t01 = ( y13 + y45 );
5664 434861094 : t03 = ( y13 - y45 );
5665 434861094 : t04 = ( y28 + y60 );
5666 434861094 : t07 = ( y28 - y60 );
5667 434861094 : t05 = ( y61 + y29 );
5668 434861094 : t06 = ( y61 - y29 );
5669 :
5670 434861094 : re[s * 6] = ( t00 + t04 );
5671 434861094 : im[s * 6] = ( t01 + t05 );
5672 434861094 : re[s * 14] = ( t02 - t06 );
5673 434861094 : im[s * 14] = ( t03 - t07 );
5674 434861094 : re[s * 22] = ( t00 - t04 );
5675 434861094 : im[s * 22] = ( t01 - t05 );
5676 434861094 : re[s * 30] = ( t02 + t06 );
5677 434861094 : im[s * 30] = ( t03 + t07 );
5678 :
5679 434861094 : t00 = ( y14 + y46 );
5680 434861094 : t02 = ( y14 - y46 );
5681 434861094 : t01 = ( y15 + y47 );
5682 434861094 : t03 = ( y15 - y47 );
5683 434861094 : t04 = ( y30 + y62 );
5684 434861094 : t07 = ( y30 - y62 );
5685 434861094 : t05 = ( y63 + y31 );
5686 434861094 : t06 = ( y63 - y31 );
5687 :
5688 434861094 : re[s * 7] = ( t00 + t04 );
5689 434861094 : im[s * 7] = ( t01 + t05 );
5690 434861094 : re[s * 15] = ( t02 - t06 );
5691 434861094 : im[s * 15] = ( t03 - t07 );
5692 434861094 : re[s * 23] = ( t00 - t04 );
5693 434861094 : im[s * 23] = ( t01 - t05 );
5694 434861094 : re[s * 31] = ( t02 + t06 );
5695 434861094 : im[s * 31] = ( t03 + t07 );
5696 :
5697 434861094 : return;
5698 : }
5699 :
5700 990907478 : static void fft_lenN(
5701 : float *re,
5702 : float *im,
5703 : const float *W,
5704 : const int16_t len,
5705 : const int16_t dim1,
5706 : const int16_t dim2,
5707 : const int16_t sx,
5708 : const int16_t sc,
5709 : const int16_t Woff )
5710 : {
5711 : int16_t i, j;
5712 : float x[L_FRAME_MAX * 2];
5713 :
5714 9847747872 : for ( i = 0; i < dim2; i++ )
5715 : {
5716 >20482*10^7 : for ( j = 0; j < dim1; j++ )
5717 : {
5718 >19597*10^7 : x[2 * i * dim1 + 2 * j] = re[sx * i + sx * j * dim2];
5719 >19597*10^7 : x[2 * i * dim1 + 2 * j + 1] = im[sx * i + sx * j * dim2];
5720 : }
5721 : }
5722 :
5723 990907478 : switch ( dim1 )
5724 : {
5725 388165 : case 5:
5726 3493485 : for ( i = 0; i < dim2; i++ )
5727 : {
5728 3105320 : fft_len5( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5729 : }
5730 388165 : break;
5731 :
5732 722145 : case 8:
5733 6499305 : for ( i = 0; i < dim2; i++ )
5734 : {
5735 5777160 : fft_len8( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5736 : }
5737 722145 : break;
5738 :
5739 241684867 : case 10:
5740 2175163803 : for ( i = 0; i < dim2; i++ )
5741 : {
5742 1933478936 : fft_len10( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5743 : }
5744 241684867 : break;
5745 :
5746 7411877 : case 15:
5747 66706893 : for ( i = 0; i < dim2; i++ )
5748 : {
5749 59295016 : fft_len15( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5750 : }
5751 7411877 : break;
5752 :
5753 12514975 : case 16:
5754 112634775 : for ( i = 0; i < dim2; i++ )
5755 : {
5756 100119800 : fft_len16( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5757 : }
5758 12514975 : break;
5759 :
5760 308495553 : case 20:
5761 3186285419 : for ( i = 0; i < dim2; i++ )
5762 : {
5763 2877789866 : fft_len20( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5764 : }
5765 308495553 : break;
5766 :
5767 406610303 : case 30:
5768 4179247855 : for ( i = 0; i < dim2; i++ )
5769 : {
5770 3772637552 : fft_len30( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5771 : }
5772 406610303 : break;
5773 :
5774 13079593 : case 32:
5775 117716337 : for ( i = 0; i < dim2; i++ )
5776 : {
5777 104636744 : fft_len32( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
5778 : }
5779 13079593 : break;
5780 : }
5781 :
5782 990907478 : switch ( dim2 )
5783 : {
5784 :
5785 901031878 : case 8:
5786 : {
5787 : float x00, x01, x02, x03, x04, x05, x06, x07, x08, x09, x10, x11, x12, x13, x14, x15;
5788 : float t00, t01, t02, t03, t04, t05, t06, t07, t08, t09, t10, t11, t12, t13, t14, t15;
5789 : float s00, s01, s02, s03, s04, s05, s06, s07, s08, s09, s10, s11, s12, s13, s14, s15;
5790 :
5791 901031878 : if ( dim1 == 30 || dim1 == 20 || dim1 == 15 || dim1 == 10 || dim1 == 5 )
5792 : {
5793 19459470935 : for ( i = 0; i < dim1; i++ )
5794 : {
5795 : {
5796 18584755770 : x00 = x[2 * i + 2 * 0 * dim1];
5797 18584755770 : x01 = x[2 * i + 2 * 0 * dim1 + 1];
5798 : };
5799 18584755770 : if ( i == 0 )
5800 : {
5801 : {
5802 874715165 : x02 = x[2 * i + 2 * 1 * dim1];
5803 874715165 : x03 = x[2 * i + 2 * 1 * dim1 + 1];
5804 : };
5805 : {
5806 874715165 : x04 = x[2 * i + 2 * 2 * dim1];
5807 874715165 : x05 = x[2 * i + 2 * 2 * dim1 + 1];
5808 : };
5809 : {
5810 874715165 : x06 = x[2 * i + 2 * 3 * dim1];
5811 874715165 : x07 = x[2 * i + 2 * 3 * dim1 + 1];
5812 : };
5813 : {
5814 874715165 : x08 = x[2 * i + 2 * 4 * dim1];
5815 874715165 : x09 = x[2 * i + 2 * 4 * dim1 + 1];
5816 : };
5817 : {
5818 874715165 : x10 = x[2 * i + 2 * 5 * dim1];
5819 874715165 : x11 = x[2 * i + 2 * 5 * dim1 + 1];
5820 : };
5821 : {
5822 874715165 : x12 = x[2 * i + 2 * 6 * dim1];
5823 874715165 : x13 = x[2 * i + 2 * 6 * dim1 + 1];
5824 : };
5825 : {
5826 874715165 : x14 = x[2 * i + 2 * 7 * dim1];
5827 874715165 : x15 = x[2 * i + 2 * 7 * dim1 + 1];
5828 : };
5829 : }
5830 : else
5831 : {
5832 : {
5833 17710040605 : x02 = ( x[2 * i + 2 * 1 * dim1] * W[sc * i + sc * 1 * dim1 * 2 - Woff] ) - ( x[2 * i + 2 * 1 * dim1 + 1] * W[sc * i + sc * 1 * dim1 * 2 + 1 - Woff] );
5834 17710040605 : x03 = ( x[2 * i + 2 * 1 * dim1] * W[sc * i + sc * 1 * dim1 * 2 + 1 - Woff] ) + ( x[2 * i + 2 * 1 * dim1 + 1] * W[sc * i + sc * 1 * dim1 * 2 - Woff] );
5835 : };
5836 : {
5837 17710040605 : x04 = ( x[2 * i + 2 * 2 * dim1] * W[sc * i + sc * 2 * dim1 * 2 - Woff] ) - ( x[2 * i + 2 * 2 * dim1 + 1] * W[sc * i + sc * 2 * dim1 * 2 + 1 - Woff] );
5838 17710040605 : x05 = ( x[2 * i + 2 * 2 * dim1] * W[sc * i + sc * 2 * dim1 * 2 + 1 - Woff] ) + ( x[2 * i + 2 * 2 * dim1 + 1] * W[sc * i + sc * 2 * dim1 * 2 - Woff] );
5839 : };
5840 : {
5841 17710040605 : x06 = ( x[2 * i + 2 * 3 * dim1] * W[sc * i + sc * 3 * dim1 * 2 - Woff] ) - ( x[2 * i + 2 * 3 * dim1 + 1] * W[sc * i + sc * 3 * dim1 * 2 + 1 - Woff] );
5842 17710040605 : x07 = ( x[2 * i + 2 * 3 * dim1] * W[sc * i + sc * 3 * dim1 * 2 + 1 - Woff] ) + ( x[2 * i + 2 * 3 * dim1 + 1] * W[sc * i + sc * 3 * dim1 * 2 - Woff] );
5843 : };
5844 : {
