LCOV - code coverage report
Current view: top level - lib_lc3plus - al_fec_fl.c (source / functions) Hit Total Coverage
Test: Coverage on main -- short test vectors @ 867217ee32c8e8cd2cf5aae69e60c58e00160b49 Lines: 23 973 2.4 %
Date: 2025-12-13 06:47:12 Functions: 4 28 14.3 %

          Line data    Source code
       1             : /******************************************************************************
       2             : *                        ETSI TS 103 634 V1.6.1                               *
       3             : *              Low Complexity Communication Codec Plus (LC3plus)              *
       4             : *                                                                             *
       5             : * Copyright licence is solely granted through ETSI Intellectual Property      *
       6             : * Rights Policy, 3rd April 2019. No patent licence is granted by implication, *
       7             : * estoppel or otherwise.                                                      *
       8             : ******************************************************************************/
       9             : 
      10             : #include "options.h"
      11             : #include "wmc_auto.h"
      12             : #include "stdint.h"
      13             : #include <assert.h>
      14             : #include <stdlib.h>
      15             : #include <string.h>
      16             : 
      17             : #include "functions.h"
      18             : 
      19             : 
      20             : /* channel coder specific constants and macros */
      21             : #define RS16_CW_LEN_MAX 15
      22             : 
      23             : #define FEC_N_MODES 4
      24             : #define FEC_N_SYNDROMES_MAX 6
      25             : #define FEC_N_ERR_POS_MAX 3
      26             : #define FEC_N_ELP_COEFF_MAX 4
      27             : #define FEC_N_ERR_SYMB_MAX 3
      28             : #define FEC_N_MODE_DETECTION_CW 6
      29             : 
      30             : #define SYNDROME_IDX(mode_index, cw_index) (((mode_index)*FEC_N_MODE_DETECTION_CW + (cw_index)) * FEC_N_SYNDROMES_MAX)
      31             : #define ELP_IDX(mode_index, cw_index) (((mode_index)*FEC_N_MODE_DETECTION_CW + (cw_index)) * FEC_N_ELP_COEFF_MAX)
      32             : #define ERR_POS_IDX(mode_index, cw_index) (((mode_index)*FEC_N_MODE_DETECTION_CW + (cw_index)) * FEC_N_ERR_POS_MAX)
      33             : #define ERR_SYMB_IDX(mode_index, cw_index) (((mode_index)*FEC_N_MODE_DETECTION_CW + (cw_index)) * FEC_N_ERR_SYMB_MAX)
      34             : #define DEG_ELP_IDX(mode_index, cw_index) ((mode_index)*FEC_N_MODE_DETECTION_CW + (cw_index))
      35             : 
      36             : #define FEC_TOTAL_SYNDROME_SIZE (FEC_N_SYNDROMES_MAX * FEC_N_MODES * FEC_N_MODE_DETECTION_CW)
      37             : #define FEC_TOTAL_ELP_SIZE (FEC_N_ELP_COEFF_MAX * FEC_N_MODES * FEC_N_MODE_DETECTION_CW)
      38             : #define FEC_TOTAL_ERR_POS_SIZE (FEC_N_ERR_POS_MAX * FEC_N_MODES * FEC_N_MODE_DETECTION_CW)
      39             : #define FEC_TOTAL_ERROR_SIZE (FEC_N_ERR_SYMB_MAX * FEC_N_MODES * FEC_N_MODE_DETECTION_CW)
      40             : #define FEC_TOTAL_DEG_ELP_SIZE (FEC_N_MODES * FEC_N_MODE_DETECTION_CW)
      41             : 
      42             : #define ERROR_REPORT_BEC_MASK   ((0x0FFF)>>1)
      43             : #define ERROR_REPORT_EP1_OK     ((0x1000)>>1)
      44             : #define ERROR_REPORT_EP2_OK     ((0x2000)>>1)
      45             : #define ERROR_REPORT_EP3_OK     ((0x4000)>>1)
      46             : #define ERROR_REPORT_EP4_OK     ((0x8000)>>1)                    
      47             : #define ERROR_REPORT_ALL_OK (ERROR_REPORT_EP1_OK | ERROR_REPORT_EP2_OK | ERROR_REPORT_EP3_OK | ERROR_REPORT_EP4_OK)
      48             : 
      49             : /* debugging switches */
      50             : 
      51             : /* constants concerning mode detection */
      52             : #define EP_RISK_THRESH_NS_M 21990
      53             : #define EP_RISK_THRESH_NS_E -23
      54             : #define EP_RISK_THRESH_OS_M 25166
      55             : #define EP_RISK_THRESH_OS_E -10
      56             : 
      57             : #define SIMPLE_FLOAT_1_MANTISSA 16384
      58             : 
      59             : #define FEC_STATIC static
      60             : 
      61             : /* DISCLAIMER: Strict instrumentation of GF16 arithmetic would have to take into account
      62             :  * the initial conversion of the arguments from LC3_UINT8 to LC3_INT16 (one move16() per argument).
      63             :  * Behind this is the assumption that one would store GF16 elements in LC3_INT16 for strict BASOP
      64             :  * implementation.
      65             :  */
      66             : #define GF16_MUL(a, b) gf16_mult_table[(a) | (b << 4)]
      67             : #define GF16_MUL0(a, b) gf16_mult_table[(a) | (b)]
      68             : #define GF16_ADD(a, b) ((a) ^ (b))
      69             : 
      70             : /* tables for finite field arithmetic */
      71             : /* tables for arithmetic in GF(16)  *
      72             :  * generator polynomial: 19
      73             :  * unit group generator (g): 2
      74             :  */
      75             : 
      76             : static const LC3_UINT8 gf16_mult_table[256] = {
      77             :     /* gf16_mult_table[a | (b << 4)] contains the product of a and b in GF(16) */
      78             :     0,  0,  0,  0,  0,  0,  0,  0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, 12,
      79             :     13, 14, 15, 0,  2,  4,  6,  8, 10, 12, 14, 3,  1,  7,  5,  11, 9,  15, 13, 0,  3,  6,  5,  12, 15, 10, 9,  11, 8,
      80             :     13, 14, 7,  4,  1,  2,  0,  4, 8,  12, 3,  7,  11, 15, 6,  2,  14, 10, 5,  1,  13, 9,  0,  5,  10, 15, 7,  2,  13,
      81             :     8,  14, 11, 4,  1,  9,  12, 3, 6,  0,  6,  12, 10, 11, 13, 7,  1,  5,  3,  9,  15, 14, 8,  2,  4,  0,  7,  14, 9,
      82             :     15, 8,  1,  6,  13, 10, 3,  4, 2,  5,  12, 11, 0,  8,  3,  11, 6,  14, 5,  13, 12, 4,  15, 7,  10, 2,  9,  1,  0,
      83             :     9,  1,  8,  2,  11, 3,  10, 4, 13, 5,  12, 6,  15, 7,  14, 0,  10, 7,  13, 14, 4,  9,  3,  15, 5,  8,  2,  1,  11,
      84             :     6,  12, 0,  11, 5,  14, 10, 1, 15, 4,  7,  12, 2,  9,  13, 6,  8,  3,  0,  12, 11, 7,  5,  9,  14, 2,  10, 6,  1,
      85             :     13, 15, 3,  4,  8,  0,  13, 9, 4,  1,  12, 8,  5,  2,  15, 11, 6,  3,  14, 10, 7,  0,  14, 15, 1,  13, 3,  2,  12,
      86             :     9,  7,  6,  8,  4,  10, 11, 5, 0,  15, 13, 2,  9,  6,  4,  11, 1,  14, 12, 3,  8,  7,  5,  10,
      87             : };
      88             : 
      89             : static const LC3_UINT8 rs16_elp_deg2_table[256] = {
      90             :     /* If the polynomial x^2 + ax + b has distinct non-zero roots z1 and z2 in GF(16),  *
      91             :      * then table entry a + 16*b contains log_g(z1) | log_g(z2) << 4, and otherwise it  *
      92             :      * contains 0.                                                                      */
      93             :     0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   165, 0,   0,   0,   0,
      94             :     105, 195, 0,   210, 0,   225, 0,   180, 120, 0,   0,   121, 0,   16,  0,   211, 0,   0,   181, 0,   0,   106,
      95             :     196, 226, 0,   0,   0,   214, 64,  0,   199, 0,   0,   0,   0,   0,   49,  184, 0,   154, 0,   229, 0,   227,
      96             :     182, 0,   0,   32,  0,   0,   0,   197, 0,   0,   122, 0,   212, 152, 0,   203, 0,   158, 128, 0,   0,   0,
      97             :     98,  113, 218, 0,   0,   0,   53,  0,   0,   65,  0,   0,   185, 110, 215, 80,  0,   0,   200, 0,   50,  0,
      98             :     0,   0,   0,   130, 205, 115, 0,   0,   160, 190, 145, 0,   0,   0,   0,   0,   0,   100, 0,   0,   168, 198,
      99             :     0,   183, 33,  0,   0,   48,  228, 213, 0,   0,   0,   0,   0,   0,   0,   0,   164, 0,   179, 0,   224, 104,
     100             :     0,   194, 149, 0,   0,   209, 0,   0,   0,   189, 99,  84,  0,   129, 0,   0,   0,   144, 0,   0,   234, 114,
     101             :     0,   0,   82,  0,   0,   0,   0,   217, 202, 0,   112, 52,  232, 0,   97,  0,   0,   0,   126, 0,   81,  201,
     102             :     0,   36,  216, 186, 0,   0,   0,   96,  0,   0,   0,   0,   0,   88,  0,   0,   0,   103, 0,   148, 178, 0,
     103             :     208, 193, 0,   58,  0,   0,   0,   0,   0,   161, 206, 0,   116, 0,   101, 0,   0,   56,  146, 176, 0,   0,
     104             :     147, 162, 222, 0,   132, 0,   0,   0,   0,   0,   177, 117, 192, 0,
     105             : };
     106             : 
     107             : static const LC3_UINT16 rs16_elp_deg3_table[256] = {
     108             :     /* If the polynomial x^3 + ax + b has distinct roots z1, z2 and z3 in GF(16),                       *
     109             :      * then table entry a + 16*b contains z1) | z2 << 4 | z3 << 8, and otherwise it                     *
     110             :      * contains 0.                                                                                      */
     111             :     0, 0, 0,    0,    0,    0,    0,    0,    0,    0,    0, 0,    0, 0,    0,    0,   1889, 0, 0,    0,    0,    0,
     112             :     0, 0, 0,    0,    0,    0,    0,    0,    0,    0,    0, 0,    0, 2977, 0,    0,   0,    0, 0,    3990, 1859, 0,
     113             :     0, 0, 0,    0,    0,    0,    3521, 0,    0,    0,    0, 0,    0, 0,    0,    0,   1874, 0, 3718, 0,    0,    0,
     114             :     0, 0, 0,    2433, 0,    0,    1619, 0,    0,    0,    0, 3495, 0, 0,    0,    0,   0,    0, 4065, 0,    0,    0,
     115             :     0, 0, 0,    3255, 0,    0,    0,    1602, 0,    3735, 0, 0,    0, 0,    3238, 801, 0,    0, 0,    0,    0,    0,
     116             :     0, 0, 0,    3510, 0,    0,    0,    0,    1345, 3975, 0, 0,    0, 0,    0,    0,   0,    0, 3778, 0,    0,    0,
     117             :     0, 0, 0,    0,    0,    0,    0,    0,    0,    0,    0, 0,    0, 0,    2947, 0,   0,    0, 0,    0,    0,    0,
     118             :     0, 0, 3476, 0,    4005, 0,    3461, 0,    0,    0,    0, 0,    0, 0,    0,    0,   0,    0, 0,    0,    0,    0,
     119             :     0, 0, 0,    0,    0,    3748, 0,    0,    2962, 0,    0, 0,    0, 4035, 0,    0,   4020, 0, 0,    0,    0,    0,
     120             :     0, 0, 0,    0,    0,    0,    0,    0,    0,    0,    0, 0,    0, 0,    3221, 0,   0,    0, 0,    0,    0,    2690,
     121             :     0, 0, 0,    3795, 0,    0,    0,    4050, 0,    0,    0, 0,    0, 3204, 3765, 0,   0,    0, 0,    0,    2707, 0,
     122             :     0, 0, 0,    0,    0,    0,    0,    0,    0,    0,    0, 0,    0, 0,
     123             : };
     124             : 
     125             : static const LC3_UINT8 gf16_g_pow[16] = {1, 2, 4, 8, 3, 6, 12, 11, 5, 10, 7, 14, 15, 13, 9, 1};
     126             : /* g_pow[i] contains g^i*/
     127             : 
     128             : static const LC3_UINT8 gf16_log_g[16] = {255, 0, 1, 4, 2, 8, 5, 10, 3, 14, 9, 7, 6, 13, 11, 12};
     129             : /* log_g[n] contains contains the value i such that g^i = n for n=1, 2, ..., 15, log_g[0] is set to 255 */
     130             : 
     131             : static const LC3_UINT8 gf16_inv_table[16] = {255, 1, 9, 14, 13, 11, 7, 6, 15, 2, 12, 5, 10, 4, 3, 8};
     132             : /* gf16_inv_table[n] contains the multiplicative inverse of n in GF(16) (1/0 is set to 255)*/
     133             : 
     134             : /* RS16 generating polynomials (from lowest to highest coefficient without leading 1)*/
     135             : 
     136             : static const LC3_UINT8 rs16_gp_d3[] = {8, 6};
     137             : static const LC3_UINT8 rs16_gp_d5[] = {7, 8, 12, 13};
     138             : static const LC3_UINT8 rs16_gp_d7[] = {12, 10, 12, 3, 9, 7};
     139             : 
     140             : /* FEC mode signaling polynomials */
     141             : 
     142             : #define EP_SIG_POLY_DEG 12
     143             : 
     144             : static const LC3_UINT8 sig_polys[4][15] = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
     145             :                                         {7, 15, 5, 6, 14, 9, 1, 3, 12, 10, 13, 3, 2, 0, 0},
     146             :                                         {7, 11, 14, 1, 2, 3, 12, 11, 6, 15, 7, 6, 12, 0, 0},
     147             :                                         {6, 15, 12, 2, 9, 15, 2, 8, 12, 3, 10, 5, 4, 0, 0}};
     148             : 
     149             : static const LC3_UINT8 sig_poly_syndr[4][6] = {
     150             :     {0, 0, 0, 0, 0, 0}, {0, 4, 5, 11, 5, 8}, {0, 5, 9, 0, 1, 7}, {0, 12, 5, 12, 9, 8}};
     151             : 
     152             : /* bit count table for error report (0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111) */
     153             : 
     154             : static const LC3_UINT8 rs16_bit_count_table[] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
     155             : 
     156             : /* List of RS16 generators by Hamming distance */
     157             : 
     158             : static const LC3_UINT8 *const rs16_gp_by_hd[8] = {NULL, NULL, NULL, rs16_gp_d3, NULL, rs16_gp_d5, NULL, rs16_gp_d7};
     159             : 
     160             : /* fec config data */
     161             : 
     162             : static const LC3_UINT8 hamming_distance_by_mode0[] = {1, 3, 3, 5, 7};
     163             : static const LC3_UINT8 hamming_distance_by_mode1[] = {1, 1, 3, 5, 7};
     164             : 
     165             : static const LC3_UINT8 crc1_bytes_by_mode0[] = {0, 3, 2, 2, 2};
     166             : static const LC3_UINT8 crc1_bytes_by_mode1[] = {0, 3, 3, 3, 3};
     167             : static const LC3_UINT8 crc2_bytes_by_mode[]  = {0, 0, 2, 2, 2};
     168             : 
     169             : /* fec mode risk table */
     170             : typedef struct
     171             : {
     172             :     LC3_UINT32 mantissa;
     173             :     LC3_INT16  exponent;
     174             : } simple_float;
     175             : 
     176             : static const simple_float risk_table_f[4][4] = {{{16384, 0}, {16384, 0}, {16384, 0}, {16384, 0}},
     177             :                                                 {{16384, -8}, {26880, -1}, {16384, 0}, {16384, 0}},
     178             :                                                 {{16384, -16}, {26880, -9}, {20475, -2}, {16384, 0}},
     179             :                                                 {{16384, -24}, {26880, -17}, {20475, -10}, {19195, -4}}};
     180             : /* bit error limits for slot size 40 */
     181             : static LC3_INT16 const low_br_max_bit_errors_by_mode[] = {0, 0, 3, 9, 18};
     182             : 
     183             : /*
     184             : corresponding float values:
     185             :     {1.f, 1.f, 1.f, 1.f},
     186             :     {0.00390625f, 0.820312f, 1.f, 1.f},
     187             :     {1.52588e-05f, 0.00320435f, 0.312424f, 1.f},
     188             :     {5.96046e-08f, 1.2517e-05f, 0.00122041f, 0.0732243f}
     189             : */
     190             : 
     191             : /* internal encoder routines */
     192             : 
     193             : FEC_STATIC void fec_interleave_pack(LC3_UINT8 *out, LC3_UINT8 *in, LC3_INT16 n_nibbles, LC3_INT16 n_codewords);
     194             : 
     195             : FEC_STATIC void rs16_enc(LC3_UINT8 *iobuf, LC3_INT16 codeword_length, LC3_INT16 hamming_distance, LC3_INT16 fec_mode,
     196             :                          LC3_INT16 signal_mode);
     197             : 
     198             : /* internal decoder routines */
     199             : 
     200             : FEC_STATIC void fec_deinterleave_unpack(LC3_UINT8 *out, LC3_UINT8 *in, LC3_INT16 n_nibbles, LC3_INT16 n_codewords);
     201             : 
