LCOV - code coverage report
Current view: top level - lib_lc3plus - al_fec_fl.c (source / functions) Hit Total Coverage
Test: Coverage on main -- short test vectors @ 6c9ddc4024a9c0e1ecb8f643f114a84a0e26ec6b Lines: 0 973 0.0 %
Date: 2025-05-23 08:37:30 Functions: 0 28 0.0 %

          Line data    Source code
       1             : /******************************************************************************
       2             : *                        ETSI TS 103 634 V1.5.1                               *
       3             : *              Low Complexity Communication Codec Plus (LC3plus)              *
       4             : *                                                                             *
       5             : * Copyright licence is solely granted through ETSI Intellectual Property      *
       6             : * Rights Policy, 3rd April 2019. No patent licence is granted by implication, *
       7             : * estoppel or otherwise.                                                      *
       8             : ******************************************************************************/
       9             : 
      10             : #include "options.h"
      11             : #include "wmc_auto.h"
      12             : #include "stdint.h"
      13             : #include <assert.h>
      14             : #include <stdlib.h>
      15             : #include <string.h>
      16             : 
      17             : #include "functions.h"
      18             : 
      19             : 
      20             : /* channel coder specific constants and macros */
      21             : #define RS16_CW_LEN_MAX 15
      22             : 
      23             : #define FEC_N_MODES 4
      24             : #define FEC_N_SYNDROMES_MAX 6
      25             : #define FEC_N_ERR_POS_MAX 3
      26             : #define FEC_N_ELP_COEFF_MAX 4
      27             : #define FEC_N_ERR_SYMB_MAX 3
      28             : #define FEC_N_MODE_DETECTION_CW 6
      29             : 
      30             : #define SYNDROME_IDX(mode_index, cw_index) (((mode_index)*FEC_N_MODE_DETECTION_CW + (cw_index)) * FEC_N_SYNDROMES_MAX)
      31             : #define ELP_IDX(mode_index, cw_index) (((mode_index)*FEC_N_MODE_DETECTION_CW + (cw_index)) * FEC_N_ELP_COEFF_MAX)
      32             : #define ERR_POS_IDX(mode_index, cw_index) (((mode_index)*FEC_N_MODE_DETECTION_CW + (cw_index)) * FEC_N_ERR_POS_MAX)
      33             : #define ERR_SYMB_IDX(mode_index, cw_index) (((mode_index)*FEC_N_MODE_DETECTION_CW + (cw_index)) * FEC_N_ERR_SYMB_MAX)
      34             : #define DEG_ELP_IDX(mode_index, cw_index) ((mode_index)*FEC_N_MODE_DETECTION_CW + (cw_index))
      35             : 
      36             : #define FEC_TOTAL_SYNDROME_SIZE (FEC_N_SYNDROMES_MAX * FEC_N_MODES * FEC_N_MODE_DETECTION_CW)
      37             : #define FEC_TOTAL_ELP_SIZE (FEC_N_ELP_COEFF_MAX * FEC_N_MODES * FEC_N_MODE_DETECTION_CW)
      38             : #define FEC_TOTAL_ERR_POS_SIZE (FEC_N_ERR_POS_MAX * FEC_N_MODES * FEC_N_MODE_DETECTION_CW)
      39             : #define FEC_TOTAL_ERROR_SIZE (FEC_N_ERR_SYMB_MAX * FEC_N_MODES * FEC_N_MODE_DETECTION_CW)
      40             : #define FEC_TOTAL_DEG_ELP_SIZE (FEC_N_MODES * FEC_N_MODE_DETECTION_CW)
      41             : 
      42             : #define ERROR_REPORT_BEC_MASK   ((0x0FFF)>>1)
      43             : #define ERROR_REPORT_EP1_OK     ((0x1000)>>1)
      44             : #define ERROR_REPORT_EP2_OK     ((0x2000)>>1)
      45             : #define ERROR_REPORT_EP3_OK     ((0x4000)>>1)
      46             : #define ERROR_REPORT_EP4_OK     ((0x8000)>>1)                    
      47             : #define ERROR_REPORT_ALL_OK (ERROR_REPORT_EP1_OK | ERROR_REPORT_EP2_OK | ERROR_REPORT_EP3_OK | ERROR_REPORT_EP4_OK)
      48             : 
      49             : /* debugging switches */
      50             : 
      51             : /* constants concerning mode detection */
      52             : #define EP_RISK_THRESH_NS_M 21990
      53             : #define EP_RISK_THRESH_NS_E -23
      54             : #define EP_RISK_THRESH_OS_M 25166
      55             : #define EP_RISK_THRESH_OS_E -10
      56             : 
      57             : #define SIMPLE_FLOAT_1_MANTISSA 16384
      58             : 
      59             : #define FEC_STATIC static
      60             : 
      61             : /* DISCLAIMER: Strict instrumentation of GF16 arithmetic would have to take into account
      62             :  * the initial conversion of the arguments from LC3_UINT8 to LC3_INT16 (one move16() per argument).
      63             :  * Behind this is the assumption that one would store GF16 elements in LC3_INT16 for strict BASOP
      64             :  * implementation.
      65             :  */
      66             : #define GF16_MUL(a, b) gf16_mult_table[(a) | (b << 4)]
      67             : #define GF16_MUL0(a, b) gf16_mult_table[(a) | (b)]
      68             : #define GF16_ADD(a, b) ((a) ^ (b))
      69             : 
      70             : /* tables for finite field arithmetic */
      71             : /* tables for arithmetic in GF(16)  *
      72             :  * generator polynomial: 19
      73             :  * unit group generator (g): 2
      74             :  */
      75             : 
      76             : static const LC3_UINT8 gf16_mult_table[256] = {
      77             :     /* gf16_mult_table[a | (b << 4)] contains the product of a and b in GF(16) */
      78             :     0,  0,  0,  0,  0,  0,  0,  0, 0,  0,  0,  0,  0,  0,  0,  0,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, 12,
      79             :     13, 14, 15, 0,  2,  4,  6,  8, 10, 12, 14, 3,  1,  7,  5,  11, 9,  15, 13, 0,  3,  6,  5,  12, 15, 10, 9,  11, 8,
      80             :     13, 14, 7,  4,  1,  2,  0,  4, 8,  12, 3,  7,  11, 15, 6,  2,  14, 10, 5,  1,  13, 9,  0,  5,  10, 15, 7,  2,  13,
      81             :     8,  14, 11, 4,  1,  9,  12, 3, 6,  0,  6,  12, 10, 11, 13, 7,  1,  5,  3,  9,  15, 14, 8,  2,  4,  0,  7,  14, 9,
      82             :     15, 8,  1,  6,  13, 10, 3,  4, 2,  5,  12, 11, 0,  8,  3,  11, 6,  14, 5,  13, 12, 4,  15, 7,  10, 2,  9,  1,  0,
      83             :     9,  1,  8,  2,  11, 3,  10, 4, 13, 5,  12, 6,  15, 7,  14, 0,  10, 7,  13, 14, 4,  9,  3,  15, 5,  8,  2,  1,  11,
      84             :     6,  12, 0,  11, 5,  14, 10, 1, 15, 4,  7,  12, 2,  9,  13, 6,  8,  3,  0,  12, 11, 7,  5,  9,  14, 2,  10, 6,  1,
      85             :     13, 15, 3,  4,  8,  0,  13, 9, 4,  1,  12, 8,  5,  2,  15, 11, 6,  3,  14, 10, 7,  0,  14, 15, 1,  13, 3,  2,  12,
      86             :     9,  7,  6,  8,  4,  10, 11, 5, 0,  15, 13, 2,  9,  6,  4,  11, 1,  14, 12, 3,  8,  7,  5,  10,
      87             : };
      88             : 
      89             : static const LC3_UINT8 rs16_elp_deg2_table[256] = {
      90             :     /* If the polynomial x^2 + ax + b has distinct non-zero roots z1 and z2 in GF(16),  *
      91             :      * then table entry a + 16*b contains log_g(z1) | log_g(z2) << 4, and otherwise it  *
      92             :      * contains 0.                                                                      */
      93             :     0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   165, 0,   0,   0,   0,
      94             :     105, 195, 0,   210, 0,   225, 0,   180, 120, 0,   0,   121, 0,   16,  0,   211, 0,   0,   181, 0,   0,   106,
      95             :     196, 226, 0,   0,   0,   214, 64,  0,   199, 0,   0,   0,   0,   0,   49,  184, 0,   154, 0,   229, 0,   227,
      96             :     182, 0,   0,   32,  0,   0,   0,   197, 0,   0,   122, 0,   212, 152, 0,   203, 0,   158, 128, 0,   0,   0,
      97             :     98,  113, 218, 0,   0,   0,   53,  0,   0,   65,  0,   0,   185, 110, 215, 80,  0,   0,   200, 0,   50,  0,
      98             :     0,   0,   0,   130, 205, 115, 0,   0,   160, 190, 145, 0,   0,   0,   0,   0,   0,   100, 0,   0,   168, 198,
      99             :     0,   183, 33,  0,   0,   48,  228, 213, 0,   0,   0,   0,   0,   0,   0,   0,   164, 0,   179, 0,   224, 104,
     100             :     0,   194, 149, 0,   0,   209, 0,   0,   0,   189, 99,  84,  0,   129, 0,   0,   0,   144, 0,   0,   234, 114,
     101             :     0,   0,   82,  0,   0,   0,   0,   217, 202, 0,   112, 52,  232, 0,   97,  0,   0,   0,   126, 0,   81,  201,
     102             :     0,   36,  216, 186, 0,   0,   0,   96,  0,   0,   0,   0,   0,   88,  0,   0,   0,   103, 0,   148, 178, 0,
     103             :     208, 193, 0,   58,  0,   0,   0,   0,   0,   161, 206, 0,   116, 0,   101, 0,   0,   56,  146, 176, 0,   0,
     104             :     147, 162, 222, 0,   132, 0,   0,   0,   0,   0,   177, 117, 192, 0,
     105             : };
     106             : 
     107             : static const LC3_UINT16 rs16_elp_deg3_table[256] = {
     108             :     /* If the polynomial x^3 + ax + b has distinct roots z1, z2 and z3 in GF(16),                       *
     109             :      * then table entry a + 16*b contains z1) | z2 << 4 | z3 << 8, and otherwise it                     *
     110             :      * contains 0.                                                                                      */
     111             :     0, 0, 0,    0,    0,    0,    0,    0,    0,    0,    0, 0,    0, 0,    0,    0,   1889, 0, 0,    0,    0,    0,
     112             :     0, 0, 0,    0,    0,    0,    0,    0,    0,    0,    0, 0,    0, 2977, 0,    0,   0,    0, 0,    3990, 1859, 0,
     113             :     0, 0, 0,    0,    0,    0,    3521, 0,    0,    0,    0, 0,    0, 0,    0,    0,   1874, 0, 3718, 0,    0,    0,
     114             :     0, 0, 0,    2433, 0,    0,    1619, 0,    0,    0,    0, 3495, 0, 0,    0,    0,   0,    0, 4065, 0,    0,    0,
     115             :     0, 0, 0,    3255, 0,    0,    0,    1602, 0,    3735, 0, 0,    0, 0,    3238, 801, 0,    0, 0,    0,    0,    0,
     116             :     0, 0, 0,    3510, 0,    0,    0,    0,    1345, 3975, 0, 0,    0, 0,    0,    0,   0,    0, 3778, 0,    0,    0,
     117             :     0, 0, 0,    0,    0,    0,    0,    0,    0,    0,    0, 0,    0, 0,    2947, 0,   0,    0, 0,    0,    0,    0,
     118             :     0, 0, 3476, 0,    4005, 0,    3461, 0,    0,    0,    0, 0,    0, 0,    0,    0,   0,    0, 0,    0,    0,    0,
     119             :     0, 0, 0,    0,    0,    3748, 0,    0,    2962, 0,    0, 0,    0, 4035, 0,    0,   4020, 0, 0,    0,    0,    0,
     120             :     0, 0, 0,    0,    0,    0,    0,    0,    0,    0,    0, 0,    0, 0,    3221, 0,   0,    0, 0,    0,    0,    2690,
     121             :     0, 0, 0,    3795, 0,    0,    0,    4050, 0,    0,    0, 0,    0, 3204, 3765, 0,   0,    0, 0,    0,    2707, 0,
     122             :     0, 0, 0,    0,    0,    0,    0,    0,    0,    0,    0, 0,    0, 0,
     123             : };
     124             : 
     125             : static const LC3_UINT8 gf16_g_pow[16] = {1, 2, 4, 8, 3, 6, 12, 11, 5, 10, 7, 14, 15, 13, 9, 1};
     126             : /* g_pow[i] contains g^i*/
     127             : 
     128             : static const LC3_UINT8 gf16_log_g[16] = {255, 0, 1, 4, 2, 8, 5, 10, 3, 14, 9, 7, 6, 13, 11, 12};
     129             : /* log_g[n] contains contains the value i such that g^i = n for n=1, 2, ..., 15, log_g[0] is set to 255 */
     130             : 
     131             : static const LC3_UINT8 gf16_inv_table[16] = {255, 1, 9, 14, 13, 11, 7, 6, 15, 2, 12, 5, 10, 4, 3, 8};
     132             : /* gf16_inv_table[n] contains the multiplicative inverse of n in GF(16) (1/0 is set to 255)*/
     133             : 
     134             : /* RS16 generating polynomials (from lowest to highest coefficient without leading 1)*/
     135             : 
     136             : static const LC3_UINT8 rs16_gp_d3[] = {8, 6};
     137             : static const LC3_UINT8 rs16_gp_d5[] = {7, 8, 12, 13};
     138             : static const LC3_UINT8 rs16_gp_d7[] = {12, 10, 12, 3, 9, 7};
     139             : 
     140             : /* FEC mode signaling polynomials */
     141             : 
     142             : #define EP_SIG_POLY_DEG 12
     143             : 