5845 17710040605 : x08 = ( x[2 * i + 2 * 4 * dim1] * W[sc * i + sc * 4 * dim1 * 2 - Woff] ) - ( x[2 * i + 2 * 4 * dim1 + 1] * W[sc * i + sc * 4 * dim1 * 2 + 1 - Woff] );
5846 17710040605 : x09 = ( x[2 * i + 2 * 4 * dim1] * W[sc * i + sc * 4 * dim1 * 2 + 1 - Woff] ) + ( x[2 * i + 2 * 4 * dim1 + 1] * W[sc * i + sc * 4 * dim1 * 2 - Woff] );
5847 : };
5848 : {
5849 17710040605 : x10 = ( x[2 * i + 2 * 5 * dim1] * W[sc * i + sc * 5 * dim1 * 2 - Woff] ) - ( x[2 * i + 2 * 5 * dim1 + 1] * W[sc * i + sc * 5 * dim1 * 2 + 1 - Woff] );
5850 17710040605 : x11 = ( x[2 * i + 2 * 5 * dim1] * W[sc * i + sc * 5 * dim1 * 2 + 1 - Woff] ) + ( x[2 * i + 2 * 5 * dim1 + 1] * W[sc * i + sc * 5 * dim1 * 2 - Woff] );
5851 : };
5852 : {
5853 17710040605 : x12 = ( x[2 * i + 2 * 6 * dim1] * W[sc * i + sc * 6 * dim1 * 2 - Woff] ) - ( x[2 * i + 2 * 6 * dim1 + 1] * W[sc * i + sc * 6 * dim1 * 2 + 1 - Woff] );
5854 17710040605 : x13 = ( x[2 * i + 2 * 6 * dim1] * W[sc * i + sc * 6 * dim1 * 2 + 1 - Woff] ) + ( x[2 * i + 2 * 6 * dim1 + 1] * W[sc * i + sc * 6 * dim1 * 2 - Woff] );
5855 : };
5856 : {
5857 17710040605 : x14 = ( x[2 * i + 2 * 7 * dim1] * W[sc * i + sc * 7 * dim1 * 2 - Woff] ) - ( x[2 * i + 2 * 7 * dim1 + 1] * W[sc * i + sc * 7 * dim1 * 2 + 1 - Woff] );
5858 17710040605 : x15 = ( x[2 * i + 2 * 7 * dim1] * W[sc * i + sc * 7 * dim1 * 2 + 1 - Woff] ) + ( x[2 * i + 2 * 7 * dim1 + 1] * W[sc * i + sc * 7 * dim1 * 2 - Woff] );
5859 : };
5860 : }
5861 :
5862 18584755770 : t00 = ( x00 + x08 );
5863 18584755770 : t02 = ( x00 - x08 );
5864 18584755770 : t01 = ( x01 + x09 );
5865 18584755770 : t03 = ( x01 - x09 );
5866 18584755770 : t04 = ( x02 + x10 );
5867 18584755770 : t06 = ( x02 - x10 );
5868 18584755770 : t05 = ( x03 + x11 );
5869 18584755770 : t07 = ( x03 - x11 );
5870 18584755770 : t08 = ( x04 + x12 );
5871 18584755770 : t10 = ( x04 - x12 );
5872 18584755770 : t09 = ( x05 + x13 );
5873 18584755770 : t11 = ( x05 - x13 );
5874 18584755770 : t12 = ( x06 + x14 );
5875 18584755770 : t14 = ( x06 - x14 );
5876 18584755770 : t13 = ( x07 + x15 );
5877 18584755770 : t15 = ( x07 - x15 );
5878 :
5879 18584755770 : s00 = ( t00 + t08 );
5880 18584755770 : s04 = ( t00 - t08 );
5881 18584755770 : s01 = ( t01 + t09 );
5882 18584755770 : s05 = ( t01 - t09 );
5883 18584755770 : s08 = ( t02 - t11 );
5884 18584755770 : s10 = ( t02 + t11 );
5885 18584755770 : s09 = ( t03 + t10 );
5886 18584755770 : s11 = ( t03 - t10 );
5887 18584755770 : s02 = ( t04 + t12 );
5888 18584755770 : s07 = ( t04 - t12 );
5889 18584755770 : s03 = ( t05 + t13 );
5890 18584755770 : s06 = ( t13 - t05 );
5891 :
5892 18584755770 : t01 = ( t06 + t14 );
5893 18584755770 : t02 = ( t06 - t14 );
5894 18584755770 : t00 = ( t07 + t15 );
5895 18584755770 : t03 = ( t07 - t15 );
5896 :
5897 18584755770 : s12 = ( ( t00 + t02 ) * FFT_C81 );
5898 18584755770 : s14 = ( ( t00 - t02 ) * FFT_C81 );
5899 18584755770 : s13 = ( ( t03 - t01 ) * FFT_C81 );
5900 18584755770 : s15 = ( ( t01 + t03 ) * FFT_C82 );
5901 :
5902 18584755770 : re[sx * i + sx * 0 * dim1] = ( s00 + s02 );
5903 18584755770 : im[sx * i + sx * 0 * dim1] = ( s01 + s03 );
5904 18584755770 : re[sx * i + sx * 1 * dim1] = ( s10 + s12 );
5905 18584755770 : im[sx * i + sx * 1 * dim1] = ( s11 + s13 );
5906 18584755770 : re[sx * i + sx * 2 * dim1] = ( s04 - s06 );
5907 18584755770 : im[sx * i + sx * 2 * dim1] = ( s05 - s07 );
5908 18584755770 : re[sx * i + sx * 3 * dim1] = ( s08 + s14 );
5909 18584755770 : im[sx * i + sx * 3 * dim1] = ( s09 + s15 );
5910 18584755770 : re[sx * i + sx * 4 * dim1] = ( s00 - s02 );
5911 18584755770 : im[sx * i + sx * 4 * dim1] = ( s01 - s03 );
5912 18584755770 : re[sx * i + sx * 5 * dim1] = ( s10 - s12 );
5913 18584755770 : im[sx * i + sx * 5 * dim1] = ( s11 - s13 );
5914 18584755770 : re[sx * i + sx * 6 * dim1] = ( s04 + s06 );
5915 18584755770 : im[sx * i + sx * 6 * dim1] = ( s05 + s07 );
5916 18584755770 : re[sx * i + sx * 7 * dim1] = ( s08 - s14 );
5917 18584755770 : im[sx * i + sx * 7 * dim1] = ( s09 - s15 );
5918 : }
5919 : }
5920 : else
5921 : {
5922 650880449 : for ( i = 0; i < dim1; i++ )
5923 : {
5924 : {
5925 624563736 : x00 = x[2 * i + 2 * 0 * dim1];
5926 624563736 : x01 = x[2 * i + 2 * 0 * dim1 + 1];
5927 : };
5928 624563736 : if ( i == 0 )
5929 : {
5930 : {
5931 26316713 : x02 = x[2 * i + 2 * 1 * dim1];
5932 26316713 : x03 = x[2 * i + 2 * 1 * dim1 + 1];
5933 : };
5934 : {
5935 26316713 : x04 = x[2 * i + 2 * 2 * dim1];
5936 26316713 : x05 = x[2 * i + 2 * 2 * dim1 + 1];
5937 : };
5938 : {
5939 26316713 : x06 = x[2 * i + 2 * 3 * dim1];
5940 26316713 : x07 = x[2 * i + 2 * 3 * dim1 + 1];
5941 : };
5942 : {
5943 26316713 : x08 = x[2 * i + 2 * 4 * dim1];
5944 26316713 : x09 = x[2 * i + 2 * 4 * dim1 + 1];
5945 : };
5946 : {
5947 26316713 : x10 = x[2 * i + 2 * 5 * dim1];
5948 26316713 : x11 = x[2 * i + 2 * 5 * dim1 + 1];
5949 : };
5950 : {
5951 26316713 : x12 = x[2 * i + 2 * 6 * dim1];
5952 26316713 : x13 = x[2 * i + 2 * 6 * dim1 + 1];
5953 : };
5954 : {
5955 26316713 : x14 = x[2 * i + 2 * 7 * dim1];
5956 26316713 : x15 = x[2 * i + 2 * 7 * dim1 + 1];
5957 : };
5958 : }
5959 : else
5960 : {
5961 : {
5962 598247023 : x02 = ( x[2 * i + 2 * 1 * dim1] * W[sc * i + sc * 1 * dim1 - Woff] ) - ( x[2 * i + 2 * 1 * dim1 + 1] * W[sc * i + sc * 1 * dim1 + 1 - Woff] );
5963 598247023 : x03 = ( x[2 * i + 2 * 1 * dim1] * W[sc * i + sc * 1 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * 1 * dim1 + 1] * W[sc * i + sc * 1 * dim1 - Woff] );
5964 : };
5965 : {
5966 598247023 : x04 = ( x[2 * i + 2 * 2 * dim1] * W[sc * i + sc * 2 * dim1 - Woff] ) - ( x[2 * i + 2 * 2 * dim1 + 1] * W[sc * i + sc * 2 * dim1 + 1 - Woff] );
5967 598247023 : x05 = ( x[2 * i + 2 * 2 * dim1] * W[sc * i + sc * 2 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * 2 * dim1 + 1] * W[sc * i + sc * 2 * dim1 - Woff] );
5968 : };
5969 : {
5970 598247023 : x06 = ( x[2 * i + 2 * 3 * dim1] * W[sc * i + sc * 3 * dim1 - Woff] ) - ( x[2 * i + 2 * 3 * dim1 + 1] * W[sc * i + sc * 3 * dim1 + 1 - Woff] );
5971 598247023 : x07 = ( x[2 * i + 2 * 3 * dim1] * W[sc * i + sc * 3 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * 3 * dim1 + 1] * W[sc * i + sc * 3 * dim1 - Woff] );
5972 : };
5973 : {
5974 598247023 : x08 = ( x[2 * i + 2 * 4 * dim1] * W[sc * i + sc * 4 * dim1 - Woff] ) - ( x[2 * i + 2 * 4 * dim1 + 1] * W[sc * i + sc * 4 * dim1 + 1 - Woff] );