     202             : FEC_STATIC LC3_INT16 fec_data_preproc(LC3_INT16 mode, LC3_INT16 epmr, LC3_UINT8 *iobuf, LC3_UINT8 *cw_buf, LC3_INT16 data_bytes,
     203             :                                    LC3_INT16 slot_bytes, LC3_INT16 pc_split);
     204             : 
     205             : FEC_STATIC void fec_data_postproc(LC3_INT16 mode, LC3PLUS_EpModeRequest *epmr, LC3_UINT8 *iobuf, LC3_INT16 data_bytes, LC3_UINT8 *cw_buf,
     206             :                                   LC3_INT16 slot_bytes, LC3_INT16 pc_split, LC3_INT32 *bfi);
     207             : 
     208             : FEC_STATIC LC3_INT32 rs16_detect_and_correct(LC3_UINT8 *iobuf, LC3_INT32 n_symb, LC3_INT32 n_codewords, LC3PLUS_EpModeRequest *epmr, LC3_INT16 *error_report,
     209             :                                        LC3_INT32 *bfi, LC3_UINT8 *array_of_trust, LC3_INT32 ccc_flag_flag, LC3_INT16 *n_pccw);
     210             : 
     211             : FEC_STATIC void rs16_calculate_six_syndromes(LC3_UINT8 *syndromes, LC3_UINT8 *cw, LC3_INT32 cw_poly_deg);
     212             : 
     213             : FEC_STATIC void rs16_calculate_four_syndromes(LC3_UINT8 *syndromes, LC3_UINT8 *cw, LC3_INT32 cw_poly_deg);
     214             : 
     215             : FEC_STATIC void rs16_calculate_two_syndromes(LC3_UINT8 *syndromes, LC3_UINT8 *cw, LC3_INT32 cw_poly_deg);
     216             : 
     217             : FEC_STATIC LC3_INT8 rs16_calculate_elp(LC3_UINT8 *elp, LC3_UINT8 *syndromes, LC3_INT16 hamming_distance);
     218             : 
     219             : FEC_STATIC LC3_INT16 rs16_factorize_elp(LC3_UINT8 *error_locations, LC3_UINT8 *elp, LC3_INT16 deg_elp, LC3_INT16 max_pos);
     220             : 
     221             : FEC_STATIC void rs16_calculate_errors(LC3_UINT8 *errors, LC3_UINT8 *err_pos, LC3_UINT8 *syndromes, LC3_INT8 deg_elp, LC3_INT8 t);
     222             : 
     223             : /* auxiliary routines */
     224             : 
     225             : FEC_STATIC LC3_INT16 crc1(LC3_UINT8 *data, LC3_INT16 data_size, LC3_INT16 epmr, LC3_UINT8 *hash_val, LC3_INT16 hash_size, LC3_INT16 check);
     226             : 
     227             : FEC_STATIC LC3PLUS_EpModeRequest fec_estimate_epmr_from_cw0(LC3_UINT8 *cw0, LC3_INT8 *t, LC3_UINT8 *syndromes, LC3_UINT8 *elp, LC3_INT8 *deg_elp,
     228             :                                             LC3_UINT8 *err_pos, LC3_UINT8 *err_symb, LC3_INT16 n_codewords, LC3_INT16 n_symb);
     229             : 
     230             : FEC_STATIC void dw0_bitswap(LC3_UINT8 *dw0, LC3_INT16 mode, LC3_INT16 slot_bytes);
     231             : 
     232             : FEC_STATIC LC3PLUS_EpModeRequest cw0_get_epmr(LC3_UINT8 *cw0, LC3_INT16 epmr_position);
     233             : 
     234             : FEC_STATIC LC3PLUS_EpModeRequest dw0_get_epmr(LC3_UINT8 *dw0, LC3_INT16 mode, LC3_INT16 slot_size);
     235             : 
     236             : FEC_STATIC LC3_INT16 crc2(LC3_UINT8 *data, LC3_INT16 data_size, LC3_UINT8 *hash_val, LC3_INT16 hash_size, LC3_INT16 check);
     237             : 
     238             : FEC_STATIC simple_float simple_float_mul(simple_float op1, simple_float op2);
     239             : 
     240             : FEC_STATIC LC3_INT16 simple_float_cmp(simple_float op1, simple_float op2);
     241             : 
     242             : FEC_STATIC LC3_INT16 get_total_crc_size(LC3_INT16 slot_bytes, LC3_INT16 fec_mode, LC3_INT16 pc_split);
     243             : 
     244             : FEC_STATIC LC3_INT16 get_n_codewords(LC3_INT16 slot_bytes);
     245             : 
     246             : FEC_STATIC LC3_INT16 get_codeword_length(LC3_INT16 n_codewords, LC3_INT16 slot_nibbles, LC3_INT16 codeword_index);
     247             : 
     248             : 
     249             : 
     250      333838 : LC3_INT16 fec_get_n_pccw(LC3_INT16 slot_bytes, LC3_INT16 fec_mode, LC3_INT16 ccc_flag)
     251             : {
     252             :     LC3_INT16 n_pccw;
     253             : 
     254      333838 :     if (fec_mode ==  3)
     255             :     {
     256           0 :         n_pccw = (LC3_INT16) (0.080447761194030 * slot_bytes - 1.791044776119394 + 0.5);
     257             :     }
     258      333838 :     else if (fec_mode == 4)
     259             :     {
     260           0 :         n_pccw = (LC3_INT16) (0.066492537313433 * slot_bytes - 1.970149253731338 + 0.5);
     261             :     }
     262             :     else
     263             :     {
     264      333838 :         n_pccw = 0;
     265             :     }
     266             : 
     267      333838 :     if (ccc_flag == 1 || slot_bytes < 80)
     268             :     {
     269       45685 :         n_pccw = 0;
     270             :     }
     271             : 
     272      333838 :     return n_pccw;
     273             : }
     274             : 
     275           0 : FEC_STATIC LC3_INT16 get_total_crc_size(LC3_INT16 slot_bytes, LC3_INT16 fec_mode, LC3_INT16 pc_split)
     276             : {
     277             :         LC3_INT16 n_crc;
     278             : 
     279           0 :     n_crc = crc1_bytes_by_mode1[fec_mode];
     280           0 :     if (slot_bytes == 40)
     281             :     {
     282           0 :         n_crc = crc1_bytes_by_mode0[fec_mode];
     283             :     }
     284             : 
     285           0 :     if (pc_split > 0)
     286             :     {
     287           0 :         n_crc = n_crc + crc2_bytes_by_mode[fec_mode];
     288             :     }
     289             : 
     290             :      
     291             :     
     292           0 :     return n_crc;
     293             : }
     294             : 
     295      667676 : FEC_STATIC LC3_INT16 get_n_codewords(LC3_INT16 slot_bytes)
     296             : {
     297      667676 :     return (2*slot_bytes + 14)/15;
     298             : }
     299             : 
     300           0 : FEC_STATIC LC3_INT16 get_codeword_length(LC3_INT16 n_codewords, LC3_INT16 slot_nibbles, LC3_INT16 codeword_index)
     301             : {
     302           0 :     return (slot_nibbles - codeword_index - 1) / n_codewords + 1;
     303             : }
     304             : 
     305             : /* Encoder */
     306             : 
     307      333838 : LC3_INT16 fec_get_data_size(LC3_INT16 fec_mode, LC3_INT16 ccc_flag, LC3_INT16 slot_bytes)
     308             : /* not time critical */
     309             : {
     310             :         LC3_INT16 n_codewords, payload_size;
     311             : 
     312      333838 :     n_codewords = get_n_codewords(slot_bytes);
     313             : 
     314      333838 :     assert(n_codewords == (2 * slot_bytes + RS16_CW_LEN_MAX - 1) / RS16_CW_LEN_MAX);
     315      333838 :     payload_size = slot_bytes;
     316             : 
     317      333838 :     if (fec_mode > 0)
     318             :     {
     319           0 :         if (fec_mode == 1)
     320             :         {
     321           0 :             payload_size --;
     322             :         }
     323             :         else
     324             :         {
     325           0 :             payload_size -= (fec_mode - 1) * n_codewords;
     326             :         }
     327           0 :         if (slot_bytes == 40)
     328             :         {
     329           0 :             payload_size -= crc1_bytes_by_mode0[fec_mode];
     330             :         }
     331             :         else
     332             :         {
     333           0 :             payload_size -= crc1_bytes_by_mode1[fec_mode];
     334             :         }
     335             : 
     336           0 :         if (ccc_flag == 0 && fec_mode > 2 && slot_bytes >= 80)
     337             :         {
     338           0 :             payload_size -= crc2_bytes_by_mode[fec_mode];
     339             :         }
     340             :     }
     341             :     
     342             :      
     343             : 
     344      333838 :     return payload_size;
     345             : }
     346             : 
     347      333838 : LC3_INT16 fec_get_n_pc(LC3_INT16 fec_mode, LC3_INT16 n_pccw, LC3_INT16 slot_bytes)
     348             : /* not time critical */
     349             : {
     350             :         LC3_INT16 n_codewords, pc_split;
     351             :         LC3_INT32    i;
     352             : 
     353      333838 :     n_codewords = get_n_codewords(slot_bytes);
     354             : 
     355      333838 :     assert(n_codewords == (2 * slot_bytes + RS16_CW_LEN_MAX - 1) / RS16_CW_LEN_MAX);
     356             : 
     357      333838 :     pc_split = - 2*n_pccw*(fec_mode - 1);
     358             : 
     359      333838 :     if (fec_mode == 1 || slot_bytes < 80)
     360             :     {
     361       45685 :         pc_split = 0;
     362             :     }
     363             :     else
     364             :     {
     365      288153 :         for (i = 0; i < n_pccw; i++)
     366             :         {
     367           0 :             pc_split += (2 * slot_bytes + i) / n_codewords;
     368             :         }
     369             :     }
     370             :     
     371             :      
     372             : 
     373      333838 :     return pc_split;
     374             : }
     375             : 
     376             : /* functions for EPMR handling */
     377           0 : FEC_STATIC void dw0_bitswap(LC3_UINT8 *dw0, LC3_INT16 mode, LC3_INT16 slot_bytes)
     378             : /* swap epmr bits with bits that will be positioned at 30 and 32 in code word 0 */
     379             : {
     380             :         LC3_UINT8 tmp;
     381             :         LC3_INT32    ind0, ind1, position;
     382             : 
     383           0 :     position = get_codeword_length(get_n_codewords(slot_bytes), 2*slot_bytes, 0) - 1;
     384             : 
     385           0 :     if (slot_bytes == 40)
     386             :     {
     387           0 :         ind0 = 2*crc1_bytes_by_mode0[mode] - 1;
     388             :     }
     389             :     else
     390             :     {
     391           0 :         ind0 = 2*crc1_bytes_by_mode1[mode] - 1;
     392             :     }
     393             : 
     394           0 :     ind1 = position - hamming_distance_by_mode0[mode] + 1;
     395             : 
     396             :     /* swap bits 2 and 3 of dw0[ind0] with bits 0 and 1 of dw0[ind1] */
     397           0 :     tmp = (dw0[ind0] >> 2) & 3;
     398           0 :     dw0[ind0] = dw0[ind0] & 3;
     399           0 :     dw0[ind0] = dw0[ind0] | ((dw0[ind1] & 3) << 2);
     400           0 :     dw0[ind1] = dw0[ind1] & 12;
     401           0 :     dw0[ind1] = dw0[ind1] | tmp;
     402             : 
     403             :      
     404           0 : }
     405             : 
     406           0 : FEC_STATIC LC3PLUS_EpModeRequest cw0_get_epmr(LC3_UINT8 *cw0, LC3_INT16 position)
     407             : {
     408           0 :     return (LC3PLUS_EpModeRequest)(cw0[position] & 3);
     409             : }
     410             : 
     411           0 : FEC_STATIC LC3PLUS_EpModeRequest dw0_get_epmr(LC3_UINT8 *dw0, LC3_INT16 mode, LC3_INT16 slot_size)
     412             : {
     413             :         LC3_INT32    ncrc1;
     414             :         LC3PLUS_EpModeRequest epmr;
     415             : 
     416           0 :     ncrc1 = crc1_bytes_by_mode1[mode];
     417             : 
     418           0 :     if (slot_size == 40)
     419             :     {
     420           0 :         ncrc1 = crc1_bytes_by_mode0[mode];
     421             :     }
     422             : 
     423           0 :     epmr = (LC3PLUS_EpModeRequest)(dw0[2 * ncrc1 - 1] >> 2);
     424             :     
     425             :      
     426             : 
     427           0 :     return epmr;
     428             : }
     429             : 
     430             : 
     431           0 : FEC_STATIC LC3_INT16 fec_data_preproc(LC3_INT16 mode, LC3_INT16 epmr, LC3_UINT8 *iobuf, LC3_UINT8 *cw_buf, LC3_INT16 data_bytes,
     432             :                                    LC3_INT16 slot_bytes, LC3_INT16 pc_split)
     433             : {
     434             :         LC3_INT16 data_offset, n_crc1, n_crc2;
     435             :         LC3_INT32    i, j;
     436             : 
     437           0 :     data_offset = 2*(slot_bytes - data_bytes);
     438             : 
     439             :     /* extract and reverse data*/
     440           0 :     j = 2*slot_bytes - 1;
     441           0 :     for (i = 0; i < data_bytes; i++)
     442             :     {
     443           0 :         cw_buf[j--] = iobuf[i] & 15;
     444           0 :         cw_buf[j--] = iobuf[i] >> 4;
     445             :     }
     446             : 
     447             :     /* add crc hashes */
     448           0 :     if (slot_bytes == 40)
     449             :     {
     450           0 :         n_crc1 = crc1_bytes_by_mode0[mode];
     451             :     }
     452             :     else
     453             :     {
     454           0 :         n_crc1 = crc1_bytes_by_mode1[mode];
     455             :     }
     456             : 
     457           0 :     if (pc_split > 0 && mode > 1)
     458             :     {
     459           0 :         n_crc2 = crc2_bytes_by_mode[mode];
     460             :     }
     461             :     else
     462             :     {
     463           0 :         n_crc2 = 0;
     464             :     }
     465             : 
     466           0 :     if (n_crc2)
     467             :     {
     468           0 :         crc2(cw_buf + data_offset + 2 * data_bytes - pc_split, pc_split, cw_buf + data_offset - 2 * n_crc2, n_crc2, 0);
     469             :     }
     470           0 :     if (n_crc1)
     471             :     {
     472           0 :         crc1(cw_buf + data_offset, 2 * data_bytes - pc_split, epmr, cw_buf + data_offset - 2 * (n_crc1 + n_crc2), n_crc1,
     473             :              0);
     474             :     }
     475             : 
     476           0 :     data_offset -= 2* (n_crc1 + n_crc2);
     477             : 
     478           0 :     dw0_bitswap(cw_buf + data_offset, mode, slot_bytes);
     479             :     
     480             :      
     481             : 
     482           0 :     return data_offset;
     483             : }
     484             : 
     485           0 : void fec_encoder(LC3_INT16 mode, LC3_INT16 epmr, LC3_UINT8 *iobuf, LC3_INT16 data_bytes, LC3_INT16 slot_bytes, LC3_INT16 n_pccw)
     486             : {
     487             :     LC3_INT16  n_codewords, codeword_length, hd, redundancy_nibbles, cw_offset, dw_offset, pc_split;
     488             :     LC3_INT32     i, j;
     489             :     LC3_UINT8 cw_buf[2 * FEC_SLOT_BYTES_MAX];
     490             : 
     491           0 :     cw_offset = 0;
     492           0 :     dw_offset = 0;
     493           0 :     pc_split  = 0;
     494             : 
     495           0 :     n_codewords = get_n_codewords(slot_bytes);
     496             : 
     497             :     /* some sanity checks */
     498             :     {
     499           0 :         LC3_INT32 tmp = slot_bytes;
     500             :         
     501           0 :         assert((slot_bytes >= FEC_SLOT_BYTES_MIN && slot_bytes <= FEC_SLOT_BYTES_MAX) &&
     502             :                "fec_encoder: slot_bytes out of range");
     503           0 :         tmp -= mode == 1 ? 1 : n_codewords * (mode - 1);                                 /* reed solomon redundancy */
     504           0 :         tmp -= slot_bytes == 40 ? crc1_bytes_by_mode0[mode] : crc1_bytes_by_mode1[mode]; /* crc1 */
     505           0 :         tmp -= (n_pccw > 0) && (mode > 1) ? crc2_bytes_by_mode[mode] : 0;                /* crc2 */
     506           0 :         assert(data_bytes == tmp && "fec_encoder: inconsistent payload size");
     507           0 :         assert(n_codewords - n_pccw >= 6);
     508             :         (void)tmp;
     509             :     }
     510             : 