     144             : static const LC3_UINT8 sig_polys[4][15] = {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
     145             :                                         {7, 15, 5, 6, 14, 9, 1, 3, 12, 10, 13, 3, 2, 0, 0},
     146             :                                         {7, 11, 14, 1, 2, 3, 12, 11, 6, 15, 7, 6, 12, 0, 0},
     147             :                                         {6, 15, 12, 2, 9, 15, 2, 8, 12, 3, 10, 5, 4, 0, 0}};
     148             : 
     149             : static const LC3_UINT8 sig_poly_syndr[4][6] = {
     150             :     {0, 0, 0, 0, 0, 0}, {0, 4, 5, 11, 5, 8}, {0, 5, 9, 0, 1, 7}, {0, 12, 5, 12, 9, 8}};
     151             : 
     152             : /* bit count table for error report (0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111) */
     153             : 
     154             : static const LC3_UINT8 rs16_bit_count_table[] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
     155             : 
     156             : /* List of RS16 generators by Hamming distance */
     157             : 
     158             : static const LC3_UINT8 *const rs16_gp_by_hd[8] = {NULL, NULL, NULL, rs16_gp_d3, NULL, rs16_gp_d5, NULL, rs16_gp_d7};
     159             : 
     160             : /* fec config data */
     161             : 
     162             : static const LC3_UINT8 hamming_distance_by_mode0[] = {1, 3, 3, 5, 7};
     163             : static const LC3_UINT8 hamming_distance_by_mode1[] = {1, 1, 3, 5, 7};
     164             : 
     165             : static const LC3_UINT8 crc1_bytes_by_mode0[] = {0, 3, 2, 2, 2};
     166             : static const LC3_UINT8 crc1_bytes_by_mode1[] = {0, 3, 3, 3, 3};
     167             : static const LC3_UINT8 crc2_bytes_by_mode[]  = {0, 0, 2, 2, 2};
     168             : 
     169             : /* fec mode risk table */
     170             : typedef struct
     171             : {
     172             :     LC3_UINT32 mantissa;
     173             :     LC3_INT16  exponent;
     174             : } simple_float;
     175             : 
     176             : static const simple_float risk_table_f[4][4] = {{{16384, 0}, {16384, 0}, {16384, 0}, {16384, 0}},
     177             :                                                 {{16384, -8}, {26880, -1}, {16384, 0}, {16384, 0}},
     178             :                                                 {{16384, -16}, {26880, -9}, {20475, -2}, {16384, 0}},
     179             :                                                 {{16384, -24}, {26880, -17}, {20475, -10}, {19195, -4}}};
     180             : /* bit error limits for slot size 40 */
     181             : static LC3_INT16 const low_br_max_bit_errors_by_mode[] = {0, 0, 3, 9, 18};
     182             : 
     183             : /*
     184             : corresponding float values:
     185             :     {1.f, 1.f, 1.f, 1.f},
     186             :     {0.00390625f, 0.820312f, 1.f, 1.f},
     187             :     {1.52588e-05f, 0.00320435f, 0.312424f, 1.f},
     188             :     {5.96046e-08f, 1.2517e-05f, 0.00122041f, 0.0732243f}
     189             : */
     190             : 
     191             : /* internal encoder routines */
     192             : 
     193             : FEC_STATIC void fec_interleave_pack(LC3_UINT8 *out, LC3_UINT8 *in, LC3_INT16 n_nibbles, LC3_INT16 n_codewords);
     194             : 
     195             : FEC_STATIC void rs16_enc(LC3_UINT8 *iobuf, LC3_INT16 codeword_length, LC3_INT16 hamming_distance, LC3_INT16 fec_mode,
     196             :                          LC3_INT16 signal_mode);
     197             : 
     198             : /* internal decoder routines */
     199             : 
     200             : FEC_STATIC void fec_deinterleave_unpack(LC3_UINT8 *out, LC3_UINT8 *in, LC3_INT16 n_nibbles, LC3_INT16 n_codewords);
     201             : 
     202             : FEC_STATIC LC3_INT16 fec_data_preproc(LC3_INT16 mode, LC3_INT16 epmr, LC3_UINT8 *iobuf, LC3_UINT8 *cw_buf, LC3_INT16 data_bytes,
     203             :                                    LC3_INT16 slot_bytes, LC3_INT16 pc_split);
     204             : 
     205             : FEC_STATIC void fec_data_postproc(LC3_INT16 mode, LC3PLUS_EpModeRequest *epmr, LC3_UINT8 *iobuf, LC3_INT16 data_bytes, LC3_UINT8 *cw_buf,
     206             :                                   LC3_INT16 slot_bytes, LC3_INT16 pc_split, LC3_INT32 *bfi);
     207             : 
     208             : FEC_STATIC LC3_INT32 rs16_detect_and_correct(LC3_UINT8 *iobuf, LC3_INT32 n_symb, LC3_INT32 n_codewords, LC3PLUS_EpModeRequest *epmr, LC3_INT16 *error_report,
     209             :                                        LC3_INT32 *bfi, LC3_UINT8 *array_of_trust, LC3_INT32 ccc_flag_flag, LC3_INT16 *n_pccw);
     210             : 
     211             : FEC_STATIC void rs16_calculate_six_syndromes(LC3_UINT8 *syndromes, LC3_UINT8 *cw, LC3_INT32 cw_poly_deg);
     212             : 
     213             : FEC_STATIC void rs16_calculate_four_syndromes(LC3_UINT8 *syndromes, LC3_UINT8 *cw, LC3_INT32 cw_poly_deg);
     214             : 
     215             : FEC_STATIC void rs16_calculate_two_syndromes(LC3_UINT8 *syndromes, LC3_UINT8 *cw, LC3_INT32 cw_poly_deg);
     216             : 
     217             : FEC_STATIC LC3_INT8 rs16_calculate_elp(LC3_UINT8 *elp, LC3_UINT8 *syndromes, LC3_INT16 hamming_distance);
     218             : 
     219             : FEC_STATIC LC3_INT16 rs16_factorize_elp(LC3_UINT8 *error_locations, LC3_UINT8 *elp, LC3_INT16 deg_elp, LC3_INT16 max_pos);
     220             : 
     221             : FEC_STATIC void rs16_calculate_errors(LC3_UINT8 *errors, LC3_UINT8 *err_pos, LC3_UINT8 *syndromes, LC3_INT8 deg_elp, LC3_INT8 t);
     222             : 
     223             : /* auxiliary routines */
     224             : 
     225             : FEC_STATIC LC3_INT16 crc1(LC3_UINT8 *data, LC3_INT16 data_size, LC3_INT16 epmr, LC3_UINT8 *hash_val, LC3_INT16 hash_size, LC3_INT16 check);
     226             : 
     227             : FEC_STATIC LC3PLUS_EpModeRequest fec_estimate_epmr_from_cw0(LC3_UINT8 *cw0, LC3_INT8 *t, LC3_UINT8 *syndromes, LC3_UINT8 *elp, LC3_INT8 *deg_elp,
     228             :                                             LC3_UINT8 *err_pos, LC3_UINT8 *err_symb, LC3_INT16 n_codewords, LC3_INT16 n_symb);
     229             : 
     230             : FEC_STATIC void dw0_bitswap(LC3_UINT8 *dw0, LC3_INT16 mode, LC3_INT16 slot_bytes);
     231             : 
     232             : FEC_STATIC LC3PLUS_EpModeRequest cw0_get_epmr(LC3_UINT8 *cw0, LC3_INT16 epmr_position);
     233             : 
     234             : FEC_STATIC LC3PLUS_EpModeRequest dw0_get_epmr(LC3_UINT8 *dw0, LC3_INT16 mode, LC3_INT16 slot_size);
     235             : 
     236             : FEC_STATIC LC3_INT16 crc2(LC3_UINT8 *data, LC3_INT16 data_size, LC3_UINT8 *hash_val, LC3_INT16 hash_size, LC3_INT16 check);
     237             : 
     238             : FEC_STATIC simple_float simple_float_mul(simple_float op1, simple_float op2);
     239             : 
     240             : FEC_STATIC LC3_INT16 simple_float_cmp(simple_float op1, simple_float op2);
     241             : 
     242             : FEC_STATIC LC3_INT16 get_total_crc_size(LC3_INT16 slot_bytes, LC3_INT16 fec_mode, LC3_INT16 pc_split);
     243             : 
     244             : FEC_STATIC LC3_INT16 get_n_codewords(LC3_INT16 slot_bytes);
     245             : 
     246             : FEC_STATIC LC3_INT16 get_codeword_length(LC3_INT16 n_codewords, LC3_INT16 slot_nibbles, LC3_INT16 codeword_index);
     247             : 
     248             : 
     249             : 
     250           0 : LC3_INT16 fec_get_n_pccw(LC3_INT16 slot_bytes, LC3_INT16 fec_mode, LC3_INT16 ccc_flag)
     251             : {
     252             :     LC3_INT16 n_pccw;
     253             : 
     254           0 :     if (fec_mode ==  3)
     255             :     {
     256           0 :         n_pccw = (LC3_INT16) (0.080447761194030 * slot_bytes - 1.791044776119394 + 0.5);
     257             :     }
     258           0 :     else if (fec_mode == 4)
     259             :     {
     260           0 :         n_pccw = (LC3_INT16) (0.066492537313433 * slot_bytes - 1.970149253731338 + 0.5);
     261             :     }
     262             :     else
     263             :     {
     264           0 :         n_pccw = 0;
     265             :     }
     266             : 
     267           0 :     if (ccc_flag == 1 || slot_bytes < 80)
     268             :     {
     269           0 :         n_pccw = 0;
     270             :     }
     271             : 
     272           0 :     return n_pccw;
     273             : }
     274             : 
     275           0 : FEC_STATIC LC3_INT16 get_total_crc_size(LC3_INT16 slot_bytes, LC3_INT16 fec_mode, LC3_INT16 pc_split)
     276             : {
     277             :         LC3_INT16 n_crc;
     278             : 
     279           0 :     n_crc = crc1_bytes_by_mode1[fec_mode];
     280           0 :     if (slot_bytes == 40)
     281             :     {
     282           0 :         n_crc = crc1_bytes_by_mode0[fec_mode];
     283             :     }
     284             : 
     285           0 :     if (pc_split > 0)
     286             :     {
     287           0 :         n_crc = n_crc + crc2_bytes_by_mode[fec_mode];
     288             :     }
     289             : 
     290             :      
     291             :     
     292           0 :     return n_crc;
     293             : }
     294             : 
     295           0 : FEC_STATIC LC3_INT16 get_n_codewords(LC3_INT16 slot_bytes)
     296             : {
     297           0 :     return (2*slot_bytes + 14)/15;
     298             : }
     299             : 
     300           0 : FEC_STATIC LC3_INT16 get_codeword_length(LC3_INT16 n_codewords, LC3_INT16 slot_nibbles, LC3_INT16 codeword_index)
     301             : {
     302           0 :     return (slot_nibbles - codeword_index - 1) / n_codewords + 1;
     303             : }
     304             : 
     305             : /* Encoder */
     306             : 
     307           0 : LC3_INT16 fec_get_data_size(LC3_INT16 fec_mode, LC3_INT16 ccc_flag, LC3_INT16 slot_bytes)
     308             : /* not time critical */
     309             : {
     310             :         LC3_INT16 n_codewords, payload_size;
     311             : 
     312           0 :     n_codewords = get_n_codewords(slot_bytes);
     313             : 
     314           0 :     assert(n_codewords == (2 * slot_bytes + RS16_CW_LEN_MAX - 1) / RS16_CW_LEN_MAX);
     315           0 :     payload_size = slot_bytes;
     316             : 
     317           0 :     if (fec_mode > 0)
     318             :     {
     319           0 :         if (fec_mode == 1)
     320             :         {
     321           0 :             payload_size --;
     322             :         }
     323             :         else
     324             :         {
     325           0 :             payload_size -= (fec_mode - 1) * n_codewords;
     326             :         }
     327           0 :         if (slot_bytes == 40)
     328             :         {
     329           0 :             payload_size -= crc1_bytes_by_mode0[fec_mode];
     330             :         }
     331             :         else
     332             :         {
     333           0 :             payload_size -= crc1_bytes_by_mode1[fec_mode];
     334             :         }
     335             : 
     336           0 :         if (ccc_flag == 0 && fec_mode > 2 && slot_bytes >= 80)
     337             :         {
     338           0 :             payload_size -= crc2_bytes_by_mode[fec_mode];
     339             :         }
     340             :     }
     341             :     
     342             :      
     343             : 
     344           0 :     return payload_size;
     345             : }
     346             : 
     347           0 : LC3_INT16 fec_get_n_pc(LC3_INT16 fec_mode, LC3_INT16 n_pccw, LC3_INT16 slot_bytes)
     348             : /* not time critical */
     349             : {
     350             :         LC3_INT16 n_codewords, pc_split;