5975 598247023 : x09 = ( x[2 * i + 2 * 4 * dim1] * W[sc * i + sc * 4 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * 4 * dim1 + 1] * W[sc * i + sc * 4 * dim1 - Woff] );
5976 : };
5977 : {
5978 598247023 : x10 = ( x[2 * i + 2 * 5 * dim1] * W[sc * i + sc * 5 * dim1 - Woff] ) - ( x[2 * i + 2 * 5 * dim1 + 1] * W[sc * i + sc * 5 * dim1 + 1 - Woff] );
5979 598247023 : x11 = ( x[2 * i + 2 * 5 * dim1] * W[sc * i + sc * 5 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * 5 * dim1 + 1] * W[sc * i + sc * 5 * dim1 - Woff] );
5980 : };
5981 : {
5982 598247023 : x12 = ( x[2 * i + 2 * 6 * dim1] * W[sc * i + sc * 6 * dim1 - Woff] ) - ( x[2 * i + 2 * 6 * dim1 + 1] * W[sc * i + sc * 6 * dim1 + 1 - Woff] );
5983 598247023 : x13 = ( x[2 * i + 2 * 6 * dim1] * W[sc * i + sc * 6 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * 6 * dim1 + 1] * W[sc * i + sc * 6 * dim1 - Woff] );
5984 : };
5985 : {
5986 598247023 : x14 = ( x[2 * i + 2 * 7 * dim1] * W[sc * i + sc * 7 * dim1 - Woff] ) - ( x[2 * i + 2 * 7 * dim1 + 1] * W[sc * i + sc * 7 * dim1 + 1 - Woff] );
5987 598247023 : x15 = ( x[2 * i + 2 * 7 * dim1] * W[sc * i + sc * 7 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * 7 * dim1 + 1] * W[sc * i + sc * 7 * dim1 - Woff] );
5988 : };
5989 : }
5990 :
5991 624563736 : t00 = ( x00 + x08 );
5992 624563736 : t02 = ( x00 - x08 );
5993 624563736 : t01 = ( x01 + x09 );
5994 624563736 : t03 = ( x01 - x09 );
5995 624563736 : t04 = ( x02 + x10 );
5996 624563736 : t06 = ( x02 - x10 );
5997 624563736 : t05 = ( x03 + x11 );
5998 624563736 : t07 = ( x03 - x11 );
5999 624563736 : t08 = ( x04 + x12 );
6000 624563736 : t10 = ( x04 - x12 );
6001 624563736 : t09 = ( x05 + x13 );
6002 624563736 : t11 = ( x05 - x13 );
6003 624563736 : t12 = ( x06 + x14 );
6004 624563736 : t14 = ( x06 - x14 );
6005 624563736 : t13 = ( x07 + x15 );
6006 624563736 : t15 = ( x07 - x15 );
6007 :
6008 624563736 : s00 = ( t00 + t08 );
6009 624563736 : s04 = ( t00 - t08 );
6010 624563736 : s01 = ( t01 + t09 );
6011 624563736 : s05 = ( t01 - t09 );
6012 624563736 : s08 = ( t02 - t11 );
6013 624563736 : s10 = ( t02 + t11 );
6014 624563736 : s09 = ( t03 + t10 );
6015 624563736 : s11 = ( t03 - t10 );
6016 624563736 : s02 = ( t04 + t12 );
6017 624563736 : s07 = ( t04 - t12 );
6018 624563736 : s03 = ( t05 + t13 );
6019 624563736 : s06 = ( t13 - t05 );
6020 :
6021 624563736 : t01 = ( t06 + t14 );
6022 624563736 : t02 = ( t06 - t14 );
6023 624563736 : t00 = ( t07 + t15 );
6024 624563736 : t03 = ( t07 - t15 );
6025 :
6026 624563736 : s12 = ( ( t00 + t02 ) * FFT_C81 );
6027 624563736 : s14 = ( ( t00 - t02 ) * FFT_C81 );
6028 624563736 : s13 = ( ( t03 - t01 ) * FFT_C81 );
6029 624563736 : s15 = ( ( t01 + t03 ) * FFT_C82 );
6030 :
6031 624563736 : re[sx * i + sx * 0 * dim1] = ( s00 + s02 );
6032 624563736 : im[sx * i + sx * 0 * dim1] = ( s01 + s03 );
6033 624563736 : re[sx * i + sx * 1 * dim1] = ( s10 + s12 );
6034 624563736 : im[sx * i + sx * 1 * dim1] = ( s11 + s13 );
6035 624563736 : re[sx * i + sx * 2 * dim1] = ( s04 - s06 );
6036 624563736 : im[sx * i + sx * 2 * dim1] = ( s05 - s07 );
6037 624563736 : re[sx * i + sx * 3 * dim1] = ( s08 + s14 );
6038 624563736 : im[sx * i + sx * 3 * dim1] = ( s09 + s15 );
6039 624563736 : re[sx * i + sx * 4 * dim1] = ( s00 - s02 );
6040 624563736 : im[sx * i + sx * 4 * dim1] = ( s01 - s03 );
6041 624563736 : re[sx * i + sx * 5 * dim1] = ( s10 - s12 );
6042 624563736 : im[sx * i + sx * 5 * dim1] = ( s11 - s13 );
6043 624563736 : re[sx * i + sx * 6 * dim1] = ( s04 + s06 );
6044 624563736 : im[sx * i + sx * 6 * dim1] = ( s05 + s07 );
6045 624563736 : re[sx * i + sx * 7 * dim1] = ( s08 - s14 );
6046 624563736 : im[sx * i + sx * 7 * dim1] = ( s09 - s15 );
6047 : }
6048 : }
6049 901031878 : break;
6050 : }
6051 :
6052 431721 : case 10:
6053 : {
6054 : float y[2 * 10];
6055 4748931 : for ( j = 0; j < dim2; j++ )
6056 : {
6057 : {
6058 4317210 : y[2 * j] = x[2 * 0 + 2 * j * dim1];
6059 4317210 : y[2 * j + 1] = x[2 * 0 + 2 * j * dim1 + 1];
6060 : };
6061 : }
6062 431721 : fft_len10( &y[0], &y[1], 2 );
6063 4748931 : for ( j = 0; j < dim2; j++ )
6064 : {
6065 4317210 : re[sx * 0 + sx * j * dim1] = y[2 * j];
6066 4317210 : im[sx * 0 + sx * j * dim1] = y[2 * j + 1];
6067 : }
6068 :
6069 8634420 : for ( i = 1; i < dim1; i++ )
6070 : {
6071 : {
6072 8202699 : y[2 * ( 0 + 0 )] = x[2 * i + 2 * ( 0 + 0 ) * dim1];
6073 8202699 : y[2 * ( 0 + 0 ) + 1] = x[2 * i + 2 * ( 0 + 0 ) * dim1 + 1];
6074 : }
6075 :
6076 82026990 : for ( j = 1; j < dim2; j++ )
6077 : {
6078 : {
6079 73824291 : y[2 * ( j + 0 )] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + sc * j * dim1 - Woff] ) - ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + sc * j * dim1 + 1 - Woff] );
6080 73824291 : y[2 * ( j + 0 ) + 1] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + sc * j * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + sc * j * dim1 - Woff] );
6081 : }
6082 : }
6083 8202699 : fft_len10( &y[0], &y[1], 2 );
6084 90229689 : for ( j = 0; j < dim2; j++ )
6085 : {
6086 82026990 : re[sx * i + sx * j * dim1] = y[2 * j];
6087 82026990 : im[sx * i + sx * j * dim1] = y[2 * j + 1];
6088 : }
6089 : }
6090 431721 : break;
6091 : }
6092 :
6093 75778800 : case 16:
6094 : {
6095 : float y[2 * 16];
6096 1288239600 : for ( j = 0; j < dim2; j++ )
6097 : {
6098 : {
6099 1212460800 : y[2 * j] = x[2 * 0 + 2 * j * dim1];
6100 1212460800 : y[2 * j + 1] = x[2 * 0 + 2 * j * dim1 + 1];
6101 : };
6102 : }
6103 75778800 : fft_len16( &y[0], &y[1], 2 );
6104 1288239600 : for ( j = 0; j < dim2; j++ )
6105 : {
6106 1212460800 : re[sx * 0 + sx * j * dim1] = y[2 * j];
6107 1212460800 : im[sx * 0 + sx * j * dim1] = y[2 * j + 1];
6108 : }
6109 :
6110 1962092420 : for ( i = 1; i < dim1; i++ )
6111 : {
6112 : {
6113 1886313620 : y[2 * ( 0 + 0 )] = x[2 * i + 2 * ( 0 + 0 ) * dim1];
6114 1886313620 : y[2 * ( 0 + 0 ) + 1] = x[2 * i + 2 * ( 0 + 0 ) * dim1 + 1];
6115 : }
6116 :
6117 30181017920 : for ( j = 1; j < dim2; j++ )
6118 : {
6119 : {
6120 28294704300 : y[2 * ( j + 0 )] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + sc * j * dim1 - Woff] ) - ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + sc * j * dim1 + 1 - Woff] );