     511             :     /* data preproc: re-ordering and hash extension */
     512           0 :     pc_split = fec_get_n_pc(mode, n_pccw, slot_bytes);
     513             : 
     514           0 :     dw_offset = fec_data_preproc(mode, epmr, iobuf, cw_buf, data_bytes, slot_bytes, pc_split);
     515             : 
     516             :     /* encoding of first data word*/
     517           0 :     hd                 = hamming_distance_by_mode0[mode];
     518           0 :     redundancy_nibbles = hd - 1;
     519           0 :     codeword_length    = get_codeword_length(n_codewords, 2 * slot_bytes, 0);
     520             : 
     521           0 :     assert(codeword_length == (2 * slot_bytes - 1) / n_codewords + 1);
     522             : 
     523           0 :     for (j = redundancy_nibbles; j < codeword_length; (j++, dw_offset++))
     524             :     {
     525           0 :         cw_buf[j] = cw_buf[dw_offset];
     526             :     }
     527             : 
     528           0 :     rs16_enc(cw_buf, codeword_length, hd, mode, 1);
     529             : 
     530           0 :     cw_offset += codeword_length;
     531             : 
     532             :     /* encoding of remaining data words */
     533           0 :     hd                 = hamming_distance_by_mode1[mode];
     534           0 :     redundancy_nibbles = hd - 1;
     535             : 
     536           0 :     for (i = 1; i < n_codewords; i++)
     537             :     {
     538           0 :         codeword_length = get_codeword_length(n_codewords, 2*slot_bytes, i);
     539             : 
     540           0 :         for (j = redundancy_nibbles; j < codeword_length; (j++, dw_offset++))
     541             :         {
     542           0 :             cw_buf[cw_offset + j] = cw_buf[dw_offset];
     543             :         }
     544             : 
     545           0 :         rs16_enc(cw_buf + cw_offset, codeword_length, hd, mode, i < 6);
     546             : 
     547           0 :         cw_offset += codeword_length;
     548             :     }
     549             : 
     550           0 :     assert(cw_offset == 2 * slot_bytes && dw_offset == 2 * slot_bytes);
     551             : 
     552           0 :     fec_interleave_pack(iobuf, cw_buf, 2 * slot_bytes, n_codewords);
     553             : 
     554             :      
     555           0 : }
     556             : 
     557           0 : FEC_STATIC void rs16_enc(LC3_UINT8 *iobuf, LC3_INT16 codeword_length, LC3_INT16 hamming_distance, LC3_INT16 fec_mode,
     558             :                          LC3_INT16 signal_mode)
     559             : /* expects (data polynomial) * x^(hamming_distance - 1) in iobuf */
     560             : {
     561             :         LC3_UINT8 const *gp;
     562             :         LC3_UINT8        shift_buffer[RS16_CW_LEN_MAX + 1], lc;
     563             :         LC3_INT32          i, j, deg_gp;
     564             : 
     565           0 :     memset(shift_buffer, 0, sizeof(shift_buffer));
     566           0 :     gp     = rs16_gp_by_hd[hamming_distance];
     567           0 :     deg_gp = hamming_distance - 1;
     568             : 
     569           0 :     if (hamming_distance > 1)
     570             :     {
     571           0 :         assert(codeword_length > deg_gp);
     572             : 
     573             :         /* initialize redundancy part to zero */
     574           0 :         memset(iobuf, 0, deg_gp);
     575             : 
     576             :         /* initialize shift_buffer */
     577           0 :         memmove(shift_buffer + 1, iobuf + codeword_length - deg_gp, deg_gp);
     578             : 
     579             :         /* calculate remainder */
     580           0 :         for (i = codeword_length - deg_gp - 1; i >= 0; i--)
     581             :         {
     582           0 :             shift_buffer[0] = iobuf[i];
     583           0 :             lc              = shift_buffer[deg_gp] << 4;
     584             : 
     585           0 :             for (j = deg_gp - 1; j >= 0; j--)
     586             :             {
     587           0 :                 shift_buffer[j + 1] = GF16_ADD(shift_buffer[j], GF16_MUL0(gp[j], lc));
     588             :             }
     589             :         }
     590             : 
     591             :         /* add remainder to shifted data polynomial */
     592           0 :         for (i = 0; i < deg_gp; i++)
     593             :         {
     594           0 :             iobuf[i] = shift_buffer[i + 1];
     595             :         }
     596             : 
     597             :         /* add signaling polynomial */
     598           0 :         if (signal_mode)
     599             :         {
     600           0 :             assert(codeword_length > EP_SIG_POLY_DEG);
     601           0 :             for (i = 0; i <= EP_SIG_POLY_DEG; i++)
     602             :             {
     603           0 :                 iobuf[i] = GF16_ADD(iobuf[i], sig_polys[fec_mode - 1][i]);
     604             :             }
     605             :         }
     606             :     }
     607             : 
     608             :      
     609           0 : }
     610             : 
     611           0 : FEC_STATIC void fec_interleave_pack(LC3_UINT8 *out, LC3_UINT8 *in, LC3_INT16 n_nibbles, LC3_INT16 n_codewords)
     612             : {
     613             :         LC3_INT16 out_offset, cw_offset, codeword_length;
     614             :         LC3_INT32   i, j;
     615             : 
     616           0 :     out_offset = 0;
     617           0 :     cw_offset  = 0;
     618             : 
     619             :     /* initialize output buffer to zero */
     620           0 :     memset(out, 0, n_nibbles >> 1);
     621             : 
     622             :     /* interleave and pack codewords */
     623           0 :     for (i = 0; i < n_codewords; i++)
     624             :     {
     625           0 :         codeword_length = get_codeword_length(n_codewords, n_nibbles, i);
     626             : 
     627           0 :         for (j = 0; j < codeword_length; j++)
     628             :         {
     629           0 :                 out_offset = n_nibbles - 1 - j*n_codewords - i;
     630           0 :             out[out_offset >> 1] |= in[cw_offset] << ((out_offset & 1) << 2);
     631           0 :             cw_offset = cw_offset + 1;
     632             :         }
     633             :     }
     634             : 
     635             :      
     636           0 :     assert(cw_offset == n_nibbles);
     637           0 : }
     638             : 
     639             : /* Decoder */
     640           0 : FEC_STATIC void fec_data_postproc(LC3_INT16 mode, LC3PLUS_EpModeRequest *epmr, LC3_UINT8 *obuf, LC3_INT16 data_bytes, LC3_UINT8 *cw_buf,
     641             :                                   LC3_INT16 slot_bytes, LC3_INT16 pc_split, LC3_INT32 *bfi)
     642             : {
     643             :         LC3_INT16 i;
     644             :         LC3_INT16 n_crc1, n_crc2;
     645             :         LC3_INT16 cw_buf_len;
     646             :         LC3PLUS_EpModeRequest tmp_epmr;
     647             : 
     648           0 :     n_crc1 = crc1_bytes_by_mode1[mode];
     649           0 :     if (slot_bytes == 40)
     650             :     {
     651           0 :         n_crc1 = crc1_bytes_by_mode0[mode];
     652             :     }
     653             : 
     654           0 :     n_crc2 = 0;
     655           0 :     if (pc_split > 0)
     656             :     {
     657           0 :         n_crc2 = crc2_bytes_by_mode[mode];
     658             :     }
     659             : 
     660           0 :     assert(n_crc1 == (slot_bytes == 40 ? crc1_bytes_by_mode0[mode] : crc1_bytes_by_mode1[mode]));
     661           0 :     assert(n_crc2 == ((pc_split > 0) && (mode > 1) ? crc2_bytes_by_mode[mode] : 0));
     662             : 
     663           0 :     cw_buf_len = 2 * (data_bytes + n_crc1 + n_crc2);
     664             : 
     665           0 :     if ((mode - 1))
     666             :     {
     667             :         /* reverse bit-swap */
     668           0 :         dw0_bitswap(cw_buf, mode, slot_bytes);
     669           0 :         tmp_epmr = dw0_get_epmr(cw_buf, mode, slot_bytes);
     670             : 
     671           0 :         if (crc1(cw_buf + ((n_crc1 + n_crc2) << 1), ((data_bytes << 1) - pc_split), tmp_epmr, cw_buf, n_crc1, 1))
     672             :         {
     673           0 :             *bfi = 1;
     674             :              
     675           0 :             return;
     676             :         }
     677             :         else
     678             :         {
     679           0 :             *epmr = tmp_epmr;
     680             :         }
     681             :     }
     682             : 
     683           0 :     if (pc_split > 0 && *bfi != 2)
     684             :     {
     685           0 :         if (crc2(cw_buf + (((data_bytes + (n_crc1 + n_crc2)) << 1) - pc_split), pc_split,
     686           0 :                  cw_buf + (n_crc1 << 1), n_crc2, 1))
     687             :         {
     688           0 :             *bfi = 2;
     689             :         }
     690             :     }
     691             : 
     692           0 :     for (i = 0; i < data_bytes; i++)
     693             :     {
     694           0 :         obuf[i] = (LC3_UINT8)(cw_buf[cw_buf_len - 2 * i - 1] | (cw_buf[cw_buf_len - 2 * i - 2] << 4));
     695             :     }
     696             : 
     697             :      
     698             : }
     699             : 
     700           0 : LC3_INT32 fec_decoder(LC3_UINT8 *iobuf, LC3_INT16 slot_bytes, LC3_INT32 *data_bytes, LC3PLUS_EpModeRequest *epmr, LC3_INT16 ccc_flag, LC3_INT16 *n_pccw,
     701             :                 LC3_INT32 *bfi, LC3_INT16 *be_bp_left, LC3_INT16 *be_bp_right, LC3_INT16 *n_pc, LC3_INT16 *m_fec)
     702             : {
     703             :         LC3_UINT8 cw_buf[2 * FEC_SLOT_BYTES_MAX];
     704             :         LC3_UINT8 array_of_trust[MAX_LEN];
     705             :         LC3_INT16  i, j;
     706             :         LC3_INT16  cw_offset, dw_offset;
     707             :         LC3_INT16  n_codewords, redundancy_nibbles, codeword_length;
     708             :         LC3_INT16  mode, error_report;
     709             :         LC3_INT16  n_crc;
     710             :         LC3_INT16  first_bad_cw;
     711             :         LC3_INT16  pc_split;
     712             :     
     713             :     UNUSED(n_crc);
     714             :     
     715             : 
     716           0 :     if (*bfi == 1)
     717             :     {
     718           0 :         return ERROR_REPORT_BEC_MASK;
     719             :     }
     720             : 
     721           0 :     if (slot_bytes < FEC_SLOT_BYTES_MIN || slot_bytes > FEC_SLOT_BYTES_MAX)
     722             :     {
     723           0 :         *bfi = 1;
     724             :          
     725           0 :         return ERROR_REPORT_BEC_MASK;
     726             :     }
     727             : 
     728           0 :     if (ccc_flag == 0)
     729             :     {
     730           0 :         *be_bp_left = -1;
     731           0 :         *be_bp_right = -1;
     732             :     }
     733             : 
     734           0 :     n_codewords = get_n_codewords(slot_bytes);
     735             : 
     736             :     /* extract and de-interleave nibbles */
     737           0 :     fec_deinterleave_unpack(cw_buf, iobuf, 2 * slot_bytes, n_codewords);
     738             : 
     739             :     /* mode detection and error correction */
     740           0 :     mode = rs16_detect_and_correct(cw_buf, 2 * slot_bytes, n_codewords, epmr, &error_report, bfi, array_of_trust,
     741             :                                    ccc_flag, n_pccw);
     742             : 
     743             :     /* for normal slots the maximal number of bit errors is limited */
     744             : #ifndef APPLY_MAX_ERRORS
     745           0 :     if (slot_bytes == 40 && mode > 0)
     746             :     {
     747           0 :     if ((error_report & ERROR_REPORT_BEC_MASK) > low_br_max_bit_errors_by_mode[mode])
     748             :     {
     749           0 :         error_report &= ERROR_REPORT_BEC_MASK;
     750           0 :             mode = -1;
     751           0 :             *bfi = 1;
     752             :         }
     753             :         else
     754             :         {
     755           0 :             if ((error_report & ERROR_REPORT_BEC_MASK) > low_br_max_bit_errors_by_mode[2])
     756             :             {
     757           0 :                 error_report &= ~ERROR_REPORT_EP2_OK;
     758             :             }
     759           0 :             if ((error_report & ERROR_REPORT_BEC_MASK) > low_br_max_bit_errors_by_mode[3])
     760             :             {
     761           0 :                 error_report &= ~ERROR_REPORT_EP3_OK;
     762             :             }
     763             :         }
     764             :     }
     765             : #endif
     766             :     
     767           0 :     if (*bfi == 1)
     768             :     {
     769           0 :         *data_bytes = 0;
     770             : 
     771             :          
     772           0 :         return error_report;
     773             :     }
     774             : 
     775             :     /* initialization for decoding */
     776           0 :     *data_bytes = fec_get_data_size(mode, ccc_flag, slot_bytes);
     777           0 :     pc_split    = fec_get_n_pc(mode, *n_pccw, slot_bytes);
     778           0 :     n_crc       = get_total_crc_size(slot_bytes, mode, pc_split);
     779             : 
     780             :     /* decoding of first code word */
     781           0 :     redundancy_nibbles = hamming_distance_by_mode0[mode] - 1;
     782           0 :     codeword_length    = get_codeword_length(n_codewords, slot_bytes + slot_bytes, 0);
     783             : 
     784           0 :     dw_offset = 0;
     785           0 :     cw_offset = 0;
     786             : 
     787           0 :     for (j = redundancy_nibbles; j < codeword_length; j++)
     788             :     {
     789           0 :         cw_buf[dw_offset++] = cw_buf[j];
     790             :     }
     791           0 :     cw_offset = cw_offset + codeword_length;
     792             : 
     793             :     /* decoding of remaining code words */
     794           0 :     redundancy_nibbles = hamming_distance_by_mode1[mode] - 1;
     795             : 
     796           0 :     for (i = 1; i < n_codewords; i++)
     797             :     {
     798           0 :         codeword_length = get_codeword_length(n_codewords, slot_bytes + slot_bytes, i);
     799             : 
     800           0 :         for (j = redundancy_nibbles; j < codeword_length; j++)
     801             :         {
     802           0 :             cw_buf[dw_offset++] = cw_buf[j + cw_offset];
     803             :         }
     804             : 
     805           0 :         cw_offset = cw_offset + codeword_length;
     806             :     }
     807             : 
     808             :     /* data postproc: hash validation and re-ordering */
     809             : 
     810           0 :     fec_data_postproc(mode, epmr, iobuf, *data_bytes, cw_buf, slot_bytes, pc_split, bfi);
     811             : 
     812           0 :     if (*bfi == 1)
     813             :     {
     814           0 :         *data_bytes = 0;
     815             : 
     816           0 :         error_report &= ERROR_REPORT_BEC_MASK;
     817             : 
     818             :          
     819           0 :         return error_report;
     820             :     }
     821             : 
     822           0 :     if (*bfi == 2)
     823             :     {