     351             :         LC3_INT32    i;
     352             : 
     353           0 :     n_codewords = get_n_codewords(slot_bytes);
     354             : 
     355           0 :     assert(n_codewords == (2 * slot_bytes + RS16_CW_LEN_MAX - 1) / RS16_CW_LEN_MAX);
     356             : 
     357           0 :     pc_split = - 2*n_pccw*(fec_mode - 1);
     358             : 
     359           0 :     if (fec_mode == 1 || slot_bytes < 80)
     360             :     {
     361           0 :         pc_split = 0;
     362             :     }
     363             :     else
     364             :     {
     365           0 :         for (i = 0; i < n_pccw; i++)
     366             :         {
     367           0 :             pc_split += (2 * slot_bytes + i) / n_codewords;
     368             :         }
     369             :     }
     370             :     
     371             :      
     372             : 
     373           0 :     return pc_split;
     374             : }
     375             : 
     376             : /* functions for EPMR handling */
     377           0 : FEC_STATIC void dw0_bitswap(LC3_UINT8 *dw0, LC3_INT16 mode, LC3_INT16 slot_bytes)
     378             : /* swap epmr bits with bits that will be positioned at 30 and 32 in code word 0 */
     379             : {
     380             :         LC3_UINT8 tmp;
     381             :         LC3_INT32    ind0, ind1, position;
     382             : 
     383           0 :     position = get_codeword_length(get_n_codewords(slot_bytes), 2*slot_bytes, 0) - 1;
     384             : 
     385           0 :     if (slot_bytes == 40)
     386             :     {
     387           0 :         ind0 = 2*crc1_bytes_by_mode0[mode] - 1;
     388             :     }
     389             :     else
     390             :     {
     391           0 :         ind0 = 2*crc1_bytes_by_mode1[mode] - 1;
     392             :     }
     393             : 
     394           0 :     ind1 = position - hamming_distance_by_mode0[mode] + 1;
     395             : 
     396             :     /* swap bits 2 and 3 of dw0[ind0] with bits 0 and 1 of dw0[ind1] */
     397           0 :     tmp = (dw0[ind0] >> 2) & 3;
     398           0 :     dw0[ind0] = dw0[ind0] & 3;
     399           0 :     dw0[ind0] = dw0[ind0] | ((dw0[ind1] & 3) << 2);
     400           0 :     dw0[ind1] = dw0[ind1] & 12;
     401           0 :     dw0[ind1] = dw0[ind1] | tmp;
     402             : 
     403             :      
     404           0 : }
     405             : 
     406           0 : FEC_STATIC LC3PLUS_EpModeRequest cw0_get_epmr(LC3_UINT8 *cw0, LC3_INT16 position)
     407             : {
     408           0 :     return (LC3PLUS_EpModeRequest)(cw0[position] & 3);
     409             : }
     410             : 
     411           0 : FEC_STATIC LC3PLUS_EpModeRequest dw0_get_epmr(LC3_UINT8 *dw0, LC3_INT16 mode, LC3_INT16 slot_size)
     412             : {
     413             :         LC3_INT32    ncrc1;
     414             :         LC3PLUS_EpModeRequest epmr;
     415             : 
     416           0 :     ncrc1 = crc1_bytes_by_mode1[mode];
     417             : 
     418           0 :     if (slot_size == 40)
     419             :     {
     420           0 :         ncrc1 = crc1_bytes_by_mode0[mode];
     421             :     }
     422             : 
     423           0 :     epmr = (LC3PLUS_EpModeRequest)(dw0[2 * ncrc1 - 1] >> 2);
     424             :     
     425             :      
     426             : 
     427           0 :     return epmr;
     428             : }
     429             : 
     430             : 
     431           0 : FEC_STATIC LC3_INT16 fec_data_preproc(LC3_INT16 mode, LC3_INT16 epmr, LC3_UINT8 *iobuf, LC3_UINT8 *cw_buf, LC3_INT16 data_bytes,
     432             :                                    LC3_INT16 slot_bytes, LC3_INT16 pc_split)
     433             : {
     434             :         LC3_INT16 data_offset, n_crc1, n_crc2;
     435             :         LC3_INT32    i, j;
     436             : 
     437           0 :     data_offset = 2*(slot_bytes - data_bytes);
     438             : 
     439             :     /* extract and reverse data*/
     440           0 :     j = 2*slot_bytes - 1;
     441           0 :     for (i = 0; i < data_bytes; i++)
     442             :     {
     443           0 :         cw_buf[j--] = iobuf[i] & 15;
     444           0 :         cw_buf[j--] = iobuf[i] >> 4;
     445             :     }
     446             : 
     447             :     /* add crc hashes */
     448           0 :     if (slot_bytes == 40)
     449             :     {
     450           0 :         n_crc1 = crc1_bytes_by_mode0[mode];
     451             :     }
     452             :     else
     453             :     {
     454           0 :         n_crc1 = crc1_bytes_by_mode1[mode];
     455             :     }
     456             : 
     457           0 :     if (pc_split > 0 && mode > 1)
     458             :     {
     459           0 :         n_crc2 = crc2_bytes_by_mode[mode];
     460             :     }
     461             :     else
     462             :     {
     463           0 :         n_crc2 = 0;
     464             :     }
     465             : 
     466           0 :     if (n_crc2)
     467             :     {
     468           0 :         crc2(cw_buf + data_offset + 2 * data_bytes - pc_split, pc_split, cw_buf + data_offset - 2 * n_crc2, n_crc2, 0);
     469             :     }
     470           0 :     if (n_crc1)
     471             :     {
     472           0 :         crc1(cw_buf + data_offset, 2 * data_bytes - pc_split, epmr, cw_buf + data_offset - 2 * (n_crc1 + n_crc2), n_crc1,
     473             :              0);
     474             :     }
     475             : 
     476           0 :     data_offset -= 2* (n_crc1 + n_crc2);
     477             : 
     478           0 :     dw0_bitswap(cw_buf + data_offset, mode, slot_bytes);
     479             :     
     480             :      
     481             : 
     482           0 :     return data_offset;
     483             : }
     484             : 
     485           0 : void fec_encoder(LC3_INT16 mode, LC3_INT16 epmr, LC3_UINT8 *iobuf, LC3_INT16 data_bytes, LC3_INT16 slot_bytes, LC3_INT16 n_pccw)
     486             : {
     487             :     LC3_INT16  n_codewords, codeword_length, hd, redundancy_nibbles, cw_offset, dw_offset, pc_split;
     488             :     LC3_INT32     i, j;
     489             :     LC3_UINT8 cw_buf[2 * FEC_SLOT_BYTES_MAX];
     490             : 
     491           0 :     cw_offset = 0;
     492           0 :     dw_offset = 0;
     493           0 :     pc_split  = 0;
     494             : 
     495           0 :     n_codewords = get_n_codewords(slot_bytes);
     496             : 
     497             :     /* some sanity checks */
     498             :     {
     499           0 :         LC3_INT32 tmp = slot_bytes;
     500             :         
     501           0 :         assert((slot_bytes >= FEC_SLOT_BYTES_MIN && slot_bytes <= FEC_SLOT_BYTES_MAX) &&
     502             :                "fec_encoder: slot_bytes out of range");
     503           0 :         tmp -= mode == 1 ? 1 : n_codewords * (mode - 1);                                 // reed solomon redundancy
     504           0 :         tmp -= slot_bytes == 40 ? crc1_bytes_by_mode0[mode] : crc1_bytes_by_mode1[mode]; // crc1
     505           0 :         tmp -= (n_pccw > 0) && (mode > 1) ? crc2_bytes_by_mode[mode] : 0;                // crc2
     506           0 :         assert(data_bytes == tmp && "fec_encoder: inconsistent payload size");
     507           0 :         assert(n_codewords - n_pccw >= 6);
     508             :     }
     509             : 
     510             :     /* data preproc: re-ordering and hash extension */
     511           0 :     pc_split = fec_get_n_pc(mode, n_pccw, slot_bytes);
     512             : 
     513           0 :     dw_offset = fec_data_preproc(mode, epmr, iobuf, cw_buf, data_bytes, slot_bytes, pc_split);
     514             : 
     515             :     /* encoding of first data word*/
     516           0 :     hd                 = hamming_distance_by_mode0[mode];
     517           0 :     redundancy_nibbles = hd - 1;
     518           0 :     codeword_length    = get_codeword_length(n_codewords, 2 * slot_bytes, 0);
     519             : 
     520           0 :     assert(codeword_length == (2 * slot_bytes - 1) / n_codewords + 1);
     521             : 
     522           0 :     for (j = redundancy_nibbles; j < codeword_length; (j++, dw_offset++))
     523             :     {
     524           0 :         cw_buf[j] = cw_buf[dw_offset];
     525             :     }
     526             : 
     527           0 :     rs16_enc(cw_buf, codeword_length, hd, mode, 1);
     528             : 
     529           0 :     cw_offset += codeword_length;
     530             : 
     531             :     /* encoding of remaining data words */
     532           0 :     hd                 = hamming_distance_by_mode1[mode];
     533           0 :     redundancy_nibbles = hd - 1;
     534             : 
     535           0 :     for (i = 1; i < n_codewords; i++)
     536             :     {
     537           0 :         codeword_length = get_codeword_length(n_codewords, 2*slot_bytes, i);
     538             : 
     539           0 :         for (j = redundancy_nibbles; j < codeword_length; (j++, dw_offset++))
     540             :         {
     541           0 :             cw_buf[cw_offset + j] = cw_buf[dw_offset];
     542             :         }
     543             : 
     544           0 :         rs16_enc(cw_buf + cw_offset, codeword_length, hd, mode, i < 6);
     545             : 
     546           0 :         cw_offset += codeword_length;
     547             :     }
     548             : 
     549           0 :     assert(cw_offset == 2 * slot_bytes && dw_offset == 2 * slot_bytes);
     550             : 
     551           0 :     fec_interleave_pack(iobuf, cw_buf, 2 * slot_bytes, n_codewords);
     552             : 
     553             :      
     554           0 : }
     555             : 
     556           0 : FEC_STATIC void rs16_enc(LC3_UINT8 *iobuf, LC3_INT16 codeword_length, LC3_INT16 hamming_distance, LC3_INT16 fec_mode,
     557             :                          LC3_INT16 signal_mode)
     558             : /* expects (data polynomial) * x^(hamming_distance - 1) in iobuf */
     559             : {
     560             :         LC3_UINT8 const *gp;
     561             :         LC3_UINT8        shift_buffer[RS16_CW_LEN_MAX + 1], lc;
     562             :         LC3_INT32          i, j, deg_gp;
     563             : 
     564           0 :     memset(shift_buffer, 0, sizeof(shift_buffer));
     565           0 :     gp     = rs16_gp_by_hd[hamming_distance];
     566           0 :     deg_gp = hamming_distance - 1;
     567             : 
     568           0 :     if (hamming_distance > 1)
     569             :     {
     570           0 :         assert(codeword_length > deg_gp);
     571             : 
     572             :         /* initialize redundancy part to zero */
     573           0 :         memset(iobuf, 0, deg_gp);
     574             : 
     575             :         /* initialize shift_buffer */
     576           0 :         memmove(shift_buffer + 1, iobuf + codeword_length - deg_gp, deg_gp);
     577             : 
     578             :         /* calculate remainder */
     579           0 :         for (i = codeword_length - deg_gp - 1; i >= 0; i--)
     580             :         {
     581           0 :             shift_buffer[0] = iobuf[i];
     582           0 :             lc              = shift_buffer[deg_gp] << 4;
     583             : 
     584           0 :             for (j = deg_gp - 1; j >= 0; j--)
     585             :             {
     586           0 :                 shift_buffer[j + 1] = GF16_ADD(shift_buffer[j], GF16_MUL0(gp[j], lc));
     587             :             }
     588             :         }
     589             : 
     590             :         /* add remainder to shifted data polynomial */