6121 28294704300 : y[2 * ( j + 0 ) + 1] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + sc * j * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + sc * j * dim1 - Woff] );
6122 : }
6123 : }
6124 1886313620 : fft_len16( &y[0], &y[1], 2 );
6125 32067331540 : for ( j = 0; j < dim2; j++ )
6126 : {
6127 30181017920 : re[sx * i + sx * j * dim1] = y[2 * j];
6128 30181017920 : im[sx * i + sx * j * dim1] = y[2 * j + 1];
6129 : }
6130 : }
6131 75778800 : break;
6132 : }
6133 :
6134 456264 : case 20:
6135 : {
6136 : float y[2 * 20];
6137 9581544 : for ( j = 0; j < dim2; j++ )
6138 : {
6139 : {
6140 9125280 : y[2 * j] = x[2 * 0 + 2 * j * dim1];
6141 9125280 : y[2 * j + 1] = x[2 * 0 + 2 * j * dim1 + 1];
6142 : };
6143 : }
6144 456264 : fft_len20( &y[0], &y[1], 2 );
6145 9581544 : for ( j = 0; j < dim2; j++ )
6146 : {
6147 9125280 : re[sx * 0 + sx * j * dim1] = y[2 * j];
6148 9125280 : im[sx * 0 + sx * j * dim1] = y[2 * j + 1];
6149 : }
6150 :
6151 12480840 : for ( i = 1; i < dim1; i++ )
6152 : {
6153 : {
6154 12024576 : y[2 * ( 0 + 0 )] = x[2 * i + 2 * ( 0 + 0 ) * dim1];
6155 12024576 : y[2 * ( 0 + 0 ) + 1] = x[2 * i + 2 * ( 0 + 0 ) * dim1 + 1];
6156 : }
6157 : {
6158 12024576 : y[2 * ( 0 + 1 )] = ( x[2 * i + 2 * ( 0 + 1 ) * dim1] * W[len + sc * i + 0 * dim1 - Woff] ) - ( x[2 * i + 2 * ( 0 + 1 ) * dim1 + 1] * W[len + sc * i + 0 * dim1 + 1 - Woff] );
6159 12024576 : y[2 * ( 0 + 1 ) + 1] = ( x[2 * i + 2 * ( 0 + 1 ) * dim1] * W[len + sc * i + 0 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( 0 + 1 ) * dim1 + 1] * W[len + sc * i + 0 * dim1 - Woff] );
6160 : }
6161 :
6162 120245760 : for ( j = 2; j < dim2; j = j + 2 )
6163 : {
6164 : {
6165 108221184 : y[2 * ( j + 0 )] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + j * dim1 - Woff] ) - ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + j * dim1 + 1 - Woff] );
6166 108221184 : y[2 * ( j + 0 ) + 1] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + j * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + j * dim1 - Woff] );
6167 : }
6168 : {
6169 108221184 : y[2 * ( j + 1 )] = ( x[2 * i + 2 * ( j + 1 ) * dim1] * W[len + sc * i + j * dim1 - Woff] ) - ( x[2 * i + 2 * ( j + 1 ) * dim1 + 1] * W[len + sc * i + j * dim1 + 1 - Woff] );
6170 108221184 : y[2 * ( j + 1 ) + 1] = ( x[2 * i + 2 * ( j + 1 ) * dim1] * W[len + sc * i + j * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( j + 1 ) * dim1 + 1] * W[len + sc * i + j * dim1 - Woff] );
6171 : }
6172 : }
6173 12024576 : fft_len20( &y[0], &y[1], 2 );
6174 252516096 : for ( j = 0; j < dim2; j++ )
6175 : {
6176 240491520 : re[sx * i + sx * j * dim1] = y[2 * j];
6177 240491520 : im[sx * i + sx * j * dim1] = y[2 * j + 1];
6178 : }
6179 : }
6180 456264 : break;
6181 : }
6182 :
6183 13208815 : case 32:
6184 : {
6185 : float y[2 * 32];
6186 435890895 : for ( j = 0; j < dim2; j++ )
6187 : {
6188 : {
6189 422682080 : y[2 * j] = x[2 * 0 + 2 * j * dim1];
6190 422682080 : y[2 * j + 1] = x[2 * 0 + 2 * j * dim1 + 1];
6191 : };
6192 : }
6193 13208815 : fft_len32( &y[0], &y[1], 2 );
6194 435890895 : for ( j = 0; j < dim2; j++ )
6195 : {
6196 422682080 : re[sx * 0 + sx * j * dim1] = y[2 * j];
6197 422682080 : im[sx * 0 + sx * j * dim1] = y[2 * j + 1];
6198 : }
6199 :
6200 330224350 : for ( i = 1; i < dim1; i++ )
6201 : {
6202 : {
6203 317015535 : y[2 * ( 0 + 0 )] = x[2 * i + 2 * ( 0 + 0 ) * dim1];
6204 317015535 : y[2 * ( 0 + 0 ) + 1] = x[2 * i + 2 * ( 0 + 0 ) * dim1 + 1];
6205 : }
6206 : {
6207 317015535 : y[2 * ( 0 + 1 )] = ( x[2 * i + 2 * ( 0 + 1 ) * dim1] * W[len + sc * i + 0 * dim1 - Woff] ) - ( x[2 * i + 2 * ( 0 + 1 ) * dim1 + 1] * W[len + sc * i + 0 * dim1 + 1 - Woff] );
6208 317015535 : y[2 * ( 0 + 1 ) + 1] = ( x[2 * i + 2 * ( 0 + 1 ) * dim1] * W[len + sc * i + 0 * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( 0 + 1 ) * dim1 + 1] * W[len + sc * i + 0 * dim1 - Woff] );
6209 : }
6210 :
6211 5072248560 : for ( j = 2; j < dim2; j = j + 2 )
6212 : {
6213 : {
6214 4755233025 : y[2 * ( j + 0 )] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + j * dim1 - Woff] ) - ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + j * dim1 + 1 - Woff] );
6215 4755233025 : y[2 * ( j + 0 ) + 1] = ( x[2 * i + 2 * ( j + 0 ) * dim1] * W[sc * i + j * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( j + 0 ) * dim1 + 1] * W[sc * i + j * dim1 - Woff] );
6216 : }
6217 : {
6218 4755233025 : y[2 * ( j + 1 )] = ( x[2 * i + 2 * ( j + 1 ) * dim1] * W[len + sc * i + j * dim1 - Woff] ) - ( x[2 * i + 2 * ( j + 1 ) * dim1 + 1] * W[len + sc * i + j * dim1 + 1 - Woff] );
6219 4755233025 : y[2 * ( j + 1 ) + 1] = ( x[2 * i + 2 * ( j + 1 ) * dim1] * W[len + sc * i + j * dim1 + 1 - Woff] ) + ( x[2 * i + 2 * ( j + 1 ) * dim1 + 1] * W[len + sc * i + j * dim1 - Woff] );
6220 : }
6221 : }
6222 317015535 : fft_len32( &y[0], &y[1], 2 );
6223 10461512655 : for ( j = 0; j < dim2; j++ )
6224 : {
6225 10144497120 : re[sx * i + sx * j * dim1] = y[2 * j];
6226 10144497120 : im[sx * i + sx * j * dim1] = y[2 * j + 1];
6227 : }
6228 : }
6229 13208815 : break;
6230 : }
6231 : }
6232 :
6233 990907478 : return;
6234 : }
6235 :
6236 :
6237 : /*-----------------------------------------------------------------*
6238 : * fft()
6239 : *
6240 : * Complex-value FFT
6241 : *-----------------------------------------------------------------*/
6242 :
6243 990907478 : void fft(
6244 : float *re, /* i/o: real part */
6245 : float *im, /* i/o: imag part */
6246 : const int16_t length, /* i : length of fft */
6247 : const int16_t s /* i : sign */
6248 : )
6249 : {
6250 990907478 : switch ( length )
6251 : {
6252 0 : case 20:
6253 0 : fft_len20( re, im, s );
6254 0 : break;
6255 388165 : case 40:
6256 388165 : fft_lenN( re, im, FFT_RotVector_640, 640, 5, 8, s, 8, 40 );
6257 388165 : break;
6258 722145 : case 64:
6259 722145 : fft_lenN( re, im, FFT_RotVector_256, 256, 8, 8, s, 8, 64 );
6260 722145 : break;
6261 241684867 : case 80:
6262 241684867 : fft_lenN( re, im, FFT_RotVector_640, 640, 10, 8, s, 4, 40 );
6263 241684867 : break;
6264 0 : case 100:
6265 0 : fft_lenN( re, im, FFT_RotVector_400, 400, 10, 10, s, 4, 40 );
6266 0 : break;
6267 7411877 : case 120:
6268 7411877 : fft_lenN( re, im, FFT_RotVector_960, 960, 15, 8, s, 4, 60 );
6269 7411877 : break;
6270 12514975 : case 128:
6271 12514975 : fft_lenN( re, im, FFT_RotVector_256, 256, 16, 8, s, 4, 64 );
6272 12514975 : break;
6273 270211956 : case 160:
6274 270211956 : fft_lenN( re, im, FFT_RotVector_640, 640, 20, 8, s, 2, 40 );
6275 270211956 : break;
6276 431721 : case 200:
6277 431721 : fft_lenN( re, im, FFT_RotVector_400, 400, 20, 10, s, 2, 40 );
6278 431721 : break;
6279 355018300 : case 240:
6280 355018300 : fft_lenN( re, im, FFT_RotVector_960, 960, 30, 8, s, 2, 60 );
6281 355018300 : break;
6282 13079593 : case 256:
6283 13079593 : fft_lenN( re, im, FFT_RotVector_256, 256, 32, 8, s, 2, 64 );
6284 13079593 : break;
6285 31127158 : case 320:
6286 31127158 : fft_lenN( re, im, FFT_RotVector_640, 640, 20, 16, s, 2, 40 );
6287 31127158 : break;
6288 120708 : case 400:
6289 120708 : fft_lenN( re, im, FFT_RotVector_400, 400, 20, 20, s, 2, 40 );
6290 120708 : break;
6291 44651642 : case 480:
6292 44651642 : fft_lenN( re, im, FFT_RotVector_960, 960, 30, 16, s, 2, 60 );
6293 44651642 : break;
6294 335556 : case 600:
6295 335556 : fft_lenN( re, im, FFT_RotVector_600, 600, 30, 20, s, 2, 60 );
6296 335556 : break;
6297 6604010 : case 640:
6298 6604010 : fft_lenN( re, im, FFT_RotVector_640, 640, 20, 32, s, 2, 40 );
6299 6604010 : break;
6300 6604805 : case 960:
6301 6604805 : fft_lenN( re, im, FFT_RotVector_960, 960, 30, 32, s, 2, 60 );
6302 6604805 : break;
6303 0 : default:
6304 0 : assert( !"fft length is not supported!" );
6305 : }
6306 :
6307 990907478 : return;
6308 : }
6309 :
6310 :
6311 : /*-----------------------------------------------------------------*
6312 : * rfft()
6313 : *
6314 : * Real-value FFT
6315 : *-----------------------------------------------------------------*/
6316 :
6317 20866657 : void rfft(
6318 : float *x, /* i/o: values */
6319 : const float *w, /* i : window */
6320 : const int16_t length, /* i : length of fft */
6321 : const int16_t isign /* i : sign */
6322 : )
6323 : {
6324 : int16_t i, sizeOfFft2, sizeOfFft4;
6325 : float tmp, t1, t2, t3, t4, s1, s2;
6326 :
6327 20866657 : sizeOfFft2 = length >> 1;
6328 20866657 : sizeOfFft4 = length >> 2;
6329 20866657 : s1 = 1.f / (float) sizeOfFft2;
6330 20866657 : s2 = -1.f / (float) sizeOfFft2;
6331 :
6332 20866657 : switch ( isign )
6333 : {
6334 :
6335 10434274 : case -1:
6336 :
6337 10434274 : fft( x, x + 1, sizeOfFft2, 2 );
6338 :
6339 10434274 : tmp = x[0] + x[1];
6340 10434274 : x[1] = x[0] - x[1];
6341 10434274 : x[0] = tmp;
6342 :
6343 1500847106 : for ( i = 1; i <= sizeOfFft4; i++ )
6344 : {
6345 1490412832 : t1 = x[2 * i] - x[length - 2 * i];
6346 1490412832 : t2 = x[2 * i + 1] + x[length - 2 * i + 1];
6347 1490412832 : t3 = w[i] * t1 - w[i + sizeOfFft4] * t2;
6348 1490412832 : t4 = w[i + sizeOfFft4] * t1 + w[i] * t2;
6349 1490412832 : t1 = x[2 * i] + x[length - 2 * i];
6350 1490412832 : t2 = x[2 * i + 1] - x[length - 2 * i + 1];
6351 :
6352 1490412832 : x[2 * i] = ( t1 - t3 ) * 0.5f;
6353 1490412832 : x[2 * i + 1] = ( t2 - t4 ) * 0.5f;
6354 1490412832 : x[length - 2 * i] = ( t1 + t3 ) * 0.5f;
6355 1490412832 : x[length - 2 * i + 1] = -( t2 + t4 ) * 0.5f;
6356 : }
6357 :
6358 10434274 : break;
6359 :
6360 10432383 : case +1:
6361 :
6362 10432383 : tmp = ( x[0] + x[1] ) * 0.5f;
6363 10432383 : x[1] = ( x[1] - x[0] ) * 0.5f;
6364 10432383 : x[0] = tmp;
6365 :
6366 2039008919 : for ( i = 1; i <= sizeOfFft4; i++ )
6367 : {
6368 2028576536 : t1 = x[2 * i] - x[length - 2 * i];
6369 2028576536 : t2 = x[2 * i + 1] + x[length - 2 * i + 1];
6370 2028576536 : t3 = w[i] * t1 + w[i + sizeOfFft4] * t2;
6371 2028576536 : t4 = -w[i + sizeOfFft4] * t1 + w[i] * t2;
6372 2028576536 : t1 = x[2 * i] + x[length - 2 * i];
6373 2028576536 : t2 = x[2 * i + 1] - x[length - 2 * i + 1];
6374 :
6375 2028576536 : x[2 * i] = ( t1 - t3 ) * 0.5f;
6376 2028576536 : x[2 * i + 1] = ( t4 - t2 ) * 0.5f;
6377 2028576536 : x[length - 2 * i] = ( t1 + t3 ) * 0.5f;
6378 2028576536 : x[length - 2 * i + 1] = ( t2 + t4 ) * 0.5f;
6379 : }
6380 :
6381 10432383 : fft( x, x + 1, sizeOfFft2, 2 );
6382 :
6383 4067585455 : for ( i = 0; i < length; i += 2 )
6384 : {
6385 4057153072 : x[i] *= s1;
6386 4057153072 : x[i + 1] *= s2;
6387 : }
6388 :
6389 10432383 : break;
6390 : }
6391 :
6392 20866657 : return;
6393 : }
6394 :
6395 :
6396 : #define WMC_TOOL_SKIP
6397 :
6398 : #define SCALEFACTOR8 ( 4 )
6399 : #define SCALEFACTOR64 ( 7 )
6400 : #define SCALEFACTORN2 ( 3 )
6401 :
6402 : #define SHC( x ) ( (Word16) x )
6403 : #define FFTC( x ) WORD322WORD16( (Word32) x )
6404 :
6405 : #define C81_FX ( FFTC( 0x5a82799a ) ) /* FL2WORD32( 7.071067811865475e-1) */
6406 : #define C82_FX ( FFTC( 0xa57d8666 ) ) /* FL2WORD32(-7.071067811865475e-1) */
6407 :
6408 : #define cplxMpy4_8_0( re, im, a, b, c, d ) \
6409 : re = L_shr( L_sub( Mpy_32_16( a, c ), Mpy_32_16( b, d ) ), 1 ); \
6410 : im = L_shr( L_add( Mpy_32_16( a, d ), Mpy_32_16( b, c ) ), 1 );
6411 :
6412 : #define cplxMpy4_8_1( re, im, a, b ) \
6413 : re = L_shr( a, 1 ); \
6414 : im = L_shr( b, 1 );
6415 :
6416 :
6417 : /**
6418 : * \brief Twiddle factors are unscaled
6419 : */
6420 : static const Word16 RotVector_256[2 * ( 256 - 32 )] = {
6421 : SHC( 0x7fff ), SHC( 0x0000 ), SHC( 0x7ff6 ), SHC( 0xfcdc ), SHC( 0x7fd9 ), SHC( 0xf9b8 ), SHC( 0x7fa7 ), SHC( 0xf695 ),
6422 : SHC( 0x7f62 ), SHC( 0xf374 ), SHC( 0x7f0a ), SHC( 0xf055 ), SHC( 0x7e9d ), SHC( 0xed38 ), SHC( 0x7e1e ), SHC( 0xea1e ),
6423 : SHC( 0x7d8a ), SHC( 0xe707 ), SHC( 0x7ce4 ), SHC( 0xe3f4 ), SHC( 0x7c2a ), SHC( 0xe0e6 ), SHC( 0x7b5d ), SHC( 0xdddc ),
6424 : SHC( 0x7a7d ), SHC( 0xdad8 ), SHC( 0x798a ), SHC( 0xd7d9 ), SHC( 0x7885 ), SHC( 0xd4e1 ), SHC( 0x776c ), SHC( 0xd1ef ),
6425 : SHC( 0x7642 ), SHC( 0xcf04 ), SHC( 0x7505 ), SHC( 0xcc21 ), SHC( 0x73b6 ), SHC( 0xc946 ), SHC( 0x7255 ), SHC( 0xc673 ),
6426 : SHC( 0x70e3 ), SHC( 0xc3a9 ), SHC( 0x6f5f ), SHC( 0xc0e9 ), SHC( 0x6dca ), SHC( 0xbe32 ), SHC( 0x6c24 ), SHC( 0xbb85 ),
6427 : SHC( 0x6a6e ), SHC( 0xb8e3 ), SHC( 0x68a7 ), SHC( 0xb64c ), SHC( 0x66d0 ), SHC( 0xb3c0 ), SHC( 0x64e9 ), SHC( 0xb140 ),
6428 : SHC( 0x62f2 ), SHC( 0xaecc ), SHC( 0x60ec ), SHC( 0xac65 ), SHC( 0x5ed7 ), SHC( 0xaa0a ), SHC( 0x5cb4 ), SHC( 0xa7bd ),
6429 : SHC( 0x7fff ), SHC( 0x0000 ), SHC( 0x7fd9 ), SHC( 0xf9b8 ), SHC( 0x7f62 ), SHC( 0xf374 ), SHC( 0x7e9d ), SHC( 0xed38 ),