     824           0 :         first_bad_cw            = 0;
     825           0 :         array_of_trust[*n_pccw] = 0;
     826           0 :         while (array_of_trust[first_bad_cw] != 0)
     827             :         {
     828           0 :             first_bad_cw = first_bad_cw + 1;
     829             :         }
     830           0 :         if (first_bad_cw == *n_pccw)
     831             :         {
     832             :             /* this is the case when CRC failed */
     833           0 :             *be_bp_left = 0;
     834             :         }
     835             :         else
     836             :         {
     837           0 :             *be_bp_left = 4*fec_get_n_pc(mode, first_bad_cw, slot_bytes);
     838             :         }
     839             : 
     840           0 :         for (i = *n_pccw - 1; i >= 0; i--)
     841             :         {
     842           0 :             if (!array_of_trust[i])
     843             :             {
     844           0 :                 break;
     845             :             }
     846             :         }
     847           0 :         if (i < 0)
     848             :         {
     849           0 :             i = *n_pccw - 1;
     850             :         }
     851           0 :         *be_bp_right = 4*fec_get_n_pc(mode, i + 1, slot_bytes) - 1;
     852             :     }
     853             : 
     854           0 :     if (ccc_flag == 0)
     855             :     {
     856           0 :         *n_pc  = pc_split;
     857           0 :         *m_fec = mode;
     858             :     }
     859             : 
     860             :      
     861           0 :     return error_report;
     862             : }
     863             : 
     864           0 : FEC_STATIC void fec_deinterleave_unpack(LC3_UINT8 *out, LC3_UINT8 *in, LC3_INT16 n_nibbles, LC3_INT16 n_codewords)
     865             : {
     866             :         LC3_INT16 in_offset, out_offset, codeword_length;
     867             :         LC3_INT32   i, j;
     868             : 
     869           0 :     in_offset  = 0;
     870           0 :     out_offset = 0;
     871             : 
     872             :     /* unpack nibbles in input buffer and deinterleave codewords */
     873           0 :     for (i = 0; i < n_codewords; i++)
     874             :     {
     875           0 :         codeword_length = get_codeword_length(n_codewords, n_nibbles, i);
     876           0 :         for (j = 0; j < codeword_length; (j++, out_offset++))
     877             :         {
     878           0 :             in_offset = n_nibbles - 1 - j*n_codewords - i;
     879           0 :             out[out_offset] = (in[in_offset >> 1] >> ((in_offset & 1) << 2)) & 15;
     880             :         }
     881             :     }
     882             : 
     883             :      
     884           0 :     assert(out_offset == n_nibbles);
     885             : 
     886           0 : }
     887             : 
     888           0 : FEC_STATIC LC3PLUS_EpModeRequest fec_estimate_epmr_from_cw0(LC3_UINT8 *cw0, LC3_INT8 *t, LC3_UINT8 *syndromes, LC3_UINT8 *elp, LC3_INT8 *deg_elp,
     889             :                                             LC3_UINT8 *err_pos, LC3_UINT8 *err_symb, LC3_INT16 n_codewords, LC3_INT16 n_symb)
     890             : {
     891             :         LC3_INT32    epmr_lowest_risk_exp;
     892             :         LC3_INT32    start, inc, i, n_candidates;
     893             :         LC3_INT32    first_codeword_length;
     894             :         LC3_INT32    mode_counter;
     895             :         LC3PLUS_EpModeRequest  epmr;
     896             : 
     897           0 :     epmr_lowest_risk_exp   = 0;
     898           0 :     first_codeword_length = get_codeword_length(n_codewords, n_symb, 0);
     899           0 :     start                 = 2;
     900           0 :     inc                   = 1;
     901           0 :     n_candidates          = 0;
     902             : 
     903             :     /* test if first code word decodes in mode 0 or 1 without error correction */
     904           0 :     if ((syndromes[SYNDROME_IDX(0, 0)] | syndromes[SYNDROME_IDX(0, 0) + 1]) == 0 ||
     905           0 :         (syndromes[SYNDROME_IDX(1, 0)] | syndromes[SYNDROME_IDX(1, 0) + 1]) == 0)
     906             :     {
     907           0 :         epmr_lowest_risk_exp = risk_table_f[1][0].exponent;
     908             :     }
     909             :     /* test if first code word decodes in mode 2 or 3 with lower risk */
     910           0 :     if (deg_elp[DEG_ELP_IDX(2, 0)] <= t[2])
     911             :     {
     912           0 :         if (risk_table_f[2][deg_elp[DEG_ELP_IDX(2, 0)]].exponent <= -8)
     913             :         {
     914           0 :             n_candidates++;
     915           0 :             start = 2;
     916             :         }
     917             :     }
     918             : 
     919           0 :     if (deg_elp[DEG_ELP_IDX(3, 0)] <= t[3])
     920             :     {
     921           0 :         if (risk_table_f[3][deg_elp[DEG_ELP_IDX(3, 0)]].exponent <= -8)
     922             :         {
     923           0 :             n_candidates++;
     924           0 :             start = 3;
     925             :         }
     926             :     }
     927             : 
     928           0 :     if (n_candidates > 1)
     929             :     {
     930             :         /* decide on order if mode 2 and 3 are considered */
     931           0 :         if (simple_float_cmp(risk_table_f[2][deg_elp[DEG_ELP_IDX(2, 0)]], risk_table_f[3][deg_elp[DEG_ELP_IDX(3, 0)]]) <
     932             :             0)
     933             :         {
     934           0 :             start = 2;
     935           0 :             inc   = 1;
     936             :         }
     937             :         else
     938             :         {
     939           0 :             start = 3;
     940           0 :             inc   = -1;
     941             :         }
     942             :     }
     943             : 
     944           0 :     for (mode_counter = start, i = 0; i < n_candidates; mode_counter += inc, i++)
     945             :     {
     946           0 :         if (risk_table_f[mode_counter][deg_elp[DEG_ELP_IDX(mode_counter, 0)]].exponent < epmr_lowest_risk_exp)
     947             :         {
     948           0 :             if (!rs16_factorize_elp(err_pos + ERR_POS_IDX(mode_counter, 0), elp + ELP_IDX(mode_counter, 0),
     949           0 :                                     deg_elp[DEG_ELP_IDX(mode_counter, 0)], first_codeword_length - 1))
     950             :             {
     951             :                 /* code word is decodable with error correction */
     952           0 :                 epmr_lowest_risk_exp = risk_table_f[mode_counter][deg_elp[DEG_ELP_IDX(mode_counter, 0)]].exponent;
     953             : 
     954           0 :                 rs16_calculate_errors(err_symb + ERR_SYMB_IDX(mode_counter, 0), err_pos + ERR_POS_IDX(mode_counter, 0),
     955           0 :                                       syndromes + SYNDROME_IDX(mode_counter, 0), deg_elp[DEG_ELP_IDX(mode_counter, 0)],
     956           0 :                                       t[mode_counter]);
     957             : 
     958           0 :                 for (i = 0; i < deg_elp[DEG_ELP_IDX(mode_counter, 0)]; i++)
     959             :                 {
     960           0 :                     cw0[err_pos[ERR_POS_IDX(mode_counter, 0) + i]] = GF16_ADD(
     961             :                         cw0[err_pos[ERR_POS_IDX(mode_counter, 0) + i]], err_symb[ERR_SYMB_IDX(mode_counter, 0) + i]);
     962             :                 }
     963           0 :                 break;
     964             :             }
     965             :         }
     966             :     }
     967             : 
     968           0 :     epmr = cw0_get_epmr(cw0, first_codeword_length - 1);
     969             : 
     970           0 :     if (epmr_lowest_risk_exp > -16)
     971             :     {
     972           0 :         epmr += 4;
     973             :     }
     974           0 :     if (epmr_lowest_risk_exp > -8)
     975             :     {
     976           0 :         epmr += 4;
     977             :     }
     978             : 
     979             :      
     980           0 :     return epmr;
     981             : }
     982             : 
     983           0 : FEC_STATIC LC3_INT32 rs16_detect_and_correct(LC3_UINT8 *iobuf, LC3_INT32 n_symb, LC3_INT32 n_codewords, LC3PLUS_EpModeRequest *epmr, LC3_INT16 *error_report,
     984             :                                        LC3_INT32 *bfi, LC3_UINT8 *array_of_trust, LC3_INT32 ccc_flag, LC3_INT16 *n_pccw)
     985             : {
     986             : 
     987             :         LC3_INT16        mode_broken[4];
     988             :         LC3_INT16        error_report_ep_ok[4];
     989             :         LC3_INT16       i, cw_counter, mode_counter, cw_offset;
     990             :         LC3_INT16       codeword_length;
     991             :         LC3_INT16       mode;
     992             :         LC3_INT16       mode_candidates[4];
     993             :         LC3_INT16       n_mode_candidates;
     994             :         LC3_INT16       broken_cw, n_broken_cw;
     995             :         LC3_INT16       j, idx_min;
     996             :         LC3_INT16       n_pccw0;
     997             :         simple_float val_min_f;
     998             :         LC3_INT16       tmp;
     999             :         LC3_INT16       epmr_position;
    1000             :         simple_float dec_risk_f[FEC_N_MODES];
    1001             :         simple_float risk_min_f;
    1002             :         simple_float ep_risk_thresh;
    1003             :         LC3_INT32 epmr_dec_fail_increment;
    1004             :         LC3_UINT8 const *hamming_distance;
    1005             :         LC3_UINT8        syndromes[FEC_TOTAL_SYNDROME_SIZE];
    1006             :         LC3_UINT8        elp[FEC_TOTAL_ELP_SIZE];
    1007             :         LC3_UINT8        err_pos[FEC_TOTAL_ERR_POS_SIZE];
    1008             :         LC3_UINT8        err_symb[FEC_TOTAL_ERROR_SIZE];
    1009             :         LC3_INT8         t[FEC_N_MODES];
    1010             :         LC3_INT8         deg_elp[FEC_TOTAL_DEG_ELP_SIZE];
    1011             :         LC3_UINT8        blacklist[FEC_N_MODES];
    1012             :         LC3_INT32          rop;
    1013             : 
    1014             :     void (*syndr_calc[3])(LC3_UINT8 *, LC3_UINT8 *, LC3_INT32);
    1015           0 :     rop = 0;
    1016             : 
    1017             :     /* initialization */
    1018           0 :     blacklist[0]        = 0;
    1019           0 :     blacklist[1]        = 0;
    1020           0 :     blacklist[2]        = 0;
    1021           0 :     blacklist[3]        = 0;
    1022           0 :     mode_broken[0]        = 0;
    1023           0 :     mode_broken[1]        = 0;
    1024           0 :     mode_broken[2]        = 0;
    1025           0 :     mode_broken[3]        = 0;
    1026           0 :     error_report_ep_ok[0] = ERROR_REPORT_EP1_OK;
    1027           0 :     error_report_ep_ok[1] = ERROR_REPORT_EP2_OK;
    1028           0 :     error_report_ep_ok[2] = ERROR_REPORT_EP3_OK;
    1029           0 :     error_report_ep_ok[3] = ERROR_REPORT_EP4_OK;
    1030           0 :     hamming_distance    = &hamming_distance_by_mode0[1];
    1031           0 :     mode                = -1;
    1032           0 :     n_mode_candidates   = 0;
    1033           0 :     risk_min_f.mantissa = SIMPLE_FLOAT_1_MANTISSA;
    1034           0 :     risk_min_f.exponent = 0;
    1035             :     
    1036           0 :     if (n_symb <= 80)
    1037             :     {
    1038           0 :     ep_risk_thresh.mantissa = EP_RISK_THRESH_NS_M;
    1039           0 :     ep_risk_thresh.exponent = EP_RISK_THRESH_NS_E;
    1040             :     }
    1041             :     else
    1042             :     {
    1043           0 :     ep_risk_thresh.mantissa = EP_RISK_THRESH_OS_M;
    1044           0 :     ep_risk_thresh.exponent = EP_RISK_THRESH_OS_E;
    1045             :     }
    1046             :     
    1047           0 :     syndr_calc[0] = &rs16_calculate_two_syndromes;
    1048           0 :     syndr_calc[1] = &rs16_calculate_four_syndromes;
    1049           0 :     syndr_calc[2] = &rs16_calculate_six_syndromes;
    1050             :     
    1051           0 :     for (i = 0; i < FEC_N_MODES; i++)
    1052             :     {
    1053           0 :     t[i] = (hamming_distance[i] -1)/2;
    1054             :     }
    1055             :     
    1056           0 :     *error_report = 0;
    1057           0 :     *bfi          = 0;
    1058             :     
    1059             :     /* mode detection (stage 1) */
    1060           0 :     codeword_length = get_codeword_length(n_codewords, n_symb, 0);
    1061             :     
    1062           0 :     epmr_position = codeword_length - 1;
    1063             :     
    1064           0 :     rs16_calculate_two_syndromes(syndromes + SYNDROME_IDX(0, 0), iobuf, codeword_length - 1);
    1065             :     
    1066           0 :     if ((syndromes[0 + SYNDROME_IDX(0, 0)] | syndromes[1 + SYNDROME_IDX(0, 0)]) == 0)
    1067             :     {
    1068             :     
    1069             :     /* data validation for fec mode 1 */
    1070           0 :     *epmr = cw0_get_epmr(iobuf, epmr_position);
    1071             :     
    1072           0 :     dw0_bitswap(iobuf + 2, 1, n_symb / 2);
    1073             :     
    1074           0 :     if (!crc1(iobuf + 8, n_symb - 8, *epmr, iobuf + 2, 3, 1))
    1075             :     {
    1076           0 :             *error_report |= ERROR_REPORT_ALL_OK;
    1077           0 :         mode = 0;
    1078             :         
    1079             :          
    1080           0 :         rop = mode + 1;
    1081           0 :         goto CLEANUP;
    1082             :     }
    1083             :     else
    1084             :     {
    1085             :         /* reverse bit swap */
    1086           0 :         dw0_bitswap(iobuf + 2, 1, n_symb / 2);
    1087             :         
    1088           0 :         *epmr += 4;
    1089             :     }
    1090             :     }
    1091             :     
    1092           0 :     blacklist[0] = 1;
    1093             :     
    1094             :     /* mode detection (stage 2) */
    1095             :     
    1096             :     /* calculate syndromes of code words 0 to 5 and modes 1 to 3 */
    1097           0 :     cw_offset = 0;
    1098             :     
    1099           0 :     for (cw_counter = 0; cw_counter < 6; cw_counter++)
    1100             :     {
    1101           0 :     codeword_length = get_codeword_length(n_codewords, n_symb, cw_counter);
    1102             :     
    1103           0 :     rs16_calculate_six_syndromes(syndromes + SYNDROME_IDX(1, cw_counter), iobuf + cw_offset,
    1104             :                      codeword_length - 1);
    1105             :     
    1106           0 :     cw_offset += codeword_length;
    1107             :     
    1108           0 :     for (mode_counter = FEC_N_MODES - 1; mode_counter >= 1; mode_counter--)
    1109             :     {
    1110           0 :         for (i = 0; i < hamming_distance[mode_counter] - 1; i++)
    1111             :         {
    1112           0 :         syndromes[SYNDROME_IDX(mode_counter, cw_counter) + i] = GF16_ADD(
    1113             :             syndromes[SYNDROME_IDX(1, cw_counter) + i], sig_poly_syndr[mode_counter][i]);
    1114             :         }
    1115             :     }
    1116             :     }
    1117             : 
    1118             :     /* check for valid code words */