     591           0 :         for (i = 0; i < deg_gp; i++)
     592             :         {
     593           0 :             iobuf[i] = shift_buffer[i + 1];
     594             :         }
     595             : 
     596             :         /* add signaling polynomial */
     597           0 :         if (signal_mode)
     598             :         {
     599           0 :             assert(codeword_length > EP_SIG_POLY_DEG);
     600           0 :             for (i = 0; i <= EP_SIG_POLY_DEG; i++)
     601             :             {
     602           0 :                 iobuf[i] = GF16_ADD(iobuf[i], sig_polys[fec_mode - 1][i]);
     603             :             }
     604             :         }
     605             :     }
     606             : 
     607             :      
     608           0 : }
     609             : 
     610           0 : FEC_STATIC void fec_interleave_pack(LC3_UINT8 *out, LC3_UINT8 *in, LC3_INT16 n_nibbles, LC3_INT16 n_codewords)
     611             : {
     612             :         LC3_INT16 out_offset, cw_offset, codeword_length;
     613             :         LC3_INT32   i, j;
     614             : 
     615           0 :     out_offset = 0;
     616           0 :     cw_offset  = 0;
     617             : 
     618             :     /* initialize output buffer to zero */
     619           0 :     memset(out, 0, n_nibbles >> 1);
     620             : 
     621             :     /* interleave and pack codewords */
     622           0 :     for (i = 0; i < n_codewords; i++)
     623             :     {
     624           0 :         codeword_length = get_codeword_length(n_codewords, n_nibbles, i);
     625             : 
     626           0 :         for (j = 0; j < codeword_length; j++)
     627             :         {
     628           0 :                 out_offset = n_nibbles - 1 - j*n_codewords - i;
     629           0 :             out[out_offset >> 1] |= in[cw_offset] << ((out_offset & 1) << 2);
     630           0 :             cw_offset = cw_offset + 1;
     631             :         }
     632             :     }
     633             : 
     634             :      
     635           0 :     assert(cw_offset == n_nibbles);
     636           0 : }
     637             : 
     638             : /* Decoder */
     639           0 : FEC_STATIC void fec_data_postproc(LC3_INT16 mode, LC3PLUS_EpModeRequest *epmr, LC3_UINT8 *obuf, LC3_INT16 data_bytes, LC3_UINT8 *cw_buf,
     640             :                                   LC3_INT16 slot_bytes, LC3_INT16 pc_split, LC3_INT32 *bfi)
     641             : {
     642             :         LC3_INT16 i;
     643             :         LC3_INT16 n_crc1, n_crc2;
     644             :         LC3_INT16 cw_buf_len;
     645             :         LC3PLUS_EpModeRequest tmp_epmr;
     646             : 
     647           0 :     n_crc1 = crc1_bytes_by_mode1[mode];
     648           0 :     if (slot_bytes == 40)
     649             :     {
     650           0 :         n_crc1 = crc1_bytes_by_mode0[mode];
     651             :     }
     652             : 
     653           0 :     n_crc2 = 0;
     654           0 :     if (pc_split > 0)
     655             :     {
     656           0 :         n_crc2 = crc2_bytes_by_mode[mode];
     657             :     }
     658             : 
     659           0 :     assert(n_crc1 == (slot_bytes == 40 ? crc1_bytes_by_mode0[mode] : crc1_bytes_by_mode1[mode]));
     660           0 :     assert(n_crc2 == ((pc_split > 0) && (mode > 1) ? crc2_bytes_by_mode[mode] : 0));
     661             : 
     662           0 :     cw_buf_len = 2 * (data_bytes + n_crc1 + n_crc2);
     663             : 
     664           0 :     if ((mode - 1))
     665             :     {
     666             :         /* reverse bit-swap */
     667           0 :         dw0_bitswap(cw_buf, mode, slot_bytes);
     668           0 :         tmp_epmr = dw0_get_epmr(cw_buf, mode, slot_bytes);
     669             : 
     670           0 :         if (crc1(cw_buf + ((n_crc1 + n_crc2) << 1), ((data_bytes << 1) - pc_split), tmp_epmr, cw_buf, n_crc1, 1))
     671             :         {
     672           0 :             *bfi = 1;
     673             :              
     674           0 :             return;
     675             :         }
     676             :         else
     677             :         {
     678           0 :             *epmr = tmp_epmr;
     679             :         }
     680             :     }
     681             : 
     682           0 :     if (pc_split > 0 && *bfi != 2)
     683             :     {
     684           0 :         if (crc2(cw_buf + (((data_bytes + (n_crc1 + n_crc2)) << 1) - pc_split), pc_split,
     685           0 :                  cw_buf + (n_crc1 << 1), n_crc2, 1))
     686             :         {
     687           0 :             *bfi = 2;
     688             :         }
     689             :     }
     690             : 
     691           0 :     for (i = 0; i < data_bytes; i++)
     692             :     {
     693           0 :         obuf[i] = (LC3_UINT8)(cw_buf[cw_buf_len - 2 * i - 1] | (cw_buf[cw_buf_len - 2 * i - 2] << 4));
     694             :     }
     695             : 
     696             :      
     697             : }
     698             : 
     699           0 : LC3_INT32 fec_decoder(LC3_UINT8 *iobuf, LC3_INT16 slot_bytes, LC3_INT32 *data_bytes, LC3PLUS_EpModeRequest *epmr, LC3_INT16 ccc_flag, LC3_INT16 *n_pccw,
     700             :                 LC3_INT32 *bfi, LC3_INT16 *be_bp_left, LC3_INT16 *be_bp_right, LC3_INT16 *n_pc, LC3_INT16 *m_fec)
     701             : {
     702             :         LC3_UINT8 cw_buf[2 * FEC_SLOT_BYTES_MAX];
     703             :         LC3_UINT8 array_of_trust[MAX_LEN];
     704             :         LC3_INT16  i, j;
     705             :         LC3_INT16  cw_offset, dw_offset;
     706             :         LC3_INT16  n_codewords, redundancy_nibbles, codeword_length;
     707             :         LC3_INT16  mode, error_report;
     708             :         LC3_INT16  n_crc;
     709             :         LC3_INT16  first_bad_cw;
     710             :         LC3_INT16  pc_split;
     711             :     
     712             :     UNUSED(n_crc);
     713             :     
     714             : 
     715           0 :     if (*bfi == 1)
     716             :     {
     717           0 :         return ERROR_REPORT_BEC_MASK;
     718             :     }
     719             : 
     720           0 :     if (slot_bytes < FEC_SLOT_BYTES_MIN || slot_bytes > FEC_SLOT_BYTES_MAX)
     721             :     {
     722           0 :         *bfi = 1;
     723             :          
     724           0 :         return ERROR_REPORT_BEC_MASK;
     725             :     }
     726             : 
     727           0 :     if (ccc_flag == 0)
     728             :     {
     729           0 :         *be_bp_left = -1;
     730           0 :         *be_bp_right = -1;
     731             :     }
     732             : 
     733           0 :     n_codewords = get_n_codewords(slot_bytes);
     734             : 
     735             :     /* extract and de-interleave nibbles */
     736           0 :     fec_deinterleave_unpack(cw_buf, iobuf, 2 * slot_bytes, n_codewords);
     737             : 
     738             :     /* mode detection and error correction */
     739           0 :     mode = rs16_detect_and_correct(cw_buf, 2 * slot_bytes, n_codewords, epmr, &error_report, bfi, array_of_trust,
     740             :                                    ccc_flag, n_pccw);
     741             : 
     742             :     /* for normal slots the maximal number of bit errors is limited */
     743             : #ifndef APPLY_MAX_ERRORS
     744           0 :     if (slot_bytes == 40 && mode > 0)
     745             :     {
     746           0 :     if ((error_report & ERROR_REPORT_BEC_MASK) > low_br_max_bit_errors_by_mode[mode])
     747             :     {
     748           0 :         error_report &= ERROR_REPORT_BEC_MASK;
     749           0 :             mode = -1;
     750           0 :             *bfi = 1;
     751             :         }
     752             :         else
     753             :         {
     754           0 :             if ((error_report & ERROR_REPORT_BEC_MASK) > low_br_max_bit_errors_by_mode[2])
     755             :             {
     756           0 :                 error_report &= ~ERROR_REPORT_EP2_OK;
     757             :             }
     758           0 :             if ((error_report & ERROR_REPORT_BEC_MASK) > low_br_max_bit_errors_by_mode[3])
     759             :             {
     760           0 :                 error_report &= ~ERROR_REPORT_EP3_OK;
     761             :             }
     762             :         }
     763             :     }
     764             : #endif
     765             :     
     766           0 :     if (*bfi == 1)
     767             :     {
     768           0 :         *data_bytes = 0;
     769             : 
     770             :          
     771           0 :         return error_report;
     772             :     }
     773             : 
     774             :     /* initialization for decoding */
     775           0 :     *data_bytes = fec_get_data_size(mode, ccc_flag, slot_bytes);
     776           0 :     pc_split    = fec_get_n_pc(mode, *n_pccw, slot_bytes);
     777           0 :     n_crc       = get_total_crc_size(slot_bytes, mode, pc_split);
     778             : 
     779             :     /* decoding of first code word */
     780           0 :     redundancy_nibbles = hamming_distance_by_mode0[mode] - 1;
     781           0 :     codeword_length    = get_codeword_length(n_codewords, slot_bytes + slot_bytes, 0);
     782             : 
     783           0 :     dw_offset = 0;
     784           0 :     cw_offset = 0;
     785             : 
     786           0 :     for (j = redundancy_nibbles; j < codeword_length; j++)
     787             :     {
     788           0 :         cw_buf[dw_offset++] = cw_buf[j];
     789             :     }
     790           0 :     cw_offset = cw_offset + codeword_length;
     791             : 
     792             :     /* decoding of remaining code words */
     793           0 :     redundancy_nibbles = hamming_distance_by_mode1[mode] - 1;
     794             : 
     795           0 :     for (i = 1; i < n_codewords; i++)
     796             :     {
     797           0 :         codeword_length = get_codeword_length(n_codewords, slot_bytes + slot_bytes, i);
     798             : 
     799           0 :         for (j = redundancy_nibbles; j < codeword_length; j++)
     800             :         {
     801           0 :             cw_buf[dw_offset++] = cw_buf[j + cw_offset];
     802             :         }
     803             : 
     804           0 :         cw_offset = cw_offset + codeword_length;
     805             :     }
     806             : 
     807             :     /* data postproc: hash validation and re-ordering */
     808             : 
     809           0 :     fec_data_postproc(mode, epmr, iobuf, *data_bytes, cw_buf, slot_bytes, pc_split, bfi);
     810             : 
     811           0 :     if (*bfi == 1)
     812             :     {
     813           0 :         *data_bytes = 0;
     814             : 
     815           0 :         error_report &= ERROR_REPORT_BEC_MASK;
     816             : 
     817             :          
     818           0 :         return error_report;
     819             :     }
     820             : 
     821           0 :     if (*bfi == 2)
     822             :     {
     823           0 :         first_bad_cw            = 0;
     824           0 :         array_of_trust[*n_pccw] = 0;
     825           0 :         while (array_of_trust[first_bad_cw] != 0)
     826             :         {
     827           0 :             first_bad_cw = first_bad_cw + 1;
     828             :         }
     829           0 :         if (first_bad_cw == *n_pccw)
     830             :         {
     831             :             /* this is the case when CRC failed */
     832           0 :             *be_bp_left = 0;