6430 : SHC( 0x7d8a ), SHC( 0xe707 ), SHC( 0x7c2a ), SHC( 0xe0e6 ), SHC( 0x7a7d ), SHC( 0xdad8 ), SHC( 0x7885 ), SHC( 0xd4e1 ),
6431 : SHC( 0x7642 ), SHC( 0xcf04 ), SHC( 0x73b6 ), SHC( 0xc946 ), SHC( 0x70e3 ), SHC( 0xc3a9 ), SHC( 0x6dca ), SHC( 0xbe32 ),
6432 : SHC( 0x6a6e ), SHC( 0xb8e3 ), SHC( 0x66d0 ), SHC( 0xb3c0 ), SHC( 0x62f2 ), SHC( 0xaecc ), SHC( 0x5ed7 ), SHC( 0xaa0a ),
6433 : SHC( 0x5a82 ), SHC( 0xa57e ), SHC( 0x55f6 ), SHC( 0xa129 ), SHC( 0x5134 ), SHC( 0x9d0e ), SHC( 0x4c40 ), SHC( 0x9930 ),
6434 : SHC( 0x471d ), SHC( 0x9592 ), SHC( 0x41ce ), SHC( 0x9236 ), SHC( 0x3c57 ), SHC( 0x8f1d ), SHC( 0x36ba ), SHC( 0x8c4a ),
6435 : SHC( 0x30fc ), SHC( 0x89be ), SHC( 0x2b1f ), SHC( 0x877b ), SHC( 0x2528 ), SHC( 0x8583 ), SHC( 0x1f1a ), SHC( 0x83d6 ),
6436 : SHC( 0x18f9 ), SHC( 0x8276 ), SHC( 0x12c8 ), SHC( 0x8163 ), SHC( 0x0c8c ), SHC( 0x809e ), SHC( 0x0648 ), SHC( 0x8027 ),
6437 : SHC( 0x7fff ), SHC( 0x0000 ), SHC( 0x7fa7 ), SHC( 0xf695 ), SHC( 0x7e9d ), SHC( 0xed38 ), SHC( 0x7ce4 ), SHC( 0xe3f4 ),
6438 : SHC( 0x7a7d ), SHC( 0xdad8 ), SHC( 0x776c ), SHC( 0xd1ef ), SHC( 0x73b6 ), SHC( 0xc946 ), SHC( 0x6f5f ), SHC( 0xc0e9 ),
6439 : SHC( 0x6a6e ), SHC( 0xb8e3 ), SHC( 0x64e9 ), SHC( 0xb140 ), SHC( 0x5ed7 ), SHC( 0xaa0a ), SHC( 0x5843 ), SHC( 0xa34c ),
6440 : SHC( 0x5134 ), SHC( 0x9d0e ), SHC( 0x49b4 ), SHC( 0x9759 ), SHC( 0x41ce ), SHC( 0x9236 ), SHC( 0x398d ), SHC( 0x8dab ),
6441 : SHC( 0x30fc ), SHC( 0x89be ), SHC( 0x2827 ), SHC( 0x8676 ), SHC( 0x1f1a ), SHC( 0x83d6 ), SHC( 0x15e2 ), SHC( 0x81e2 ),
6442 : SHC( 0x0c8c ), SHC( 0x809e ), SHC( 0x0324 ), SHC( 0x800a ), SHC( 0xf9b8 ), SHC( 0x8027 ), SHC( 0xf055 ), SHC( 0x80f6 ),
6443 : SHC( 0xe707 ), SHC( 0x8276 ), SHC( 0xdddc ), SHC( 0x84a3 ), SHC( 0xd4e1 ), SHC( 0x877b ), SHC( 0xcc21 ), SHC( 0x8afb ),
6444 : SHC( 0xc3a9 ), SHC( 0x8f1d ), SHC( 0xbb85 ), SHC( 0x93dc ), SHC( 0xb3c0 ), SHC( 0x9930 ), SHC( 0xac65 ), SHC( 0x9f14 ),
6445 : SHC( 0x7fff ), SHC( 0x0000 ), SHC( 0x7f62 ), SHC( 0xf374 ), SHC( 0x7d8a ), SHC( 0xe707 ), SHC( 0x7a7d ), SHC( 0xdad8 ),
6446 : SHC( 0x7642 ), SHC( 0xcf04 ), SHC( 0x70e3 ), SHC( 0xc3a9 ), SHC( 0x6a6e ), SHC( 0xb8e3 ), SHC( 0x62f2 ), SHC( 0xaecc ),
6447 : SHC( 0x5a82 ), SHC( 0xa57e ), SHC( 0x5134 ), SHC( 0x9d0e ), SHC( 0x471d ), SHC( 0x9592 ), SHC( 0x3c57 ), SHC( 0x8f1d ),
6448 : SHC( 0x30fc ), SHC( 0x89be ), SHC( 0x2528 ), SHC( 0x8583 ), SHC( 0x18f9 ), SHC( 0x8276 ), SHC( 0x0c8c ), SHC( 0x809e ),
6449 : SHC( 0x0000 ), SHC( 0x8000 ), SHC( 0xf374 ), SHC( 0x809e ), SHC( 0xe707 ), SHC( 0x8276 ), SHC( 0xdad8 ), SHC( 0x8583 ),
6450 : SHC( 0xcf04 ), SHC( 0x89be ), SHC( 0xc3a9 ), SHC( 0x8f1d ), SHC( 0xb8e3 ), SHC( 0x9592 ), SHC( 0xaecc ), SHC( 0x9d0e ),
6451 : SHC( 0xa57e ), SHC( 0xa57e ), SHC( 0x9d0e ), SHC( 0xaecc ), SHC( 0x9592 ), SHC( 0xb8e3 ), SHC( 0x8f1d ), SHC( 0xc3a9 ),
6452 : SHC( 0x89be ), SHC( 0xcf04 ), SHC( 0x8583 ), SHC( 0xdad8 ), SHC( 0x8276 ), SHC( 0xe707 ), SHC( 0x809e ), SHC( 0xf374 ),
6453 : SHC( 0x7fff ), SHC( 0x0000 ), SHC( 0x7f0a ), SHC( 0xf055 ), SHC( 0x7c2a ), SHC( 0xe0e6 ), SHC( 0x776c ), SHC( 0xd1ef ),
6454 : SHC( 0x70e3 ), SHC( 0xc3a9 ), SHC( 0x68a7 ), SHC( 0xb64c ), SHC( 0x5ed7 ), SHC( 0xaa0a ), SHC( 0x539b ), SHC( 0x9f14 ),
6455 : SHC( 0x471d ), SHC( 0x9592 ), SHC( 0x398d ), SHC( 0x8dab ), SHC( 0x2b1f ), SHC( 0x877b ), SHC( 0x1c0c ), SHC( 0x831c ),
6456 : SHC( 0x0c8c ), SHC( 0x809e ), SHC( 0xfcdc ), SHC( 0x800a ), SHC( 0xed38 ), SHC( 0x8163 ), SHC( 0xdddc ), SHC( 0x84a3 ),
6457 : SHC( 0xcf04 ), SHC( 0x89be ), SHC( 0xc0e9 ), SHC( 0x90a1 ), SHC( 0xb3c0 ), SHC( 0x9930 ), SHC( 0xa7bd ), SHC( 0xa34c ),
6458 : SHC( 0x9d0e ), SHC( 0xaecc ), SHC( 0x93dc ), SHC( 0xbb85 ), SHC( 0x8c4a ), SHC( 0xc946 ), SHC( 0x8676 ), SHC( 0xd7d9 ),
6459 : SHC( 0x8276 ), SHC( 0xe707 ), SHC( 0x8059 ), SHC( 0xf695 ), SHC( 0x8027 ), SHC( 0x0648 ), SHC( 0x81e2 ), SHC( 0x15e2 ),
6460 : SHC( 0x8583 ), SHC( 0x2528 ), SHC( 0x8afb ), SHC( 0x33df ), SHC( 0x9236 ), SHC( 0x41ce ), SHC( 0x9b17 ), SHC( 0x4ec0 ),
6461 : SHC( 0x7fff ), SHC( 0x0000 ), SHC( 0x7e9d ), SHC( 0xed38 ), SHC( 0x7a7d ), SHC( 0xdad8 ), SHC( 0x73b6 ), SHC( 0xc946 ),
6462 : SHC( 0x6a6e ), SHC( 0xb8e3 ), SHC( 0x5ed7 ), SHC( 0xaa0a ), SHC( 0x5134 ), SHC( 0x9d0e ), SHC( 0x41ce ), SHC( 0x9236 ),
6463 : SHC( 0x30fc ), SHC( 0x89be ), SHC( 0x1f1a ), SHC( 0x83d6 ), SHC( 0x0c8c ), SHC( 0x809e ), SHC( 0xf9b8 ), SHC( 0x8027 ),
6464 : SHC( 0xe707 ), SHC( 0x8276 ), SHC( 0xd4e1 ), SHC( 0x877b ), SHC( 0xc3a9 ), SHC( 0x8f1d ), SHC( 0xb3c0 ), SHC( 0x9930 ),
6465 : SHC( 0xa57e ), SHC( 0xa57e ), SHC( 0x9930 ), SHC( 0xb3c0 ), SHC( 0x8f1d ), SHC( 0xc3a9 ), SHC( 0x877b ), SHC( 0xd4e1 ),
6466 : SHC( 0x8276 ), SHC( 0xe707 ), SHC( 0x8027 ), SHC( 0xf9b8 ), SHC( 0x809e ), SHC( 0x0c8c ), SHC( 0x83d6 ), SHC( 0x1f1a ),
6467 : SHC( 0x89be ), SHC( 0x30fc ), SHC( 0x9236 ), SHC( 0x41ce ), SHC( 0x9d0e ), SHC( 0x5134 ), SHC( 0xaa0a ), SHC( 0x5ed7 ),
6468 : SHC( 0xb8e3 ), SHC( 0x6a6e ), SHC( 0xc946 ), SHC( 0x73b6 ), SHC( 0xdad8 ), SHC( 0x7a7d ), SHC( 0xed38 ), SHC( 0x7e9d ),
6469 : SHC( 0x7fff ), SHC( 0x0000 ), SHC( 0x7e1e ), SHC( 0xea1e ), SHC( 0x7885 ), SHC( 0xd4e1 ), SHC( 0x6f5f ), SHC( 0xc0e9 ),
6470 : SHC( 0x62f2 ), SHC( 0xaecc ), SHC( 0x539b ), SHC( 0x9f14 ), SHC( 0x41ce ), SHC( 0x9236 ), SHC( 0x2e11 ), SHC( 0x8894 ),
6471 : SHC( 0x18f9 ), SHC( 0x8276 ), SHC( 0x0324 ), SHC( 0x800a ), SHC( 0xed38 ), SHC( 0x8163 ), SHC( 0xd7d9 ), SHC( 0x8676 ),
6472 : SHC( 0xc3a9 ), SHC( 0x8f1d ), SHC( 0xb140 ), SHC( 0x9b17 ), SHC( 0xa129 ), SHC( 0xaa0a ), SHC( 0x93dc ), SHC( 0xbb85 ),
6473 : SHC( 0x89be ), SHC( 0xcf04 ), SHC( 0x831c ), SHC( 0xe3f4 ), SHC( 0x8027 ), SHC( 0xf9b8 ), SHC( 0x80f6 ), SHC( 0x0fab ),
6474 : SHC( 0x8583 ), SHC( 0x2528 ), SHC( 0x8dab ), SHC( 0x398d ), SHC( 0x9930 ), SHC( 0x4c40 ), SHC( 0xa7bd ), SHC( 0x5cb4 ),
6475 : SHC( 0xb8e3 ), SHC( 0x6a6e ), SHC( 0xcc21 ), SHC( 0x7505 ), SHC( 0xe0e6 ), SHC( 0x7c2a ), SHC( 0xf695 ), SHC( 0x7fa7 ),
6476 : SHC( 0x0c8c ), SHC( 0x7f62 ), SHC( 0x2224 ), SHC( 0x7b5d ), SHC( 0x36ba ), SHC( 0x73b6 ), SHC( 0x49b4 ), SHC( 0x68a7 )
6477 : };
6478 :
6479 : /*-----------------------------------------------------------------*
6480 : * BASOP_fft8()
6481 : *
6482 : * Function performs a complex 8-point FFT
6483 : * The FFT is performed inplace. The result of the FFT
6484 : * is scaled by SCALEFACTOR8 bits.