    1119           0 :     for (mode_counter = 1; mode_counter < FEC_N_MODES; mode_counter++)
    1120             :     {
    1121           0 :     n_broken_cw = 0;
    1122           0 :     for (cw_counter = 0; cw_counter < 6; cw_counter++)
    1123             :     {
    1124           0 :         broken_cw = 0;
    1125           0 :         for (i = 0; i < hamming_distance[mode_counter] - 1; i++)
    1126             :         {
    1127           0 :         broken_cw |= syndromes[SYNDROME_IDX(mode_counter, cw_counter) + i];
    1128             :         }
    1129           0 :         if (broken_cw != 0)
    1130             :         {
    1131           0 :         n_broken_cw ++;
    1132             :         }
    1133             :     }
    1134             :     
    1135           0 :     if (n_broken_cw == 0)
    1136             :     {
    1137           0 :         mode      = mode_counter;
    1138           0 :         cw_offset = 0;
    1139             :         
    1140           0 :         *epmr = cw0_get_epmr(iobuf, epmr_position);
    1141             :         
    1142           0 :         for (cw_counter = 0; cw_counter < 6; cw_counter++)
    1143             :         {
    1144           0 :         codeword_length = get_codeword_length(n_codewords, n_symb, cw_counter);
    1145           0 :         for (i = 0; i <= EP_SIG_POLY_DEG; i++)
    1146             :         {
    1147           0 :             iobuf[cw_offset + i] = GF16_ADD(iobuf[cw_offset + i], sig_polys[mode][i]);
    1148             :         }
    1149           0 :         cw_offset += codeword_length;
    1150             :         }
    1151             :     }
    1152             :     }
    1153             :     
    1154           0 :     if (mode < 0) /* mode hasn't been detected so far -> errors occurred in transmission */
    1155             :     {
    1156             :     /* calculate error locator polynomials for code words 0 to 5 */
    1157           0 :     for (mode_counter = 1; mode_counter < FEC_N_MODES; mode_counter++)
    1158             :     {
    1159           0 :         for (cw_counter = 0; cw_counter < 6; cw_counter++)
    1160             :         {
    1161           0 :         deg_elp[DEG_ELP_IDX(mode_counter, cw_counter)] = rs16_calculate_elp(
    1162           0 :             elp + ELP_IDX(mode_counter, cw_counter), syndromes + SYNDROME_IDX(mode_counter, cw_counter),
    1163           0 :             t[mode_counter]);
    1164           0 :         if (deg_elp[DEG_ELP_IDX(mode_counter, cw_counter)] > t[mode_counter])
    1165             :         {
    1166           0 :             blacklist[mode_counter] = 1;
    1167           0 :             break;
    1168             :         }
    1169             :         }
    1170             :     }
    1171             :     
    1172             :     /* risk analysis for mode candidate selection */
    1173           0 :     for (mode_counter = 1; mode_counter < FEC_N_MODES; mode_counter++)
    1174             :     {
    1175           0 :         dec_risk_f[mode_counter].mantissa = SIMPLE_FLOAT_1_MANTISSA;
    1176           0 :         dec_risk_f[mode_counter].exponent = 0;
    1177             :         
    1178           0 :         if (blacklist[mode_counter] == 0)
    1179             :         {
    1180           0 :         for (cw_counter = 0; cw_counter < 6; cw_counter++)
    1181             :         {
    1182           0 :             dec_risk_f[mode_counter] = simple_float_mul(
    1183             :             dec_risk_f[mode_counter],
    1184           0 :             risk_table_f[mode_counter][deg_elp[DEG_ELP_IDX(mode_counter, cw_counter)]]);
    1185             :         }
    1186             :         
    1187           0 :         if (simple_float_cmp(dec_risk_f[mode_counter], ep_risk_thresh) <= 0)
    1188             :         {
    1189           0 :             mode_candidates[n_mode_candidates++] = mode_counter;
    1190             :         }
    1191             :         
    1192           0 :         if (simple_float_cmp(dec_risk_f[mode_counter], risk_min_f) < 0)
    1193             :         {
    1194           0 :             risk_min_f = dec_risk_f[mode_counter];
    1195             :         }
    1196             :         }
    1197             :     }
    1198           0 :     assert(n_mode_candidates <= 4); /*  suppress false gcc warning when OPTIM=3 */
    1199             :     
    1200             :     /* sort mode candidates by risk */
    1201           0 :     for (i = 0; i < n_mode_candidates; i++)
    1202             :     {
    1203           0 :         idx_min   = i;
    1204           0 :         val_min_f = dec_risk_f[mode_candidates[i]];
    1205             :         
    1206           0 :         for (j = i + 1; j < n_mode_candidates; j++)
    1207             :         {
    1208           0 :         if (simple_float_cmp(dec_risk_f[mode_candidates[j]], val_min_f) < 0)
    1209             :         {
    1210           0 :             val_min_f = dec_risk_f[mode_candidates[j]];
    1211           0 :             idx_min   = j;
    1212             :         }
    1213             :         }
    1214             :         
    1215           0 :         if (idx_min > i)
    1216             :         {    
    1217           0 :         tmp                      = mode_candidates[i];
    1218           0 :         mode_candidates[i]       = mode_candidates[idx_min];
    1219           0 :         mode_candidates[idx_min] = tmp;
    1220             :         }
    1221             :     }
    1222             :     
    1223             :     /* try out candidate modes */
    1224           0 :     for (i = 0; i < n_mode_candidates; i++)
    1225             :     {
    1226           0 :         mode = mode_candidates[i];
    1227             :         
    1228           0 :         for (cw_counter = 0; cw_counter < 6; cw_counter++)
    1229             :         {
    1230           0 :         codeword_length = get_codeword_length(n_codewords, n_symb, cw_counter);
    1231             :         
    1232           0 :         if (deg_elp[DEG_ELP_IDX(mode, cw_counter)])
    1233             :         {
    1234           0 :             if (rs16_factorize_elp(err_pos + ERR_POS_IDX(mode, cw_counter), elp + ELP_IDX(mode, cw_counter),
    1235           0 :                        deg_elp[DEG_ELP_IDX(mode, cw_counter)], codeword_length - 1))
    1236             :             {
    1237             :             /* elp did not split into distinct linear factors or error position was out of range */
    1238           0 :             mode = -1;
    1239           0 :             break;
    1240             :             }
    1241             :         }
    1242             :         }
    1243           0 :         if (mode > 0)
    1244             :         {
    1245             :         /* decodable mode with lowest risk has been found */
    1246           0 :         break;
    1247             :         }
    1248             :     }
    1249             :     
    1250           0 :     if (mode < 0)
    1251             :     {
    1252             :         /* no decodable mode has been found */
    1253           0 :         *error_report = ERROR_REPORT_BEC_MASK;
    1254           0 :         *bfi          = 1;
    1255           0 :         mode          = -1;
    1256             :         
    1257           0 :         *epmr = fec_estimate_epmr_from_cw0(iobuf, t, syndromes, elp, deg_elp, err_pos, err_symb, n_codewords,
    1258             :                            n_symb);
    1259             :         
    1260             :          
    1261           0 :         rop = mode;
    1262           0 :         goto CLEANUP;
    1263             :     }
    1264             :     
    1265             :     /* perform error correction */
    1266           0 :     cw_offset     = 0;
    1267           0 :     *error_report = 0;
    1268           0 :     for (cw_counter = 0; cw_counter < 6; cw_counter++)
    1269             :     {
    1270           0 :         codeword_length = get_codeword_length(n_codewords, n_symb, cw_counter);
    1271             :         
    1272           0 :         if (deg_elp[DEG_ELP_IDX(mode, cw_counter)])
    1273             :         {
    1274           0 :         rs16_calculate_errors(
    1275           0 :             err_symb + ERR_SYMB_IDX(mode, cw_counter), err_pos + ERR_POS_IDX(mode, cw_counter),
    1276           0 :             syndromes + SYNDROME_IDX(mode, cw_counter), deg_elp[DEG_ELP_IDX(mode, cw_counter)], t[mode]);
    1277             :         
    1278             :         /* correct errors and sum up number of corrected bits */
    1279           0 :         for (i = 0; i < deg_elp[DEG_ELP_IDX(mode, cw_counter)]; i++)
    1280             :         {
    1281           0 :             iobuf[err_pos[ERR_POS_IDX(mode, cw_counter) + i] + cw_offset] =
    1282           0 :             GF16_ADD(iobuf[err_pos[ERR_POS_IDX(mode, cw_counter) + i] + cw_offset],
    1283             :                  err_symb[ERR_SYMB_IDX(mode, cw_counter) + i]);
    1284           0 :             *error_report += rs16_bit_count_table[err_symb[ERR_SYMB_IDX(mode, cw_counter) + i]];
    1285             :         }
    1286             : 
    1287           0 :                 for (i = 0; i < mode; i ++)
    1288             :                 {
    1289           0 :                     if(deg_elp[DEG_ELP_IDX(mode, cw_counter)] > i)
    1290             :                     {
    1291           0 :                         mode_broken[i] = 1;
    1292             :                     }
    1293             :                 }
    1294             : 
    1295             :         }
    1296             :         
    1297           0 :         for (i = 0; i <= EP_SIG_POLY_DEG; i++)
    1298             :         {
    1299           0 :         iobuf[cw_offset + i] = GF16_ADD(iobuf[cw_offset + i], sig_polys[mode][i]);
    1300             :         }
    1301           0 :         cw_offset += codeword_length;
    1302             :     }
    1303             :     
    1304             :     /* set epmr according to risk value of cw0 */
    1305           0 :     epmr_dec_fail_increment = 8;
    1306             :     
    1307           0 :     if (risk_table_f[mode][deg_elp[DEG_ELP_IDX(mode, 0)]].exponent <= -8)
    1308             :     {
    1309           0 :         epmr_dec_fail_increment -= 4;
    1310             :     }
    1311           0 :     if (risk_table_f[mode][deg_elp[DEG_ELP_IDX(mode, 0)]].exponent <= -16)
    1312             :     {
    1313           0 :         epmr_dec_fail_increment -= 4;
    1314             :     }
    1315             :     
    1316           0 :     *epmr = (LC3PLUS_EpModeRequest)(cw0_get_epmr(iobuf, epmr_position) + epmr_dec_fail_increment);
    1317             :     }
    1318             :     
    1319             :     /* mode has been successfully detected -> now check and try to correct remaining code words*/
    1320           0 :     *n_pccw = fec_get_n_pccw(n_symb / 2, mode + 1, ccc_flag);
    1321           0 :     if (ccc_flag == 0)
    1322             :     {
    1323           0 :     n_pccw0 = fec_get_n_pccw(n_symb / 2, mode + 1, ccc_flag);
    1324           0 :     *n_pccw = n_pccw0;
    1325             :     }
    1326             :     else
    1327             :     {
    1328           0 :     n_pccw0 = 0;
    1329             :     }
    1330             :     
    1331           0 :     for (cw_counter = 6; cw_counter < n_codewords; cw_counter++)
    1332             :     {
    1333             :     /* usual error correction scheme: syndromes -> elp's, errors, etc. */
    1334           0 :     codeword_length                              = get_codeword_length(n_codewords, n_symb, cw_counter);
    1335           0 :     array_of_trust[n_codewords - 1 - cw_counter] = 1;
    1336             :     
    1337           0 :     syndr_calc[t[mode] - 1](syndromes, iobuf + cw_offset, codeword_length -1);
    1338             :     
    1339           0 :     deg_elp[0] = rs16_calculate_elp(elp, syndromes, t[mode]);
    1340             :     
    1341           0 :         for (i = 0; i < mode; i ++)
    1342             :         {
    1343           0 :             if (deg_elp[0] > i)
    1344             :             {
    1345           0 :                 mode_broken[i] = 1;
    1346             :             }
    1347             :         }
    1348             : 
    1349           0 :     if (deg_elp[0] > t[mode])
    1350             :     {
    1351           0 :             for (i = 0; i < 4; i ++)
    1352             :             {
    1353           0 :                 mode_broken[i] = 1;
    1354             :             }
    1355           0 :         cw_offset += codeword_length;
    1356           0 :         if (cw_counter < n_codewords - n_pccw0)
    1357             :         {
    1358           0 :             *error_report = ERROR_REPORT_BEC_MASK;
    1359           0 :             mode          = -1;
    1360           0 :             *bfi          = 1;
    1361           0 :           break;
    1362             :         }
    1363             :         else
    1364             :         {
    1365           0 :         *bfi                                         = 2;
    1366           0 :         array_of_trust[n_codewords - 1 - cw_counter] = 0;
    1367           0 :         continue;
    1368             :         }
    1369             :     }
    1370             :     
    1371           0 :     if (deg_elp[0])
    1372             :     {
    1373           0 :         if (rs16_factorize_elp(err_pos, elp, deg_elp[0], codeword_length - 1))
    1374             :         {
    1375           0 :             cw_offset += codeword_length;
    1376           0 :             for (i = 0; i < 4; i ++)
    1377             :             {
    1378           0 :                 mode_broken[i] = 1;
    1379             :             }
    1380           0 :             if (cw_counter < n_codewords - n_pccw0)
    1381             :             {
    1382           0 :                 *error_report = ERROR_REPORT_BEC_MASK;
    1383           0 :                 mode = -1;
    1384           0 :                 *bfi = 1;
    1385             :                 
    1386           0 :                 break;
    1387             :             }
    1388             :             else
    1389             :             {
    1390           0 :                 *bfi                                         = 2;
    1391           0 :                 array_of_trust[n_codewords - 1 - cw_counter] = 0;
    1392           0 :                 continue;
    1393             :             }
    1394             :         }
    1395             :         
    1396           0 :         rs16_calculate_errors(err_symb, err_pos, syndromes, deg_elp[0], t[mode]);
    1397             :         
    1398             :         /* correct errors and sum up number of corrected bits */
    1399           0 :         for (i = 0; i < deg_elp[0]; i++)
    1400             :         {
    1401           0 :         iobuf[err_pos[i] + cw_offset] = GF16_ADD(iobuf[err_pos[i] + cw_offset], err_symb[i]);
    1402           0 :         *error_report                 += rs16_bit_count_table[err_symb[i]];
    1403             :         }
    1404             :     }
    1405           0 :     cw_offset += codeword_length;
    1406           0 :     if (risk_table_f[mode][deg_elp[0]].exponent > -16)
    1407             :     {
    1408           0 :         array_of_trust[n_codewords - 1 - cw_counter] = 0;
    1409             :     }
    1410             :     }
    1411             :     
    1412           0 :     *error_report &= ERROR_REPORT_BEC_MASK;
    1413           0 :     for (i = 0; i < 4; i ++)
    1414             :     {
    1415           0 :         if (!mode_broken[i])
    1416             :         {