     833             :         }
     834             :         else
     835             :         {
     836           0 :             *be_bp_left = 4*fec_get_n_pc(mode, first_bad_cw, slot_bytes);
     837             :         }
     838             : 
     839           0 :         for (i = *n_pccw - 1; i >= 0; i--)
     840             :         {
     841           0 :             if (!array_of_trust[i])
     842             :             {
     843           0 :                 break;
     844             :             }
     845             :         }
     846           0 :         if (i < 0)
     847             :         {
     848           0 :             i = *n_pccw - 1;
     849             :         }
     850           0 :         *be_bp_right = 4*fec_get_n_pc(mode, i + 1, slot_bytes) - 1;
     851             :     }
     852             : 
     853           0 :     if (ccc_flag == 0)
     854             :     {
     855           0 :         *n_pc  = pc_split;
     856           0 :         *m_fec = mode;
     857             :     }
     858             : 
     859             :      
     860           0 :     return error_report;
     861             : }
     862             : 
     863           0 : FEC_STATIC void fec_deinterleave_unpack(LC3_UINT8 *out, LC3_UINT8 *in, LC3_INT16 n_nibbles, LC3_INT16 n_codewords)
     864             : {
     865             :         LC3_INT16 in_offset, out_offset, codeword_length;
     866             :         LC3_INT32   i, j;
     867             : 
     868           0 :     in_offset  = 0;
     869           0 :     out_offset = 0;
     870             : 
     871             :     /* unpack nibbles in input buffer and deinterleave codewords */
     872           0 :     for (i = 0; i < n_codewords; i++)
     873             :     {
     874           0 :         codeword_length = get_codeword_length(n_codewords, n_nibbles, i);
     875           0 :         for (j = 0; j < codeword_length; (j++, out_offset++))
     876             :         {
     877           0 :             in_offset = n_nibbles - 1 - j*n_codewords - i;
     878           0 :             out[out_offset] = (in[in_offset >> 1] >> ((in_offset & 1) << 2)) & 15;
     879             :         }
     880             :     }
     881             : 
     882             :      
     883           0 :     assert(out_offset == n_nibbles);
     884             : 
     885           0 : }
     886             : 
     887           0 : FEC_STATIC LC3PLUS_EpModeRequest fec_estimate_epmr_from_cw0(LC3_UINT8 *cw0, LC3_INT8 *t, LC3_UINT8 *syndromes, LC3_UINT8 *elp, LC3_INT8 *deg_elp,
     888             :                                             LC3_UINT8 *err_pos, LC3_UINT8 *err_symb, LC3_INT16 n_codewords, LC3_INT16 n_symb)
     889             : {
     890             :         LC3_INT32    epmr_lowest_risk_exp;
     891             :         LC3_INT32    start, inc, i, n_candidates;
     892             :         LC3_INT32    first_codeword_length;
     893             :         LC3_INT32    mode_counter;
     894             :         LC3PLUS_EpModeRequest  epmr;
     895             : 
     896           0 :     epmr_lowest_risk_exp   = 0;
     897           0 :     first_codeword_length = get_codeword_length(n_codewords, n_symb, 0);
     898           0 :     start                 = 2;
     899           0 :     inc                   = 1;
     900           0 :     n_candidates          = 0;
     901             : 
     902             :     /* test if first code word decodes in mode 0 or 1 without error correction */
     903           0 :     if ((syndromes[SYNDROME_IDX(0, 0)] | syndromes[SYNDROME_IDX(0, 0) + 1]) == 0 ||
     904           0 :         (syndromes[SYNDROME_IDX(1, 0)] | syndromes[SYNDROME_IDX(1, 0) + 1]) == 0)
     905             :     {
     906           0 :         epmr_lowest_risk_exp = risk_table_f[1][0].exponent;
     907             :     }
     908             :     /* test if first code word decodes in mode 2 or 3 with lower risk */
     909           0 :     if (deg_elp[DEG_ELP_IDX(2, 0)] <= t[2])
     910             :     {
     911           0 :         if (risk_table_f[2][deg_elp[DEG_ELP_IDX(2, 0)]].exponent <= -8)
     912             :         {
     913           0 :             n_candidates++;
     914           0 :             start = 2;
     915             :         }
     916             :     }
     917             : 
     918           0 :     if (deg_elp[DEG_ELP_IDX(3, 0)] <= t[3])
     919             :     {
     920           0 :         if (risk_table_f[3][deg_elp[DEG_ELP_IDX(3, 0)]].exponent <= -8)
     921             :         {
     922           0 :             n_candidates++;
     923           0 :             start = 3;
     924             :         }
     925             :     }
     926             : 
     927           0 :     if (n_candidates > 1)
     928             :     {
     929             :         /* decide on order if mode 2 and 3 are considered */
     930           0 :         if (simple_float_cmp(risk_table_f[2][deg_elp[DEG_ELP_IDX(2, 0)]], risk_table_f[3][deg_elp[DEG_ELP_IDX(3, 0)]]) <
     931             :             0)
     932             :         {
     933           0 :             start = 2;
     934           0 :             inc   = 1;
     935             :         }
     936             :         else
     937             :         {
     938           0 :             start = 3;
     939           0 :             inc   = -1;
     940             :         }
     941             :     }
     942             : 
     943           0 :     for (mode_counter = start, i = 0; i < n_candidates; mode_counter += inc, i++)
     944             :     {
     945           0 :         if (risk_table_f[mode_counter][deg_elp[DEG_ELP_IDX(mode_counter, 0)]].exponent < epmr_lowest_risk_exp)
     946             :         {
     947           0 :             if (!rs16_factorize_elp(err_pos + ERR_POS_IDX(mode_counter, 0), elp + ELP_IDX(mode_counter, 0),
     948           0 :                                     deg_elp[DEG_ELP_IDX(mode_counter, 0)], first_codeword_length - 1))
     949             :             {
     950             :                 /* code word is decodable with error correction */
     951           0 :                 epmr_lowest_risk_exp = risk_table_f[mode_counter][deg_elp[DEG_ELP_IDX(mode_counter, 0)]].exponent;
     952             : 
     953           0 :                 rs16_calculate_errors(err_symb + ERR_SYMB_IDX(mode_counter, 0), err_pos + ERR_POS_IDX(mode_counter, 0),
     954           0 :                                       syndromes + SYNDROME_IDX(mode_counter, 0), deg_elp[DEG_ELP_IDX(mode_counter, 0)],
     955           0 :                                       t[mode_counter]);
     956             : 
     957           0 :                 for (i = 0; i < deg_elp[DEG_ELP_IDX(mode_counter, 0)]; i++)
     958             :                 {
     959           0 :                     cw0[err_pos[ERR_POS_IDX(mode_counter, 0) + i]] = GF16_ADD(
     960             :                         cw0[err_pos[ERR_POS_IDX(mode_counter, 0) + i]], err_symb[ERR_SYMB_IDX(mode_counter, 0) + i]);
     961             :                 }
     962           0 :                 break;
     963             :             }
     964             :         }
     965             :     }
     966             : 
     967           0 :     epmr = cw0_get_epmr(cw0, first_codeword_length - 1);
     968             : 
     969           0 :     if (epmr_lowest_risk_exp > -16)
     970             :     {
     971           0 :         epmr += 4;
     972             :     }
     973           0 :     if (epmr_lowest_risk_exp > -8)
     974             :     {
     975           0 :         epmr += 4;
     976             :     }
     977             : 
     978             :      
     979           0 :     return epmr;
     980             : }
     981             : 
     982           0 : FEC_STATIC LC3_INT32 rs16_detect_and_correct(LC3_UINT8 *iobuf, LC3_INT32 n_symb, LC3_INT32 n_codewords, LC3PLUS_EpModeRequest *epmr, LC3_INT16 *error_report,
     983             :                                        LC3_INT32 *bfi, LC3_UINT8 *array_of_trust, LC3_INT32 ccc_flag, LC3_INT16 *n_pccw)
     984             : {
     985             : 
     986             :         LC3_INT16        mode_broken[4];
     987             :         LC3_INT16        error_report_ep_ok[4];
     988             :         LC3_INT16       i, cw_counter, mode_counter, cw_offset;
     989             :         LC3_INT16       codeword_length;
     990             :         LC3_INT16       mode;
     991             :         LC3_INT16       mode_candidates[4];
     992             :         LC3_INT16       n_mode_candidates;
     993             :         LC3_INT16       broken_cw, n_broken_cw;
     994             :         LC3_INT16       j, idx_min;
     995             :         LC3_INT16       n_pccw0;
     996             :         simple_float val_min_f;
     997             :         LC3_INT16       tmp;
     998             :         LC3_INT16       epmr_position;
     999             :         simple_float dec_risk_f[FEC_N_MODES];
    1000             :         simple_float risk_min_f;
    1001             :         simple_float ep_risk_thresh;
    1002             :         LC3_INT32 epmr_dec_fail_increment;
    1003             :         LC3_UINT8 const *hamming_distance;
    1004             :         LC3_UINT8        syndromes[FEC_TOTAL_SYNDROME_SIZE];
    1005             :         LC3_UINT8        elp[FEC_TOTAL_ELP_SIZE];
    1006             :         LC3_UINT8        err_pos[FEC_TOTAL_ERR_POS_SIZE];
    1007             :         LC3_UINT8        err_symb[FEC_TOTAL_ERROR_SIZE];
    1008             :         LC3_INT8         t[FEC_N_MODES];
    1009             :         LC3_INT8         deg_elp[FEC_TOTAL_DEG_ELP_SIZE];
    1010             :         LC3_UINT8        blacklist[FEC_N_MODES];
    1011             :         LC3_INT32          rop;
    1012             : 
    1013             :     void (*syndr_calc[3])(LC3_UINT8 *, LC3_UINT8 *, LC3_INT32);
    1014           0 :     rop = 0;
    1015             : 
    1016             :     /* initialization */
    1017           0 :     blacklist[0]        = 0;
    1018           0 :     blacklist[1]        = 0;
    1019           0 :     blacklist[2]        = 0;
    1020           0 :     blacklist[3]        = 0;
    1021           0 :     mode_broken[0]        = 0;
    1022           0 :     mode_broken[1]        = 0;
    1023           0 :     mode_broken[2]        = 0;
    1024           0 :     mode_broken[3]        = 0;
    1025           0 :     error_report_ep_ok[0] = ERROR_REPORT_EP1_OK;
    1026           0 :     error_report_ep_ok[1] = ERROR_REPORT_EP2_OK;
    1027           0 :     error_report_ep_ok[2] = ERROR_REPORT_EP3_OK;
    1028           0 :     error_report_ep_ok[3] = ERROR_REPORT_EP4_OK;
    1029           0 :     hamming_distance    = &hamming_distance_by_mode0[1];
    1030           0 :     mode                = -1;
    1031           0 :     n_mode_candidates   = 0;
    1032           0 :     risk_min_f.mantissa = SIMPLE_FLOAT_1_MANTISSA;
    1033           0 :     risk_min_f.exponent = 0;
    1034             :     
    1035           0 :     if (n_symb <= 80)
    1036             :     {
    1037           0 :     ep_risk_thresh.mantissa = EP_RISK_THRESH_NS_M;
    1038           0 :     ep_risk_thresh.exponent = EP_RISK_THRESH_NS_E;
    1039             :     }
    1040             :     else
    1041             :     {
    1042           0 :     ep_risk_thresh.mantissa = EP_RISK_THRESH_OS_M;
    1043           0 :     ep_risk_thresh.exponent = EP_RISK_THRESH_OS_E;
    1044             :     }
    1045             :     
    1046           0 :     syndr_calc[0] = &rs16_calculate_two_syndromes;
    1047           0 :     syndr_calc[1] = &rs16_calculate_four_syndromes;
    1048           0 :     syndr_calc[2] = &rs16_calculate_six_syndromes;
    1049             :     
    1050           0 :     for (i = 0; i < FEC_N_MODES; i++)