6485 : *
6486 : * WOPS with 32x16 bit multiplications: 108 cycles
6487 : *-----------------------------------------------------------------*/
6488 :
6489 14316512 : static void BASOP_fft8(
6490 : Word32 *re,
6491 : Word32 *im,
6492 : Word16 s )
6493 : {
6494 : Word32 x00, x01, x02, x03, x04, x05, x06, x07;
6495 : Word32 x08, x09, x10, x11, x12, x13, x14, x15;
6496 : Word32 t00, t01, t02, t03, t04, t05, t06, t07;
6497 : Word32 t08, t09, t10, t11, t12, t13, t14, t15;
6498 : Word32 s00, s01, s02, s03, s04, s05, s06, s07;
6499 : Word32 s08, s09, s10, s11, s12, s13, s14, s15;
6500 :
6501 :
6502 : /* Pre-additions */
6503 :
6504 14316512 : x00 = L_shr( re[s * 0], SCALEFACTOR8 );
6505 14316512 : x01 = L_shr( im[s * 0], SCALEFACTOR8 );
6506 14316512 : x02 = L_shr( re[s * 1], SCALEFACTOR8 );
6507 14316512 : x03 = L_shr( im[s * 1], SCALEFACTOR8 );
6508 14316512 : x04 = L_shr( re[s * 2], SCALEFACTOR8 );
6509 14316512 : x05 = L_shr( im[s * 2], SCALEFACTOR8 );
6510 14316512 : x06 = L_shr( re[s * 3], SCALEFACTOR8 );
6511 14316512 : x07 = L_shr( im[s * 3], SCALEFACTOR8 );
6512 14316512 : x08 = L_shr( re[s * 4], SCALEFACTOR8 );
6513 14316512 : x09 = L_shr( im[s * 4], SCALEFACTOR8 );
6514 14316512 : x10 = L_shr( re[s * 5], SCALEFACTOR8 );
6515 14316512 : x11 = L_shr( im[s * 5], SCALEFACTOR8 );
6516 14316512 : x12 = L_shr( re[s * 6], SCALEFACTOR8 );
6517 14316512 : x13 = L_shr( im[s * 6], SCALEFACTOR8 );
6518 14316512 : x14 = L_shr( re[s * 7], SCALEFACTOR8 );
6519 14316512 : x15 = L_shr( im[s * 7], SCALEFACTOR8 );
6520 :
6521 14316512 : t00 = L_add( x00, x08 );
6522 14316512 : t02 = L_sub( x00, x08 );
6523 14316512 : t01 = L_add( x01, x09 );
6524 14316512 : t03 = L_sub( x01, x09 );
6525 14316512 : t04 = L_add( x02, x10 );
6526 14316512 : t06 = L_sub( x02, x10 );
6527 14316512 : t05 = L_add( x03, x11 );
6528 14316512 : t07 = L_sub( x03, x11 );
6529 14316512 : t08 = L_add( x04, x12 );
6530 14316512 : t10 = L_sub( x04, x12 );
6531 14316512 : t09 = L_add( x05, x13 );
6532 14316512 : t11 = L_sub( x05, x13 );
6533 14316512 : t12 = L_add( x06, x14 );
6534 14316512 : t14 = L_sub( x06, x14 );
6535 14316512 : t13 = L_add( x07, x15 );
6536 14316512 : t15 = L_sub( x07, x15 );
6537 :
6538 : /* Pre-additions and core multiplications */
6539 :
6540 14316512 : s00 = L_add( t00, t08 );
6541 14316512 : s04 = L_sub( t00, t08 );
6542 14316512 : s01 = L_add( t01, t09 );
6543 14316512 : s05 = L_sub( t01, t09 );
6544 14316512 : s08 = L_sub( t02, t11 );
6545 14316512 : s10 = L_add( t02, t11 );
6546 14316512 : s09 = L_add( t03, t10 );
6547 14316512 : s11 = L_sub( t03, t10 );
6548 14316512 : s02 = L_add( t04, t12 );
6549 14316512 : s07 = L_sub( t04, t12 );
6550 14316512 : s03 = L_add( t05, t13 );
6551 14316512 : s06 = L_sub( t13, t05 );
6552 :
6553 14316512 : t01 = L_add( t06, t14 );
6554 14316512 : t02 = L_sub( t06, t14 );
6555 14316512 : t00 = L_add( t07, t15 );
6556 14316512 : t03 = L_sub( t07, t15 );
6557 :
6558 14316512 : s12 = Mpy_32_16( L_add( t00, t02 ), C81_FX );
6559 14316512 : s14 = Mpy_32_16( L_sub( t00, t02 ), C81_FX );
6560 14316512 : s13 = Mpy_32_16( L_sub( t03, t01 ), C81_FX );
6561 14316512 : s15 = Mpy_32_16( L_add( t01, t03 ), C82_FX );
6562 :
6563 : /* Post-additions */
6564 :
6565 14316512 : re[s * 0] = L_add( s00, s02 );
6566 14316512 : move32();
6567 14316512 : re[s * 4] = L_sub( s00, s02 );
6568 14316512 : move32();
6569 14316512 : im[s * 0] = L_add( s01, s03 );
6570 14316512 : move32();
6571 14316512 : im[s * 4] = L_sub( s01, s03 );
6572 14316512 : move32();
6573 14316512 : re[s * 2] = L_sub( s04, s06 );
6574 14316512 : move32();
6575 14316512 : re[s * 6] = L_add( s04, s06 );
6576 14316512 : move32();
6577 14316512 : im[s * 2] = L_sub( s05, s07 );
6578 14316512 : move32();
6579 14316512 : im[s * 6] = L_add( s05, s07 );
6580 14316512 : move32();
6581 14316512 : re[s * 3] = L_add( s08, s14 );
6582 14316512 : move32();
6583 14316512 : re[s * 7] = L_sub( s08, s14 );
6584 14316512 : move32();
6585 14316512 : im[s * 3] = L_add( s09, s15 );
6586 14316512 : move32();
6587 14316512 : im[s * 7] = L_sub( s09, s15 );
6588 14316512 : move32();
6589 14316512 : re[s * 1] = L_add( s10, s12 );
6590 14316512 : move32();
6591 14316512 : re[s * 5] = L_sub( s10, s12 );
6592 14316512 : move32();
6593 14316512 : im[s * 1] = L_add( s11, s13 );
6594 14316512 : move32();
6595 14316512 : im[s * 5] = L_sub( s11, s13 );
6596 14316512 : move32();
6597 :
6598 14316512 : return;
6599 : }
6600 :
6601 :
6602 : /*-----------------------------------------------------------------*
6603 : * fftN2()
6604 : *
6605 : * Combined FFT
6606 : *-----------------------------------------------------------------*/
6607 :
6608 1789564 : static void BASOP_fftN2(
6609 : Word32 *re, /* i/o: real part */
6610 : Word32 *im, /* i/o: imag part */
6611 : const Word16 *W, /* i : rotation factor */
6612 : Word16 dim1, /* i : length of fft1 */
6613 : Word16 dim2, /* i : length of fft2 */
6614 : Word16 sx, /* i : stride real and imag part */
6615 : Word16 sc, /* i : stride phase rotation coefficients */
6616 : Word32 *x, /* tmp: 32-bit workbuffer */
6617 : Word16 Woff /* i : offset for addressing the rotation vector table */
6618 : )
6619 : {
6620 : Word16 i, j;
6621 : Word32 x00, x01, x02, x03, x04, x05, x06, x07, x08, x09, x10, x11, x12, x13, x14, x15;
6622 : Word32 t00, t01, t02, t03, t04, t05, t06, t07, t08, t09, t10, t11, t12, t13, t14, t15;
6623 : Word32 s00, s01, s02, s03, s04, s05, s06, s07, s08, s09, s10, s11, s12, s13, s14, s15;
6624 :
6625 16106076 : FOR( i = 0; i < dim2; i++ )
6626 : {
6627 128848608 : FOR( j = 0; j < dim1; j++ )
6628 : {
6629 114532096 : x[2 * i * dim1 + 2 * j] = re[sx * i + sx * j * dim2];
6630 114532096 : move32();
6631 114532096 : x[2 * i * dim1 + 2 * j + 1] = im[sx * i + sx * j * dim2];
6632 114532096 : move32();
6633 : }
6634 : }
6635 :
6636 : /* dim1 == 8 */
6637 16106076 : FOR( i = 0; i < dim2; i++ )
6638 : {
6639 14316512 : BASOP_fft8( &x[i * 2 * dim1], &x[i * 2 * dim1 + 1], 2 );
6640 : }
6641 :
6642 : /* dim2 == 8 */
6643 16106076 : FOR( i = 0; i < dim1; i++ )
6644 : {
6645 14316512 : cplxMpy4_8_1( x00, x01, x[2 * i + 2 * 0 * dim1], x[2 * i + 2 * 0 * dim1 + 1] );
6646 :
6647 14316512 : IF( i == 0 )
6648 : {