    1417           0 :             *error_report |= error_report_ep_ok[i];
    1418             :         }
    1419             :     }
    1420             : 
    1421           0 :     if (mode >= 0)
    1422             :     {
    1423           0 :         rop = mode + 1;
    1424             :     } else {
    1425           0 :         rop = -1;
    1426             :     }
    1427             :     
    1428             :      
    1429             : 
    1430           0 : CLEANUP:
    1431           0 :     return rop;
    1432             : }
    1433             : 
    1434           0 : FEC_STATIC void rs16_calculate_six_syndromes(LC3_UINT8 *syndromes, LC3_UINT8 *cw, LC3_INT32 cw_poly_deg)
    1435             : {
    1436             :         LC3_INT32    i;
    1437             :         LC3_UINT8 buffer[15];
    1438             : 
    1439           0 :     assert(cw_poly_deg >= 12);
    1440             : 
    1441           0 :     for (i = 0; i <= cw_poly_deg; i++)
    1442             :     {
    1443           0 :         buffer[i] = cw[i];
    1444             :     }
    1445             : 
    1446           0 :     syndromes[0] = buffer[0];
    1447           0 :     syndromes[1] = buffer[0];
    1448           0 :     syndromes[2] = buffer[0];
    1449           0 :     syndromes[3] = buffer[0];
    1450           0 :     syndromes[4] = buffer[0];
    1451           0 :     syndromes[5] = buffer[0];
    1452             : 
    1453           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[1], 32));
    1454           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[1], 64));
    1455           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[1], 128));
    1456           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[1], 48));
    1457           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[1], 96));
    1458           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[1], 192));
    1459             : 
    1460           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[2], 64));
    1461           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[2], 48));
    1462           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[2], 192));
    1463           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[2], 80));
    1464           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[2], 112));
    1465           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[2], 240));
    1466             : 
    1467           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[3], 128));
    1468           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[3], 192));
    1469           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[3], 160));
    1470           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[3], 240));
    1471           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[3], 16));
    1472           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[3], 128));
    1473             : 
    1474           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[4], 48));
    1475           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[4], 80));
    1476           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[4], 240));
    1477           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[4], 32));
    1478           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[4], 96));
    1479           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[4], 160));
    1480             : 
    1481           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[5], 96));
    1482           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[5], 112));
    1483           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[5], 16));
    1484           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[5], 96));
    1485           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[5], 112));
    1486           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[5], 16));
    1487             : 
    1488           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[6], 192));
    1489           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[6], 240));
    1490           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[6], 128));
    1491           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[6], 160));
    1492           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[6], 16));
    1493           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[6], 192));
    1494             : 
    1495           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[7], 176));
    1496           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[7], 144));
    1497           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[7], 192));
    1498           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[7], 208));
    1499           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[7], 96));
    1500           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[7], 240));
    1501             : 
    1502           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[8], 80));
    1503           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[8], 32));
    1504           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[8], 160));
    1505           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[8], 64));
    1506           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[8], 112));
    1507           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[8], 128));
    1508             : 
    1509           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[9], 160));
    1510           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[9], 128));
    1511           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[9], 240));
    1512           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[9], 192));
    1513           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[9], 16));
    1514           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[9], 160));
    1515             : 
    1516           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[10], 112));
    1517           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[10], 96));
    1518           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[10], 16));
    1519           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[10], 112));
    1520           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[10], 96));
    1521           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[10], 16));
    1522             : 
    1523           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[11], 224));
    1524           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[11], 176));
    1525           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[11], 128));
    1526           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[11], 144));
    1527           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[11], 112));
    1528           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[11], 192));
    1529             : 
    1530           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[12], 240));
    1531           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[12], 160));
    1532           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[12], 192));
    1533           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[12], 128));
    1534           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[12], 16));
    1535           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[12], 240));
    1536             : 
    1537           0 :     if (cw_poly_deg >= 13)
    1538             :     {
    1539           0 :         syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[13], 208));
    1540           0 :         syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[13], 224));
    1541           0 :         syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[13], 160));
    1542           0 :         syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[13], 176));
    1543           0 :         syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[13], 96));
    1544           0 :         syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[13], 128));
    1545             :     }
    1546             : 
    1547           0 :     if (cw_poly_deg >= 14)
    1548             :     {
    1549           0 :         syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[14], 144));
    1550           0 :         syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[14], 208));
    1551           0 :         syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[14], 240));
    1552           0 :         syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[14], 224));
    1553           0 :         syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[14], 112));
    1554           0 :         syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[14], 160));
    1555             :     }
    1556             : 
    1557             :      
    1558           0 : }
    1559             : 
    1560           0 : FEC_STATIC void rs16_calculate_four_syndromes(LC3_UINT8 *syndromes, LC3_UINT8 *cw, LC3_INT32 cw_poly_deg)
    1561             : {
    1562             :         LC3_INT32    i;
    1563             :         LC3_UINT8 buffer[15];
    1564             : 
    1565           0 :     assert(cw_poly_deg >= 12);
    1566             : 
    1567           0 :     for (i = 0; i <= cw_poly_deg; i++)
    1568             :     {
    1569           0 :         buffer[i] = cw[i];
    1570             :     }
    1571             : 
    1572           0 :     syndromes[0] = buffer[0];
    1573           0 :     syndromes[1] = buffer[0];
    1574           0 :     syndromes[2] = buffer[0];
    1575           0 :     syndromes[3] = buffer[0];
    1576             : 
    1577           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[1], 32));
    1578           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[1], 64));
    1579           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[1], 128));
    1580           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[1], 48));
    1581             : 
    1582           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[2], 64));
    1583           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[2], 48));
    1584           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[2], 192));
    1585           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[2], 80));
    1586             : 
    1587           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[3], 128));
    1588           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[3], 192));
    1589           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[3], 160));
    1590           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[3], 240));
    1591             : 
    1592           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[4], 48));
    1593           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[4], 80));
    1594           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[4], 240));
    1595           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[4], 32));
    1596             : 
    1597           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[5], 96));
    1598           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[5], 112));
    1599           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[5], 16));
    1600           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[5], 96));
    1601             : 
    1602           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[6], 192));
    1603           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[6], 240));
    1604           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[6], 128));
    1605           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[6], 160));
    1606             : 
    1607           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[7], 176));
    1608           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[7], 144));
    1609           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[7], 192));
    1610           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[7], 208));
    1611             : 
    1612           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[8], 80));
    1613           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[8], 32));
    1614           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[8], 160));
    1615           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[8], 64));
    1616             : 
    1617           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[9], 160));
    1618           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[9], 128));
    1619           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[9], 240));
    1620           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[9], 192));
    1621             : 
    1622           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[10], 112));
    1623           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[10], 96));
    1624           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[10], 16));
    1625           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[10], 112));
    1626             : 
    1627           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[11], 224));
    1628           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[11], 176));
    1629           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[11], 128));
    1630           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[11], 144));
    1631             : 
    1632           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[12], 240));
    1633           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[12], 160));
    1634           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[12], 192));
    1635           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[12], 128));
    1636             : 
    1637           0 :     if (cw_poly_deg >= 13)
    1638             :     {
    1639           0 :         syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[13], 208));
    1640           0 :         syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[13], 224));
    1641           0 :         syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[13], 160));
    1642           0 :         syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[13], 176));
    1643             :     }
    1644             : 
    1645           0 :     if (cw_poly_deg >= 14)
    1646             :     {
    1647           0 :         syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[14], 144));
    1648           0 :         syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[14], 208));
    1649           0 :         syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[14], 240));
    1650           0 :         syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[14], 224));
    1651             :     }
    1652             : 
    1653             :      
    1654           0 : }
    1655             : 
    1656           0 : FEC_STATIC void rs16_calculate_two_syndromes(LC3_UINT8 *syndromes, LC3_UINT8 *cw, LC3_INT32 cw_poly_deg)
    1657             : {
    1658             :         LC3_INT32    i;
    1659             :         LC3_UINT8 buffer[15];
    1660             : 
    1661           0 :     assert(cw_poly_deg >= 12);
    1662             : 
    1663           0 :     for (i = 0; i <= cw_poly_deg; i++)
    1664             :     {
    1665           0 :         buffer[i] = cw[i];
    1666             :     }
    1667             : 
    1668           0 :     syndromes[0] = buffer[0];