    1051             :     {
    1052           0 :     t[i] = (hamming_distance[i] -1)/2;
    1053             :     }
    1054             :     
    1055           0 :     *error_report = 0;
    1056           0 :     *bfi          = 0;
    1057             :     
    1058             :     /* mode detection (stage 1) */
    1059           0 :     codeword_length = get_codeword_length(n_codewords, n_symb, 0);
    1060             :     
    1061           0 :     epmr_position = codeword_length - 1;
    1062             :     
    1063           0 :     rs16_calculate_two_syndromes(syndromes + SYNDROME_IDX(0, 0), iobuf, codeword_length - 1);
    1064             :     
    1065           0 :     if ((syndromes[0 + SYNDROME_IDX(0, 0)] | syndromes[1 + SYNDROME_IDX(0, 0)]) == 0)
    1066             :     {
    1067             :     
    1068             :     /* data validation for fec mode 1 */
    1069           0 :     *epmr = cw0_get_epmr(iobuf, epmr_position);
    1070             :     
    1071           0 :     dw0_bitswap(iobuf + 2, 1, n_symb / 2);
    1072             :     
    1073           0 :     if (!crc1(iobuf + 8, n_symb - 8, *epmr, iobuf + 2, 3, 1))
    1074             :     {
    1075           0 :             *error_report |= ERROR_REPORT_ALL_OK;
    1076           0 :         mode = 0;
    1077             :         
    1078             :          
    1079           0 :         rop = mode + 1;
    1080           0 :         goto CLEANUP;
    1081             :     }
    1082             :     else
    1083             :     {
    1084             :         /* reverse bit swap */
    1085           0 :         dw0_bitswap(iobuf + 2, 1, n_symb / 2);
    1086             :         
    1087           0 :         *epmr += 4;
    1088             :     }
    1089             :     }
    1090             :     
    1091           0 :     blacklist[0] = 1;
    1092             :     
    1093             :     /* mode detection (stage 2) */
    1094             :     
    1095             :     /* calculate syndromes of code words 0 to 5 and modes 1 to 3 */
    1096           0 :     cw_offset = 0;
    1097             :     
    1098           0 :     for (cw_counter = 0; cw_counter < 6; cw_counter++)
    1099             :     {
    1100           0 :     codeword_length = get_codeword_length(n_codewords, n_symb, cw_counter);
    1101             :     
    1102           0 :     rs16_calculate_six_syndromes(syndromes + SYNDROME_IDX(1, cw_counter), iobuf + cw_offset,
    1103             :                      codeword_length - 1);
    1104             :     
    1105           0 :     cw_offset += codeword_length;
    1106             :     
    1107           0 :     for (mode_counter = FEC_N_MODES - 1; mode_counter >= 1; mode_counter--)
    1108             :     {
    1109           0 :         for (i = 0; i < hamming_distance[mode_counter] - 1; i++)
    1110             :         {
    1111           0 :         syndromes[SYNDROME_IDX(mode_counter, cw_counter) + i] = GF16_ADD(
    1112             :             syndromes[SYNDROME_IDX(1, cw_counter) + i], sig_poly_syndr[mode_counter][i]);
    1113             :         }
    1114             :     }
    1115             :     }
    1116             : 
    1117             :     /* check for valid code words */
    1118           0 :     for (mode_counter = 1; mode_counter < FEC_N_MODES; mode_counter++)
    1119             :     {
    1120           0 :     n_broken_cw = 0;
    1121           0 :     for (cw_counter = 0; cw_counter < 6; cw_counter++)
    1122             :     {
    1123           0 :         broken_cw = 0;
    1124           0 :         for (i = 0; i < hamming_distance[mode_counter] - 1; i++)
    1125             :         {
    1126           0 :         broken_cw |= syndromes[SYNDROME_IDX(mode_counter, cw_counter) + i];
    1127             :         }
    1128           0 :         if (broken_cw != 0)
    1129             :         {
    1130           0 :         n_broken_cw ++;
    1131             :         }
    1132             :     }
    1133             :     
    1134           0 :     if (n_broken_cw == 0)
    1135             :     {
    1136           0 :         mode      = mode_counter;
    1137           0 :         cw_offset = 0;
    1138             :         
    1139           0 :         *epmr = cw0_get_epmr(iobuf, epmr_position);
    1140             :         
    1141           0 :         for (cw_counter = 0; cw_counter < 6; cw_counter++)
    1142             :         {
    1143           0 :         codeword_length = get_codeword_length(n_codewords, n_symb, cw_counter);
    1144           0 :         for (i = 0; i <= EP_SIG_POLY_DEG; i++)
    1145             :         {
    1146           0 :             iobuf[cw_offset + i] = GF16_ADD(iobuf[cw_offset + i], sig_polys[mode][i]);
    1147             :         }
    1148           0 :         cw_offset += codeword_length;
    1149             :         }
    1150             :     }
    1151             :     }
    1152             :     
    1153           0 :     if (mode < 0) /* mode hasn't been detected so far -> errors occurred in transmission */
    1154             :     {
    1155             :     /* calculate error locator polynomials for code words 0 to 5 */
    1156           0 :     for (mode_counter = 1; mode_counter < FEC_N_MODES; mode_counter++)
    1157             :     {
    1158           0 :         for (cw_counter = 0; cw_counter < 6; cw_counter++)
    1159             :         {
    1160           0 :         deg_elp[DEG_ELP_IDX(mode_counter, cw_counter)] = rs16_calculate_elp(
    1161           0 :             elp + ELP_IDX(mode_counter, cw_counter), syndromes + SYNDROME_IDX(mode_counter, cw_counter),
    1162           0 :             t[mode_counter]);
    1163           0 :         if (deg_elp[DEG_ELP_IDX(mode_counter, cw_counter)] > t[mode_counter])
    1164             :         {
    1165           0 :             blacklist[mode_counter] = 1;
    1166           0 :             break;
    1167             :         }
    1168             :         }
    1169             :     }
    1170             :     
    1171             :     /* risk analysis for mode candidate selection */
    1172           0 :     for (mode_counter = 1; mode_counter < FEC_N_MODES; mode_counter++)
    1173             :     {
    1174           0 :         dec_risk_f[mode_counter].mantissa = SIMPLE_FLOAT_1_MANTISSA;
    1175           0 :         dec_risk_f[mode_counter].exponent = 0;
    1176             :         
    1177           0 :         if (blacklist[mode_counter] == 0)
    1178             :         {
    1179           0 :         for (cw_counter = 0; cw_counter < 6; cw_counter++)
    1180             :         {
    1181           0 :             dec_risk_f[mode_counter] = simple_float_mul(
    1182             :             dec_risk_f[mode_counter],
    1183           0 :             risk_table_f[mode_counter][deg_elp[DEG_ELP_IDX(mode_counter, cw_counter)]]);
    1184             :         }
    1185             :         
    1186           0 :         if (simple_float_cmp(dec_risk_f[mode_counter], ep_risk_thresh) <= 0)
    1187             :         {
    1188           0 :             mode_candidates[n_mode_candidates++] = mode_counter;
    1189             :         }
    1190             :         
    1191           0 :         if (simple_float_cmp(dec_risk_f[mode_counter], risk_min_f) < 0)
    1192             :         {
    1193           0 :             risk_min_f = dec_risk_f[mode_counter];
    1194             :         }
    1195             :         }
    1196             :     }
    1197           0 :     assert(n_mode_candidates <= 4); // suppress false gcc warning when OPTIM=3
    1198             :     
    1199             :     /* sort mode candidates by risk */
    1200           0 :     for (i = 0; i < n_mode_candidates; i++)
    1201             :     {
    1202           0 :         idx_min   = i;
    1203           0 :         val_min_f = dec_risk_f[mode_candidates[i]];
    1204             :         
    1205           0 :         for (j = i + 1; j < n_mode_candidates; j++)
    1206             :         {
    1207           0 :         if (simple_float_cmp(dec_risk_f[mode_candidates[j]], val_min_f) < 0)
    1208             :         {
    1209           0 :             val_min_f = dec_risk_f[mode_candidates[j]];
    1210           0 :             idx_min   = j;
    1211             :         }
    1212             :         }
    1213             :         
    1214           0 :         if (idx_min > i)
    1215             :         {    
    1216           0 :         tmp                      = mode_candidates[i];
    1217           0 :         mode_candidates[i]       = mode_candidates[idx_min];
    1218           0 :         mode_candidates[idx_min] = tmp;
    1219             :         }
    1220             :     }
    1221             :     
    1222             :     /* try out candidate modes */
    1223           0 :     for (i = 0; i < n_mode_candidates; i++)
    1224             :     {
    1225           0 :         mode = mode_candidates[i];
    1226             :         
    1227           0 :         for (cw_counter = 0; cw_counter < 6; cw_counter++)
    1228             :         {
    1229           0 :         codeword_length = get_codeword_length(n_codewords, n_symb, cw_counter);
    1230             :         
    1231           0 :         if (deg_elp[DEG_ELP_IDX(mode, cw_counter)])
    1232             :         {
    1233           0 :             if (rs16_factorize_elp(err_pos + ERR_POS_IDX(mode, cw_counter), elp + ELP_IDX(mode, cw_counter),
    1234           0 :                        deg_elp[DEG_ELP_IDX(mode, cw_counter)], codeword_length - 1))
    1235             :             {
    1236             :             /* elp did not split into distinct linear factors or error position was out of range */
    1237           0 :             mode = -1;
    1238           0 :             break;
    1239             :             }
    1240             :         }
    1241             :         }
    1242           0 :         if (mode > 0)
    1243             :         {
    1244             :         /* decodable mode with lowest risk has been found */
    1245           0 :         break;
    1246             :         }
    1247             :     }
    1248             :     
    1249           0 :     if (mode < 0)
    1250             :     {
    1251             :         /* no decodable mode has been found */
    1252           0 :         *error_report = ERROR_REPORT_BEC_MASK;
    1253           0 :         *bfi          = 1;
    1254           0 :         mode          = -1;
    1255             :         
    1256           0 :         *epmr = fec_estimate_epmr_from_cw0(iobuf, t, syndromes, elp, deg_elp, err_pos, err_symb, n_codewords,
    1257             :                            n_symb);
    1258             :         
    1259             :          
    1260           0 :         rop = mode;
    1261           0 :         goto CLEANUP;
    1262             :     }
    1263             :     
    1264             :     /* perform error correction */
    1265           0 :     cw_offset     = 0;
    1266           0 :     *error_report = 0;
    1267           0 :     for (cw_counter = 0; cw_counter < 6; cw_counter++)
    1268             :     {
    1269           0 :         codeword_length = get_codeword_length(n_codewords, n_symb, cw_counter);
    1270             :         
    1271           0 :         if (deg_elp[DEG_ELP_IDX(mode, cw_counter)])
    1272             :         {
    1273           0 :         rs16_calculate_errors(
    1274           0 :             err_symb + ERR_SYMB_IDX(mode, cw_counter), err_pos + ERR_POS_IDX(mode, cw_counter),
    1275           0 :             syndromes + SYNDROME_IDX(mode, cw_counter), deg_elp[DEG_ELP_IDX(mode, cw_counter)], t[mode]);
    1276             :         
    1277             :         /* correct errors and sum up number of corrected bits */
    1278           0 :         for (i = 0; i < deg_elp[DEG_ELP_IDX(mode, cw_counter)]; i++)