6649 1789564 : cplxMpy4_8_1( x02, x03, x[2 * i + 2 * 1 * dim1], x[2 * i + 2 * 1 * dim1 + 1] );
6650 1789564 : cplxMpy4_8_1( x04, x05, x[2 * i + 2 * 2 * dim1], x[2 * i + 2 * 2 * dim1 + 1] );
6651 1789564 : cplxMpy4_8_1( x06, x07, x[2 * i + 2 * 3 * dim1], x[2 * i + 2 * 3 * dim1 + 1] );
6652 1789564 : cplxMpy4_8_1( x08, x09, x[2 * i + 2 * 4 * dim1], x[2 * i + 2 * 4 * dim1 + 1] );
6653 1789564 : cplxMpy4_8_1( x10, x11, x[2 * i + 2 * 5 * dim1], x[2 * i + 2 * 5 * dim1 + 1] );
6654 1789564 : cplxMpy4_8_1( x12, x13, x[2 * i + 2 * 6 * dim1], x[2 * i + 2 * 6 * dim1 + 1] );
6655 1789564 : cplxMpy4_8_1( x14, x15, x[2 * i + 2 * 7 * dim1], x[2 * i + 2 * 7 * dim1 + 1] );
6656 : }
6657 : ELSE
6658 : {
6659 12526948 : cplxMpy4_8_0( x02, x03, x[2 * i + 2 * 1 * dim1], x[2 * i + 2 * 1 * dim1 + 1], W[sc * i + sc * 1 * dim1 - Woff], W[sc * i + sc * 1 * dim1 + 1 - Woff] );
6660 12526948 : cplxMpy4_8_0( x04, x05, x[2 * i + 2 * 2 * dim1], x[2 * i + 2 * 2 * dim1 + 1], W[sc * i + sc * 2 * dim1 - Woff], W[sc * i + sc * 2 * dim1 + 1 - Woff] );
6661 12526948 : cplxMpy4_8_0( x06, x07, x[2 * i + 2 * 3 * dim1], x[2 * i + 2 * 3 * dim1 + 1], W[sc * i + sc * 3 * dim1 - Woff], W[sc * i + sc * 3 * dim1 + 1 - Woff] );
6662 12526948 : cplxMpy4_8_0( x08, x09, x[2 * i + 2 * 4 * dim1], x[2 * i + 2 * 4 * dim1 + 1], W[sc * i + sc * 4 * dim1 - Woff], W[sc * i + sc * 4 * dim1 + 1 - Woff] );
6663 12526948 : cplxMpy4_8_0( x10, x11, x[2 * i + 2 * 5 * dim1], x[2 * i + 2 * 5 * dim1 + 1], W[sc * i + sc * 5 * dim1 - Woff], W[sc * i + sc * 5 * dim1 + 1 - Woff] );
6664 12526948 : cplxMpy4_8_0( x12, x13, x[2 * i + 2 * 6 * dim1], x[2 * i + 2 * 6 * dim1 + 1], W[sc * i + sc * 6 * dim1 - Woff], W[sc * i + sc * 6 * dim1 + 1 - Woff] );
6665 12526948 : cplxMpy4_8_0( x14, x15, x[2 * i + 2 * 7 * dim1], x[2 * i + 2 * 7 * dim1 + 1], W[sc * i + sc * 7 * dim1 - Woff], W[sc * i + sc * 7 * dim1 + 1 - Woff] );
6666 : }
6667 14316512 : t00 = L_shr( L_add( x00, x08 ), SCALEFACTORN2 - 1 );
6668 14316512 : t02 = L_shr( L_sub( x00, x08 ), SCALEFACTORN2 - 1 );
6669 14316512 : t01 = L_shr( L_add( x01, x09 ), SCALEFACTORN2 - 1 );
6670 14316512 : t03 = L_shr( L_sub( x01, x09 ), SCALEFACTORN2 - 1 );
6671 14316512 : t04 = L_shr( L_add( x02, x10 ), SCALEFACTORN2 - 1 );
6672 14316512 : t06 = L_sub( x02, x10 );
6673 14316512 : t05 = L_shr( L_add( x03, x11 ), SCALEFACTORN2 - 1 );
6674 14316512 : t07 = L_sub( x03, x11 );
6675 14316512 : t08 = L_shr( L_add( x04, x12 ), SCALEFACTORN2 - 1 );
6676 14316512 : t10 = L_shr( L_sub( x04, x12 ), SCALEFACTORN2 - 1 );
6677 14316512 : t09 = L_shr( L_add( x05, x13 ), SCALEFACTORN2 - 1 );
6678 14316512 : t11 = L_shr( L_sub( x05, x13 ), SCALEFACTORN2 - 1 );
6679 14316512 : t12 = L_shr( L_add( x06, x14 ), SCALEFACTORN2 - 1 );
6680 14316512 : t14 = L_sub( x06, x14 );
6681 14316512 : t13 = L_shr( L_add( x07, x15 ), SCALEFACTORN2 - 1 );
6682 14316512 : t15 = L_sub( x07, x15 );
6683 :
6684 14316512 : s00 = L_add( t00, t08 );
6685 14316512 : s04 = L_sub( t00, t08 );
6686 14316512 : s01 = L_add( t01, t09 );
6687 14316512 : s05 = L_sub( t01, t09 );
6688 14316512 : s08 = L_sub( t02, t11 );
6689 14316512 : s10 = L_add( t02, t11 );
6690 14316512 : s09 = L_add( t03, t10 );
6691 14316512 : s11 = L_sub( t03, t10 );
6692 14316512 : s02 = L_add( t04, t12 );
6693 14316512 : s07 = L_sub( t04, t12 );
6694 14316512 : s03 = L_add( t05, t13 );
6695 14316512 : s06 = L_sub( t13, t05 );
6696 :
6697 14316512 : t01 = L_shr( L_add( t06, t14 ), SCALEFACTORN2 - 1 );
6698 14316512 : t02 = L_shr( L_sub( t06, t14 ), SCALEFACTORN2 - 1 );
6699 14316512 : t00 = L_shr( L_add( t07, t15 ), SCALEFACTORN2 - 1 );
6700 14316512 : t03 = L_shr( L_sub( t07, t15 ), SCALEFACTORN2 - 1 );
6701 :
6702 14316512 : s12 = Mpy_32_16( L_add( t00, t02 ), C81_FX );
6703 14316512 : s14 = Mpy_32_16( L_sub( t00, t02 ), C81_FX );
6704 14316512 : s13 = Mpy_32_16( L_sub( t03, t01 ), C81_FX );
6705 14316512 : s15 = Mpy_32_16( L_add( t01, t03 ), C82_FX );
6706 :
6707 14316512 : re[sx * i + sx * 0 * dim1] = L_add( s00, s02 );
6708 14316512 : move32();
6709 14316512 : im[sx * i + sx * 0 * dim1] = L_add( s01, s03 );
6710 14316512 : move32();
6711 14316512 : re[sx * i + sx * 1 * dim1] = L_add( s10, s12 );
6712 14316512 : move32();
6713 14316512 : im[sx * i + sx * 1 * dim1] = L_add( s11, s13 );
6714 14316512 : move32();
6715 14316512 : re[sx * i + sx * 2 * dim1] = L_sub( s04, s06 );
6716 14316512 : move32();
6717 14316512 : im[sx * i + sx * 2 * dim1] = L_sub( s05, s07 );
6718 14316512 : move32();
6719 14316512 : re[sx * i + sx * 3 * dim1] = L_add( s08, s14 );
6720 14316512 : move32();
6721 14316512 : im[sx * i + sx * 3 * dim1] = L_add( s09, s15 );
6722 14316512 : move32();
6723 14316512 : re[sx * i + sx * 4 * dim1] = L_sub( s00, s02 );
6724 14316512 : move32();
6725 14316512 : im[sx * i + sx * 4 * dim1] = L_sub( s01, s03 );
6726 14316512 : move32();
6727 14316512 : re[sx * i + sx * 5 * dim1] = L_sub( s10, s12 );
6728 14316512 : move32();
6729 14316512 : im[sx * i + sx * 5 * dim1] = L_sub( s11, s13 );
6730 14316512 : move32();
6731 14316512 : re[sx * i + sx * 6 * dim1] = L_add( s04, s06 );
6732 14316512 : move32();
6733 14316512 : im[sx * i + sx * 6 * dim1] = L_add( s05, s07 );
6734 14316512 : move32();
6735 14316512 : re[sx * i + sx * 7 * dim1] = L_sub( s08, s14 );
6736 14316512 : move32();
6737 14316512 : im[sx * i + sx * 7 * dim1] = L_sub( s09, s15 );
6738 14316512 : move32();
6739 : }
6740 :
6741 1789564 : return;
6742 : }
6743 :
6744 :
6745 : /*-----------------------------------------------------------------*
6746 : * BASOP_cfft()
6747 : *
6748 : * Complex valued FFT
6749 : *-----------------------------------------------------------------*/
6750 :
6751 1789564 : void BASOP_cfft(
6752 : Word32 *re, /* i/o: real part */
6753 : Word32 *im, /* i/o: imag part */
6754 : Word16 s, /* i : stride real and imag part */
6755 : Word16 *scale /* i : scalefactor */
6756 : )
6757 : {
6758 : Word32 x[2 * 64];
6759 :
6760 : /* FFT for len = FDNS_NPTS */
6761 1789564 : BASOP_fftN2( re, im, RotVector_256, 8, 8, s, 8, x, 64 );
6762 1789564 : s = add( *scale, SCALEFACTOR64 );
6763 :
6764 1789564 : *scale = s;
6765 1789564 : move16();
6766 :
6767 1789564 : return;
6768 : }
6769 :
6770 : #undef WMC_TOOL_SKIP
|