    1669           0 :     syndromes[1] = buffer[0];
    1670             : 
    1671           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[1], 32));
    1672           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[1], 64));
    1673             : 
    1674           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[2], 64));
    1675           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[2], 48));
    1676             : 
    1677           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[3], 128));
    1678           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[3], 192));
    1679             : 
    1680           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[4], 48));
    1681           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[4], 80));
    1682             : 
    1683           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[5], 96));
    1684           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[5], 112));
    1685             : 
    1686           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[6], 192));
    1687           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[6], 240));
    1688             : 
    1689           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[7], 176));
    1690           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[7], 144));
    1691             : 
    1692           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[8], 80));
    1693           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[8], 32));
    1694             : 
    1695           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[9], 160));
    1696           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[9], 128));
    1697             : 
    1698           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[10], 112));
    1699           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[10], 96));
    1700             : 
    1701           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[11], 224));
    1702           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[11], 176));
    1703             : 
    1704           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[12], 240));
    1705           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[12], 160));
    1706             : 
    1707           0 :     if (cw_poly_deg >= 13)
    1708             :     {
    1709           0 :         syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[13], 208));
    1710           0 :         syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[13], 224));
    1711             :     }
    1712             : 
    1713           0 :     if (cw_poly_deg >= 14)
    1714             :     {
    1715           0 :         syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[14], 144));
    1716           0 :         syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[14], 208));
    1717             :     }
    1718             : 
    1719             :      
    1720           0 : }
    1721             : 
    1722           0 : FEC_STATIC LC3_INT8 rs16_calculate_elp(LC3_UINT8 *elp, LC3_UINT8 *syndromes, LC3_INT16 t)
    1723             : /* calculates error locator polynomial vie Petterson's algorithm */
    1724             : {
    1725             :         LC3_INT8  ret;
    1726             :         LC3_UINT8 det, det_inv, aux, all_s, *s;
    1727             :         LC3_UINT8 s22, s33, s44, s13, s14, s15;
    1728             :         LC3_UINT8 s23, s24, s25, s34, s35;
    1729             :         LC3_UINT8 a, b, c, d, e, f;
    1730             : 
    1731           0 :     ret    = 0;
    1732           0 :     all_s  = 0;
    1733           0 :     s      = syndromes;
    1734           0 :     elp[0] = 1;
    1735           0 :     memset(elp + 1, 0, 3);
    1736             : 
    1737           0 :     switch (t)
    1738             :     {
    1739           0 :     case 3:
    1740             :     {
    1741             :         /* check for errors */
    1742           0 :         all_s = s[0] | s[1] | s[2] | s[3] | s[4] | s[5];
    1743             : 
    1744           0 :         if (all_s == 0)
    1745             :         {
    1746           0 :             break;
    1747             :         }
    1748             : 
    1749             :         /* assume 3 errors */
    1750           0 :         s22 = GF16_MUL(s[1], s[1]);
    1751           0 :         s33 = GF16_MUL(s[2], s[2]);
    1752           0 :         s44 = GF16_MUL(s[3], s[3]);
    1753           0 :         s13 = GF16_MUL(s[0], s[2]);
    1754             : 
    1755           0 :         det = GF16_ADD(GF16_ADD(GF16_MUL(s13, s[4]), GF16_MUL(s44, s[0])),
    1756             :                        GF16_ADD(GF16_MUL(s22, s[4]), GF16_MUL(s33, s[2])));
    1757             : 
    1758           0 :         if (det)
    1759             :         {
    1760           0 :             det_inv = gf16_inv_table[det] << 4;
    1761             : 
    1762           0 :             s14 = GF16_MUL(s[0], s[3]);
    1763           0 :             s15 = GF16_MUL(s[0], s[4]);
    1764             : 
    1765           0 :             s23 = GF16_MUL(s[1], s[2]);
    1766           0 :             s24 = GF16_MUL(s[1], s[3]);
    1767           0 :             s25 = GF16_MUL(s[1], s[4]);
    1768             : 
    1769           0 :             s34 = GF16_MUL(s[2], s[3]);
    1770           0 :             s35 = GF16_MUL(s[2], s[4]);
    1771             : 
    1772           0 :             a = GF16_ADD(s35, s44) << 4;
    1773           0 :             b = GF16_ADD(s15, s33) << 4;
    1774           0 :             c = GF16_ADD(s13, s22) << 4;
    1775           0 :             d = GF16_ADD(s34, s25) << 4;
    1776           0 :             e = GF16_ADD(s23, s14) << 4;
    1777           0 :             f = GF16_ADD(s24, s33) << 4;
    1778             : 
    1779           0 :             aux    = GF16_ADD(GF16_ADD(GF16_MUL0(a, s[3]), GF16_MUL0(d, s[4])), GF16_MUL0(f, s[5]));
    1780           0 :             elp[3] = GF16_MUL0(aux, det_inv);
    1781             : 
    1782           0 :             aux    = GF16_ADD(GF16_ADD(GF16_MUL0(d, s[3]), GF16_MUL0(b, s[4])), GF16_MUL0(e, s[5]));
    1783           0 :             elp[2] = GF16_MUL0(aux, det_inv);
    1784             : 
    1785           0 :             aux    = GF16_ADD(GF16_ADD(GF16_MUL0(f, s[3]), GF16_MUL0(e, s[4])), GF16_MUL0(c, s[5]));
    1786           0 :             elp[1] = GF16_MUL0(aux, det_inv);
    1787             : 
    1788           0 :             if (elp[3] == 0)
    1789             :             {
    1790           0 :                 ret = t+1;
    1791             :             }
    1792             :             else
    1793             :             {
    1794           0 :                 ret = 3;
    1795             :             }
    1796           0 :             break;
    1797             :         }
    1798             : 
    1799             :         /* assume two errors */
    1800           0 :         det = GF16_ADD(GF16_MUL(syndromes[0], syndromes[2]), GF16_MUL(syndromes[1], syndromes[1]));
    1801             : 
    1802           0 :         if (det)
    1803             :         {
    1804           0 :             det_inv = gf16_inv_table[det] << 4;
    1805             : 
    1806           0 :             aux    = GF16_ADD(GF16_MUL(syndromes[1], syndromes[2]), GF16_MUL(syndromes[0], syndromes[3]));
    1807           0 :             elp[1] = GF16_MUL0(aux, det_inv);
    1808             : 
    1809           0 :             aux    = GF16_ADD(GF16_MUL(syndromes[2], syndromes[2]), GF16_MUL(syndromes[1], syndromes[3]));
    1810           0 :             elp[2] = GF16_MUL0(aux, det_inv);
    1811             : 
    1812             :             /* check remaining LSF relations */
    1813           0 :             aux = GF16_ADD(GF16_ADD(GF16_MUL(elp[2], s[2]), GF16_MUL(elp[1], s[3])), s[4])
    1814           0 :                     | GF16_ADD(GF16_ADD(GF16_MUL(elp[2], s[3]), GF16_MUL(elp[1], s[4])), s[5]);
    1815             : 
    1816           0 :             aux |= elp[2] == 0;
    1817             : 
    1818           0 :             if (aux != 0)
    1819             :             {
    1820           0 :                 ret = t + 1;
    1821             :             }
    1822             :             else
    1823             :             {
    1824           0 :                 ret = 2;
    1825             :             }
    1826           0 :             break;
    1827             :         }
    1828             : 
    1829             :         /* assume one error */
    1830           0 :         if (syndromes[0] != 0)
    1831             :         {
    1832           0 :             elp[1] = GF16_MUL(syndromes[1], gf16_inv_table[syndromes[0]]);
    1833             : 
    1834             :             /* check remaining LSF relations */
    1835           0 :             aux = GF16_ADD(GF16_MUL(elp[1], s[1]), s[2])
    1836           0 :                     | GF16_ADD(GF16_MUL(elp[1], s[2]), s[3])
    1837           0 :                     | GF16_ADD(GF16_MUL(elp[1], s[3]), s[4])
    1838           0 :                     | GF16_ADD(GF16_MUL(elp[1], s[4]), s[5]);
    1839             : 
    1840           0 :             aux |= elp[1] == 0;
    1841             : 
    1842           0 :             if (aux != 0)
    1843             :             {
    1844           0 :                 ret = t + 1;
    1845             :             }
    1846             :             else
    1847             :             {
    1848           0 :                 ret = 1;
    1849             :             }
    1850           0 :             break;
    1851             :         }
    1852             : 
    1853           0 :         ret = t + 1;
    1854           0 :         break;
    1855             :     }
    1856           0 :     case 2:
    1857             :     {
    1858           0 :         all_s = s[0] | s[1] | s[2] | s[3];
    1859             : 
    1860           0 :         if (all_s == 0)
    1861             :         {
    1862           0 :             break;
    1863             :         }
    1864             : 
    1865             :         /* assume two errors */
    1866           0 :         det = GF16_ADD(GF16_MUL(syndromes[0], syndromes[2]), GF16_MUL(syndromes[1], syndromes[1]));
    1867             : 
    1868           0 :         if (det)
    1869             :         {
    1870           0 :             det_inv = gf16_inv_table[det] << 4;
    1871             : 
    1872           0 :             aux    = GF16_ADD(GF16_MUL(syndromes[1], syndromes[2]), GF16_MUL(syndromes[0], syndromes[3]));
    1873           0 :             elp[1] = GF16_MUL0(aux, det_inv);
    1874             : 
    1875           0 :             aux    = GF16_ADD(GF16_MUL(syndromes[2], syndromes[2]), GF16_MUL(syndromes[1], syndromes[3]));
    1876           0 :             elp[2] = GF16_MUL0(aux, det_inv);
    1877             : 
    1878           0 :             if (elp[2] == 0)
    1879             :             {
    1880           0 :                 ret = t + 1;
    1881             :             }
    1882             :             else
    1883             :             {
    1884           0 :                 ret = 2;
    1885             :             }
    1886           0 :             break;
    1887             :         }
    1888             : 
    1889             :         /* assume one error */
    1890           0 :         if (syndromes[0] != 0)
    1891             :         {
    1892           0 :             elp[1] = GF16_MUL(syndromes[1], gf16_inv_table[syndromes[0]]);
    1893             : 
    1894             :             /* check remaining LSF relation */
    1895           0 :             aux = GF16_ADD(GF16_MUL(elp[1], s[1]), s[2]) | GF16_ADD(GF16_MUL(elp[1], s[2]), s[3]);
    1896           0 :             aux |= elp[1] == 0;
    1897             : 
    1898           0 :             if (aux != 0)
    1899             :             {
    1900           0 :                 ret = t + 1;
    1901             :             }
    1902             :             else
    1903             :             {
    1904           0 :                 ret = 1;
    1905             :             }
    1906           0 :             break;
    1907             :         }
    1908             : 
    1909           0 :         ret = t + 1;
    1910           0 :         break;
    1911             :     }
    1912           0 :     case 1:
    1913             :     {
    1914           0 :         all_s = s[0] | s[1];
    1915             : 
    1916           0 :         if (all_s == 0)
    1917             :         {
    1918           0 :             break;
    1919             :         }
    1920             : 
    1921           0 :         if (syndromes[0] != 0)
    1922             :         {
    1923           0 :             elp[1] = GF16_MUL(syndromes[1], gf16_inv_table[syndromes[0]]);
    1924           0 :             if (elp[1] == 0)
    1925             :             {
    1926           0 :                 ret = t + 1;
    1927             :             }
    1928             :             else
    1929             :             {
    1930           0 :                 ret = 1;
    1931             :             }
    1932           0 :             break;
    1933             :         }
    1934             : 
    1935           0 :         ret = t + 1;
    1936           0 :         break;
    1937             :     }
    1938           0 :     default: assert(0 && "calculating elp of this degree not implemented");
    1939             :     }
    1940             : 
    1941             :      
    1942           0 :     return ret;
    1943             : }
    1944             : 
    1945           0 : FEC_STATIC LC3_INT16 rs16_factorize_elp(LC3_UINT8 *err_pos, LC3_UINT8 *elp, LC3_INT16 deg_elp, LC3_INT16 max_pos)
    1946             : {
    1947             :         LC3_UINT8 beta, gamma;
    1948             :         LC3_INT16 zeros, err_pos0, err_pos1, err_pos2, ret;
    1949             : 
    1950           0 :     beta  = 0;
    1951           0 :     gamma = 0;
    1952           0 :     zeros = 0;
    1953           0 :     ret   = 0;
    1954             : 
    1955           0 :     switch (deg_elp)
    1956             :     {
    1957           0 :     case 0: break;
    1958             : 
    1959           0 :     case 1:
    1960           0 :         err_pos0 = gf16_log_g[elp[1]];
    1961           0 :         if (err_pos0 > max_pos)
    1962             :         {
    1963           0 :             ret = 1;
    1964           0 :             break;
    1965             :         }
    1966             : 
    1967           0 :         err_pos[0] = (LC3_UINT8)err_pos0;
    1968           0 :         break;
    1969             : 
    1970           0 :     case 2:
    1971           0 :         zeros = rs16_elp_deg2_table[elp[1] | (elp[2] << 4)];
    1972           0 :         if (zeros == 0)
    1973             :         {  
    1974             :              
    1975           0 :             return 1;
    1976             :         }
    1977             : 
    1978           0 :         err_pos0 = zeros & 15;
    1979           0 :         err_pos1 = (zeros >> 4) & 15;
    1980             : 
    1981           0 :         if (err_pos0 > max_pos || err_pos1 > max_pos)
    1982             :         {
    1983           0 :             ret = 1;
    1984           0 :             break;
    1985             :         }
    1986             : 
    1987           0 :         err_pos[0] = (LC3_UINT8)err_pos0;
    1988           0 :         err_pos[1] = (LC3_UINT8)err_pos1;
    1989           0 :         break;
    1990             : 
    1991           0 :     case 3:
    1992             :         /* beta = a*a + b, gamma = a*b + c */