    1279             :         {
    1280           0 :             iobuf[err_pos[ERR_POS_IDX(mode, cw_counter) + i] + cw_offset] =
    1281           0 :             GF16_ADD(iobuf[err_pos[ERR_POS_IDX(mode, cw_counter) + i] + cw_offset],
    1282             :                  err_symb[ERR_SYMB_IDX(mode, cw_counter) + i]);
    1283           0 :             *error_report += rs16_bit_count_table[err_symb[ERR_SYMB_IDX(mode, cw_counter) + i]];
    1284             :         }
    1285             : 
    1286           0 :                 for (i = 0; i < mode; i ++)
    1287             :                 {
    1288           0 :                     if(deg_elp[DEG_ELP_IDX(mode, cw_counter)] > i)
    1289             :                     {
    1290           0 :                         mode_broken[i] = 1;
    1291             :                     }
    1292             :                 }
    1293             : 
    1294             :         }
    1295             :         
    1296           0 :         for (i = 0; i <= EP_SIG_POLY_DEG; i++)
    1297             :         {
    1298           0 :         iobuf[cw_offset + i] = GF16_ADD(iobuf[cw_offset + i], sig_polys[mode][i]);
    1299             :         }
    1300           0 :         cw_offset += codeword_length;
    1301             :     }
    1302             :     
    1303             :     /* set epmr according to risk value of cw0 */
    1304           0 :     epmr_dec_fail_increment = 8;
    1305             :     
    1306           0 :     if (risk_table_f[mode][deg_elp[DEG_ELP_IDX(mode, 0)]].exponent <= -8)
    1307             :     {
    1308           0 :         epmr_dec_fail_increment -= 4;
    1309             :     }
    1310           0 :     if (risk_table_f[mode][deg_elp[DEG_ELP_IDX(mode, 0)]].exponent <= -16)
    1311             :     {
    1312           0 :         epmr_dec_fail_increment -= 4;
    1313             :     }
    1314             :     
    1315           0 :     *epmr = (LC3PLUS_EpModeRequest)(cw0_get_epmr(iobuf, epmr_position) + epmr_dec_fail_increment);
    1316             :     }
    1317             :     
    1318             :     /* mode has been successfully detected -> now check and try to correct remaining code words*/
    1319           0 :     *n_pccw = fec_get_n_pccw(n_symb / 2, mode + 1, ccc_flag);
    1320           0 :     if (ccc_flag == 0)
    1321             :     {
    1322           0 :     n_pccw0 = fec_get_n_pccw(n_symb / 2, mode + 1, ccc_flag);
    1323           0 :     *n_pccw = n_pccw0;
    1324             :     }
    1325             :     else
    1326             :     {
    1327           0 :     n_pccw0 = 0;
    1328             :     }
    1329             :     
    1330           0 :     for (cw_counter = 6; cw_counter < n_codewords; cw_counter++)
    1331             :     {
    1332             :     /* usual error correction scheme: syndromes -> elp's, errors, etc. */
    1333           0 :     codeword_length                              = get_codeword_length(n_codewords, n_symb, cw_counter);
    1334           0 :     array_of_trust[n_codewords - 1 - cw_counter] = 1;
    1335             :     
    1336           0 :     syndr_calc[t[mode] - 1](syndromes, iobuf + cw_offset, codeword_length -1);
    1337             :     
    1338           0 :     deg_elp[0] = rs16_calculate_elp(elp, syndromes, t[mode]);
    1339             :     
    1340           0 :         for (i = 0; i < mode; i ++)
    1341             :         {
    1342           0 :             if (deg_elp[0] > i)
    1343             :             {
    1344           0 :                 mode_broken[i] = 1;
    1345             :             }
    1346             :         }
    1347             : 
    1348           0 :     if (deg_elp[0] > t[mode])
    1349             :     {
    1350           0 :             for (i = 0; i < 4; i ++)
    1351             :             {
    1352           0 :                 mode_broken[i] = 1;
    1353             :             }
    1354           0 :         cw_offset += codeword_length;
    1355           0 :         if (cw_counter < n_codewords - n_pccw0)
    1356             :         {
    1357           0 :             *error_report = ERROR_REPORT_BEC_MASK;
    1358           0 :             mode          = -1;
    1359           0 :             *bfi          = 1;
    1360           0 :           break;
    1361             :         }
    1362             :         else
    1363             :         {
    1364           0 :         *bfi                                         = 2;
    1365           0 :         array_of_trust[n_codewords - 1 - cw_counter] = 0;
    1366           0 :         continue;
    1367             :         }
    1368             :     }
    1369             :     
    1370           0 :     if (deg_elp[0])
    1371             :     {
    1372           0 :         if (rs16_factorize_elp(err_pos, elp, deg_elp[0], codeword_length - 1))
    1373             :         {
    1374           0 :             cw_offset += codeword_length;
    1375           0 :             for (i = 0; i < 4; i ++)
    1376             :             {
    1377           0 :                 mode_broken[i] = 1;
    1378             :             }
    1379           0 :             if (cw_counter < n_codewords - n_pccw0)
    1380             :             {
    1381           0 :                 *error_report = ERROR_REPORT_BEC_MASK;
    1382           0 :                 mode = -1;
    1383           0 :                 *bfi = 1;
    1384             :                 
    1385           0 :                 break;
    1386             :             }
    1387             :             else
    1388             :             {
    1389           0 :                 *bfi                                         = 2;
    1390           0 :                 array_of_trust[n_codewords - 1 - cw_counter] = 0;
    1391           0 :                 continue;
    1392             :             }
    1393             :         }
    1394             :         
    1395           0 :         rs16_calculate_errors(err_symb, err_pos, syndromes, deg_elp[0], t[mode]);
    1396             :         
    1397             :         /* correct errors and sum up number of corrected bits */
    1398           0 :         for (i = 0; i < deg_elp[0]; i++)
    1399             :         {
    1400           0 :         iobuf[err_pos[i] + cw_offset] = GF16_ADD(iobuf[err_pos[i] + cw_offset], err_symb[i]);
    1401           0 :         *error_report                 += rs16_bit_count_table[err_symb[i]];
    1402             :         }
    1403             :     }
    1404           0 :     cw_offset += codeword_length;
    1405           0 :     if (risk_table_f[mode][deg_elp[0]].exponent > -16)
    1406             :     {
    1407           0 :         array_of_trust[n_codewords - 1 - cw_counter] = 0;
    1408             :     }
    1409             :     }
    1410             :     
    1411           0 :     *error_report &= ERROR_REPORT_BEC_MASK;
    1412           0 :     for (i = 0; i < 4; i ++)
    1413             :     {
    1414           0 :         if (!mode_broken[i])
    1415             :         {
    1416           0 :             *error_report |= error_report_ep_ok[i];
    1417             :         }
    1418             :     }
    1419             : 
    1420           0 :     if (mode >= 0)
    1421             :     {
    1422           0 :         rop = mode + 1;
    1423             :     } else {
    1424           0 :         rop = -1;
    1425             :     }
    1426             :     
    1427             :      
    1428             : 
    1429           0 : CLEANUP:
    1430           0 :     return rop;
    1431             : }
    1432             : 
    1433           0 : FEC_STATIC void rs16_calculate_six_syndromes(LC3_UINT8 *syndromes, LC3_UINT8 *cw, LC3_INT32 cw_poly_deg)
    1434             : {
    1435             :         LC3_INT32    i;
    1436             :         LC3_UINT8 buffer[15];
    1437             : 
    1438           0 :     assert(cw_poly_deg >= 12);
    1439             : 
    1440           0 :     for (i = 0; i <= cw_poly_deg; i++)
    1441             :     {
    1442           0 :         buffer[i] = cw[i];
    1443             :     }
    1444             : 
    1445           0 :     syndromes[0] = buffer[0];
    1446           0 :     syndromes[1] = buffer[0];
    1447           0 :     syndromes[2] = buffer[0];
    1448           0 :     syndromes[3] = buffer[0];
    1449           0 :     syndromes[4] = buffer[0];
    1450           0 :     syndromes[5] = buffer[0];
    1451             : 
    1452           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[1], 32));
    1453           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[1], 64));
    1454           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[1], 128));
    1455           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[1], 48));
    1456           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[1], 96));
    1457           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[1], 192));
    1458             : 
    1459           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[2], 64));
    1460           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[2], 48));
    1461           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[2], 192));
    1462           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[2], 80));
    1463           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[2], 112));
    1464           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[2], 240));
    1465             : 
    1466           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[3], 128));
    1467           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[3], 192));
    1468           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[3], 160));
    1469           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[3], 240));
    1470           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[3], 16));
    1471           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[3], 128));
    1472             : 
    1473           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[4], 48));
    1474           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[4], 80));
    1475           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[4], 240));
    1476           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[4], 32));
    1477           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[4], 96));
    1478           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[4], 160));
    1479             : 
    1480           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[5], 96));
    1481           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[5], 112));
    1482           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[5], 16));
    1483           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[5], 96));
    1484           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[5], 112));
    1485           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[5], 16));
    1486             : 
    1487           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[6], 192));
    1488           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[6], 240));
    1489           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[6], 128));
    1490           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[6], 160));
    1491           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[6], 16));
    1492           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[6], 192));
    1493             : 
    1494           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[7], 176));
    1495           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[7], 144));
    1496           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[7], 192));
    1497           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[7], 208));