    1993           0 :         beta  = GF16_ADD(GF16_MUL(elp[1], elp[1]), elp[2]);
    1994           0 :         gamma = GF16_ADD(GF16_MUL(elp[1], elp[2]), elp[3]);
    1995           0 :         zeros = rs16_elp_deg3_table[beta | gamma << 4];
    1996             : 
    1997           0 :         if (zeros == 0)
    1998             :         /* elp does not split over GF(16) or has multiple zeros */
    1999             :         {
    2000           0 :             ret = 1;
    2001           0 :             break;
    2002             :         }
    2003             : 
    2004             :         /* remove shift from zeros */
    2005           0 :         err_pos0 = GF16_ADD(zeros & 15, elp[1]);
    2006           0 :         err_pos1 = GF16_ADD((zeros >> 4) & 15, elp[1]);
    2007           0 :         err_pos2 = GF16_ADD((zeros >> 8) & 15, elp[1]);
    2008             : 
    2009           0 :         if (err_pos0 == 0 || err_pos1 == 0 || err_pos2 == 0)
    2010             :         {
    2011             :              
    2012           0 :             return 1;
    2013             :         }
    2014             : 
    2015           0 :         err_pos0 = gf16_log_g[err_pos0];
    2016           0 :         err_pos1 = gf16_log_g[err_pos1];
    2017           0 :         err_pos2 = gf16_log_g[err_pos2];
    2018             : 
    2019           0 :         if (err_pos0 > max_pos || err_pos1 > max_pos || err_pos2 > max_pos)
    2020             :         {
    2021           0 :             ret = 1;
    2022           0 :             break;
    2023             :         }
    2024             : 
    2025           0 :         err_pos[0] = (LC3_UINT8)err_pos0;
    2026           0 :         err_pos[1] = (LC3_UINT8)err_pos1;
    2027           0 :         err_pos[2] = (LC3_UINT8)err_pos2;
    2028             : 
    2029           0 :         break;
    2030             : 
    2031           0 :     default: assert(0 && "invalid degree in rs16_error_locator");
    2032             :     }
    2033             : 
    2034             :      
    2035           0 :     return ret;
    2036             : }
    2037             : 
    2038           0 : FEC_STATIC void rs16_calculate_errors(LC3_UINT8 *err_symb, LC3_UINT8 *err_pos, LC3_UINT8 *syndromes, LC3_INT8 deg_elp, LC3_INT8 t)
    2039             : {
    2040             :         LC3_UINT8 det_inv;
    2041             :         LC3_UINT8 x0, x1, x2;
    2042             :         LC3_UINT8 x0sq, x1sq, x2sq;
    2043             :         LC3_UINT8 c0, c1, c2;
    2044             :         LC3_UINT8 s0, s1, s2;
    2045             :         LC3_UINT8 tmp;
    2046             :     
    2047             :     UNUSED(t);
    2048             : 
    2049           0 :     assert(deg_elp <= t);
    2050             : 
    2051           0 :     switch (deg_elp)
    2052             :     {
    2053           0 :     case 0: break;
    2054             : 
    2055           0 :     case 1:
    2056           0 :         err_symb[0] = GF16_MUL(gf16_g_pow[15 - err_pos[0]], syndromes[0]);
    2057             : 
    2058           0 :         break;
    2059             : 
    2060           0 :     case 2:
    2061           0 :         s0 = (LC3_UINT8) (syndromes[0] << 4);
    2062           0 :         s1 = (LC3_UINT8) (syndromes[1] << 4);
    2063             : 
    2064           0 :         x0 = gf16_g_pow[err_pos[0]];
    2065           0 :         x1 = gf16_g_pow[err_pos[1]];
    2066             : 
    2067           0 :         x0sq = GF16_MUL(x0, x0);
    2068           0 :         x1sq = GF16_MUL(x1, x1);
    2069             : 
    2070           0 :         tmp     = GF16_ADD(GF16_MUL(x0sq, x1), GF16_MUL(x1sq, x0));
    2071           0 :         det_inv = gf16_inv_table[tmp] << 4;
    2072             : 
    2073           0 :         tmp         = GF16_ADD(GF16_MUL0(x1sq, s0), GF16_MUL0(x1, s1));
    2074           0 :         err_symb[0] = GF16_MUL0(tmp, det_inv);
    2075             : 
    2076           0 :         tmp         = GF16_ADD(GF16_MUL0(x0sq, s0), GF16_MUL0(x0, s1));
    2077           0 :         err_symb[1] = GF16_MUL0(tmp, det_inv);
    2078             : 
    2079           0 :         break;
    2080             : 
    2081           0 :     case 3:
    2082           0 :         s0 = syndromes[0] << 4;
    2083           0 :         s1 = syndromes[1] << 4;
    2084           0 :         s2 = syndromes[2] << 4;
    2085             : 
    2086           0 :         x0 = gf16_g_pow[err_pos[0]];
    2087           0 :         x1 = gf16_g_pow[err_pos[1]];
    2088           0 :         x2 = gf16_g_pow[err_pos[2]];
    2089             : 
    2090           0 :         x0sq = GF16_MUL(x0, x0);
    2091           0 :         x1sq = GF16_MUL(x1, x1);
    2092           0 :         x2sq = GF16_MUL(x2, x2);
    2093             : 
    2094           0 :         tmp     = GF16_MUL(GF16_ADD(x1, x0), GF16_ADD(x2, x0));
    2095           0 :         tmp     = GF16_MUL(GF16_ADD(x2, x1), tmp);
    2096           0 :         det_inv = gf16_inv_table[tmp] << 4;
    2097             : 
    2098           0 :         c0 = GF16_ADD(GF16_MUL(x1, x2sq), GF16_MUL(x2, x1sq));
    2099           0 :         c1 = GF16_ADD(x2sq, x1sq);
    2100           0 :         c2 = GF16_ADD(x2, x1);
    2101             : 
    2102           0 :         err_symb[0] = GF16_ADD(GF16_ADD(GF16_MUL0(c0, s0), GF16_MUL0(c1, s1)), GF16_MUL0(c2, s2));
    2103             : 
    2104           0 :         c0 = GF16_ADD(GF16_MUL(x0, x2sq), GF16_MUL(x2, x0sq));
    2105           0 :         c1 = GF16_ADD(x2sq, x0sq);
    2106           0 :         c2 = GF16_ADD(x2, x0);
    2107             : 
    2108           0 :         err_symb[1] = GF16_ADD(GF16_ADD(GF16_MUL0(c0, s0), GF16_MUL0(c1, s1)), GF16_MUL0(c2, s2));
    2109             : 
    2110           0 :         c0 = GF16_ADD(GF16_MUL(x0, x1sq), GF16_MUL(x1, x0sq));
    2111           0 :         c1 = GF16_ADD(x1sq, x0sq);
    2112           0 :         c2 = GF16_ADD(x1, x0);
    2113             : 
    2114           0 :         err_symb[2] = GF16_ADD(GF16_ADD(GF16_MUL0(c0, s0), GF16_MUL0(c1, s1)), GF16_MUL0(c2, s2));
    2115             : 
    2116           0 :         tmp         = GF16_MUL0(err_symb[0], det_inv);
    2117           0 :         err_symb[0] = GF16_MUL(tmp, gf16_inv_table[x0]);
    2118             : 
    2119           0 :         tmp         = GF16_MUL0(err_symb[1], det_inv);
    2120           0 :         err_symb[1] = GF16_MUL(tmp, gf16_inv_table[x1]);
    2121             : 
    2122           0 :         tmp         = GF16_MUL0(err_symb[2], det_inv);
    2123           0 :         err_symb[2] = GF16_MUL(tmp, gf16_inv_table[x2]);
    2124             : 
    2125           0 :         break;
    2126             : 
    2127           0 :     default: assert(0 && "method not implemented\n"); break;
    2128             :     }
    2129             : 
    2130             :      
    2131           0 : }
    2132             : 
    2133             : /* hash functions for data validation */
    2134             : 
    2135             : /* hamming distance 4 */
    2136             : static const LC3_UINT32 crc14_mask[16] = {0,      17989,  35978,  51919,  71956,  89937,  103838, 119771,
    2137             :                                        143912, 160877, 179874, 194791, 207676, 224633, 239542, 254451};
    2138             : 
    2139             : /* hamming distance 4 */
    2140             : static const LC3_UINT32 crc22_mask[16] = {0,        4788009,  9576018,  14356859, 19152036, 23933837, 28713718, 33500639,
    2141             :                                        33650273, 38304072, 43214899, 47867674, 52775621, 57427436, 62346391, 67001278};
    2142             : 
    2143           0 : FEC_STATIC LC3_INT16 crc1(LC3_UINT8 *data, LC3_INT16 data_size, LC3_INT16 epmr, LC3_UINT8 *hash_val, LC3_INT16 hash_size, LC3_INT16 check)
    2144             : {
    2145             :         LC3_UINT32 const *mask;
    2146             :         LC3_INT32           shift, i, fail;
    2147             :         LC3_UINT32        rem;
    2148             : 
    2149           0 :     fail = 0;
    2150           0 :     rem  = 0;
    2151             : 
    2152           0 :     assert(hash_size > 0);
    2153             : 
    2154           0 :     switch (hash_size)
    2155             :     {
    2156           0 :     case 2:
    2157           0 :         shift = 14;
    2158           0 :         mask  = crc14_mask;
    2159           0 :         break;
    2160           0 :     case 3:
    2161           0 :         shift = 22;
    2162           0 :         mask  = crc22_mask;
    2163           0 :         break;
    2164           0 :     default:
    2165           0 :         shift = 0;
    2166           0 :         mask = 0;
    2167           0 :         assert(0 && "crc hash size not implemented");
    2168             :     }
    2169             : 
    2170             :     /* data array contains 4-bit words */
    2171           0 :     for (i = data_size - 1; i >= 0; i--)
    2172             :     {
    2173           0 :         rem = (rem << 4) ^ data[i];
    2174           0 :         rem ^= mask[(rem >> shift) & 15];
    2175             :     }
    2176             : 
    2177           0 :     rem = (rem << 4) ^ (epmr << 2);
    2178           0 :     rem ^= mask[(rem >> shift) & 15];
    2179             : 
    2180           0 :     for (i = 0; i < 2 * hash_size - 1; i++)
    2181             :     {
    2182           0 :         rem <<= 4;
    2183           0 :         rem ^= mask[(rem >> shift) & 15];
    2184             :     }
    2185             : 
    2186           0 :     rem ^= ((LC3_UINT32) epmr) << shift;
    2187             : 
    2188           0 :     if (check)
    2189             :     {
    2190             :         /* test hash value */
    2191           0 :         for (i = 0; i < 2 * hash_size; i++)
    2192             :         {
    2193           0 :             fail |= hash_val[i] ^ ((rem >> (4*i)) & 15);
    2194             :         }
    2195             :     }
    2196             :     else
    2197             :     {
    2198             :         /* write hash value */
    2199           0 :         for (i = 0; i < 2 * hash_size; i++)
    2200             :         {
    2201           0 :             hash_val[i] = (LC3_UINT8) ((rem >> (4*i)) & 15);
    2202             :         }
    2203             :     }
    2204             : 
    2205             :      
    2206           0 :     return fail;
    2207             : }
    2208             : 
    2209             : /* hamming distance = 4 */
    2210             : static const LC3_UINT32 crc16_mask[16] = {0,      107243, 190269, 214486, 289937, 380538, 428972, 469319,
    2211             :                                        579874, 621513, 671263, 761076, 832947, 857944, 938638, 1044581};
    2212             : 
    2213           0 : FEC_STATIC LC3_INT16 crc2(LC3_UINT8 *data, LC3_INT16 data_size, LC3_UINT8 *hash_val, LC3_INT16 hash_size, LC3_INT16 check)
    2214             : {
    2215             :         LC3_UINT32 const *mask;
    2216             :         LC3_INT32           shift, i, fail;
    2217             :         LC3_UINT32        rem;
    2218             : 
    2219           0 :     fail = 0;
    2220           0 :     rem  = 0;
    2221             : 
    2222           0 :     assert(hash_size > 0);
    2223             : 
    2224           0 :     switch (hash_size)
    2225             :     {
    2226           0 :     case 2:
    2227           0 :         shift = 16;
    2228           0 :         mask  = crc16_mask;
    2229           0 :         break;
    2230           0 :     default:
    2231           0 :         shift = 0;
    2232           0 :         mask = 0;
    2233           0 :         assert(0 && "crc hash size not implemented");
    2234             :     }
    2235             : 
    2236             :     /* data array contains 4-bit words */
    2237           0 :     for (i = data_size - 1; i >= 0; i--)
    2238             :     {
    2239           0 :         rem = (rem << 4) ^ data[i];
    2240           0 :         rem ^= mask[(rem >> shift) & 15];
    2241             :     }
    2242             : 
    2243           0 :     for (i = 0; i < 2 * hash_size; i++)
    2244             :     {
    2245           0 :         rem <<= 4;
    2246           0 :         rem ^= mask[(rem >> shift) & 15];
    2247             :     }
    2248             : 
    2249           0 :     if (check)
    2250             :     {
    2251             :         /* test hash value */
    2252           0 :         for (i = 0; i < 2 * hash_size; i++)
    2253             :         {
    2254           0 :             fail |= hash_val[i] ^ ((rem >> (4*i)) & 15);
    2255             :         }
    2256             :     }
    2257             :     else
    2258             :     {
    2259             :         /* write hash value */
    2260           0 :         for (i = 0; i < 2 * hash_size; i++)
    2261             :         {
    2262           0 :             hash_val[i] = (LC3_UINT8) ((rem >> (4*i)) & 15);
    2263             :         }
    2264             :     }
    2265             : 
    2266             :      
    2267           0 :     return fail;
    2268             : }
    2269             : 
    2270             : /* simple float implementation */
    2271           0 : FEC_STATIC simple_float simple_float_mul(simple_float op1, simple_float op2)
    2272             : {
    2273             :         simple_float rop;
    2274             :         LC3_INT32       aux;
    2275             :     
    2276           0 :     aux          = (op1.mantissa * op2.mantissa) >> 14;
    2277           0 :     rop.exponent = op1.exponent + op2.exponent;
    2278           0 :     if (aux & 32768L)
    2279             :     {
    2280           0 :         aux          >>= 1;
    2281           0 :         rop.exponent ++;
    2282             :     }
    2283           0 :     rop.mantissa = (LC3_INT16) aux;
    2284             : 
    2285             :      
    2286           0 :     return rop;
    2287             : }
    2288             : 
    2289             : /* Auxiliary */
    2290             : 
    2291           0 : FEC_STATIC LC3_INT16 simple_float_cmp(simple_float op1, simple_float op2)
    2292             : /* returns 1 if op1 > op2, 0 if op1 = op2, and -1 if op1 < op2 */
    2293             : {
    2294             :         LC3_INT16 rval;
    2295             :         LC3_INT16 mdiff;
    2296             :         LC3_INT16 ediff;
    2297             : 
    2298           0 :     rval = 0;
    2299             : 
    2300           0 :     ediff = op1.exponent - op2.exponent;
    2301           0 :     mdiff = (LC3_INT16) op1.mantissa - (LC3_INT16) op2.mantissa;
    2302             : 
    2303           0 :     if (ediff == 0)
    2304             :     {
    2305           0 :         if (mdiff > 0)
    2306             :         {
    2307           0 :             rval = 1;
    2308             :         }
    2309           0 :         if (mdiff < 0)
    2310             :         {
    2311           0 :             rval = -1;
    2312             :         }
    2313             :     }
    2314             :     else
    2315             :     {
    2316           0 :         if (ediff > 0)
    2317             :         {
    2318           0 :             rval = 1;
    2319             :         }
    2320           0 :         if (ediff < 0)
    2321             :         {
    2322           0 :             rval = -1;
    2323             :         }
    2324             :     }
    2325             : 
    2326             :      
    2327           0 :     return rval;
    2328             : }
    2329             : 

Generated by: LCOV version 1.14