    1498           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[7], 96));
    1499           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[7], 240));
    1500             : 
    1501           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[8], 80));
    1502           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[8], 32));
    1503           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[8], 160));
    1504           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[8], 64));
    1505           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[8], 112));
    1506           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[8], 128));
    1507             : 
    1508           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[9], 160));
    1509           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[9], 128));
    1510           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[9], 240));
    1511           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[9], 192));
    1512           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[9], 16));
    1513           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[9], 160));
    1514             : 
    1515           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[10], 112));
    1516           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[10], 96));
    1517           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[10], 16));
    1518           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[10], 112));
    1519           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[10], 96));
    1520           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[10], 16));
    1521             : 
    1522           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[11], 224));
    1523           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[11], 176));
    1524           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[11], 128));
    1525           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[11], 144));
    1526           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[11], 112));
    1527           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[11], 192));
    1528             : 
    1529           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[12], 240));
    1530           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[12], 160));
    1531           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[12], 192));
    1532           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[12], 128));
    1533           0 :     syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[12], 16));
    1534           0 :     syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[12], 240));
    1535             : 
    1536           0 :     if (cw_poly_deg >= 13)
    1537             :     {
    1538           0 :         syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[13], 208));
    1539           0 :         syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[13], 224));
    1540           0 :         syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[13], 160));
    1541           0 :         syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[13], 176));
    1542           0 :         syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[13], 96));
    1543           0 :         syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[13], 128));
    1544             :     }
    1545             : 
    1546           0 :     if (cw_poly_deg >= 14)
    1547             :     {
    1548           0 :         syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[14], 144));
    1549           0 :         syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[14], 208));
    1550           0 :         syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[14], 240));
    1551           0 :         syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[14], 224));
    1552           0 :         syndromes[4] = GF16_ADD(syndromes[4], GF16_MUL0(buffer[14], 112));
    1553           0 :         syndromes[5] = GF16_ADD(syndromes[5], GF16_MUL0(buffer[14], 160));
    1554             :     }
    1555             : 
    1556             :      
    1557           0 : }
    1558             : 
    1559           0 : FEC_STATIC void rs16_calculate_four_syndromes(LC3_UINT8 *syndromes, LC3_UINT8 *cw, LC3_INT32 cw_poly_deg)
    1560             : {
    1561             :         LC3_INT32    i;
    1562             :         LC3_UINT8 buffer[15];
    1563             : 
    1564           0 :     assert(cw_poly_deg >= 12);
    1565             : 
    1566           0 :     for (i = 0; i <= cw_poly_deg; i++)
    1567             :     {
    1568           0 :         buffer[i] = cw[i];
    1569             :     }
    1570             : 
    1571           0 :     syndromes[0] = buffer[0];
    1572           0 :     syndromes[1] = buffer[0];
    1573           0 :     syndromes[2] = buffer[0];
    1574           0 :     syndromes[3] = buffer[0];
    1575             : 
    1576           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[1], 32));
    1577           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[1], 64));
    1578           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[1], 128));
    1579           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[1], 48));
    1580             : 
    1581           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[2], 64));
    1582           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[2], 48));
    1583           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[2], 192));
    1584           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[2], 80));
    1585             : 
    1586           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[3], 128));
    1587           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[3], 192));
    1588           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[3], 160));
    1589           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[3], 240));
    1590             : 
    1591           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[4], 48));
    1592           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[4], 80));
    1593           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[4], 240));
    1594           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[4], 32));
    1595             : 
    1596           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[5], 96));
    1597           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[5], 112));
    1598           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[5], 16));
    1599           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[5], 96));
    1600             : 
    1601           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[6], 192));
    1602           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[6], 240));
    1603           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[6], 128));
    1604           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[6], 160));
    1605             : 
    1606           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[7], 176));
    1607           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[7], 144));
    1608           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[7], 192));
    1609           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[7], 208));
    1610             : 
    1611           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[8], 80));
    1612           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[8], 32));
    1613           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[8], 160));
    1614           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[8], 64));
    1615             : 
    1616           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[9], 160));
    1617           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[9], 128));
    1618           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[9], 240));
    1619           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[9], 192));
    1620             : 
    1621           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[10], 112));
    1622           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[10], 96));
    1623           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[10], 16));
    1624           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[10], 112));
    1625             : 
    1626           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[11], 224));
    1627           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[11], 176));
    1628           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[11], 128));
    1629           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[11], 144));
    1630             : 
    1631           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[12], 240));
    1632           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[12], 160));
    1633           0 :     syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[12], 192));
    1634           0 :     syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[12], 128));
    1635             : 
    1636           0 :     if (cw_poly_deg >= 13)
    1637             :     {
    1638           0 :         syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[13], 208));
    1639           0 :         syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[13], 224));
    1640           0 :         syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[13], 160));
    1641           0 :         syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[13], 176));
    1642             :     }
    1643             : 
    1644           0 :     if (cw_poly_deg >= 14)
    1645             :     {
    1646           0 :         syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[14], 144));
    1647           0 :         syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[14], 208));
    1648           0 :         syndromes[2] = GF16_ADD(syndromes[2], GF16_MUL0(buffer[14], 240));
    1649           0 :         syndromes[3] = GF16_ADD(syndromes[3], GF16_MUL0(buffer[14], 224));
    1650             :     }
    1651             : 
    1652             :      
    1653           0 : }
    1654             : 
    1655           0 : FEC_STATIC void rs16_calculate_two_syndromes(LC3_UINT8 *syndromes, LC3_UINT8 *cw, LC3_INT32 cw_poly_deg)
    1656             : {
    1657             :         LC3_INT32    i;
    1658             :         LC3_UINT8 buffer[15];
    1659             : 
    1660           0 :     assert(cw_poly_deg >= 12);
    1661             : 
    1662           0 :     for (i = 0; i <= cw_poly_deg; i++)
    1663             :     {
    1664           0 :         buffer[i] = cw[i];
    1665             :     }
    1666             : 
    1667           0 :     syndromes[0] = buffer[0];
    1668           0 :     syndromes[1] = buffer[0];
    1669             : 
    1670           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[1], 32));
    1671           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[1], 64));
    1672             : 
    1673           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[2], 64));
    1674           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[2], 48));
    1675             : 
    1676           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[3], 128));
    1677           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[3], 192));
    1678             : 
    1679           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[4], 48));
    1680           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[4], 80));
    1681             : 
    1682           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[5], 96));
    1683           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[5], 112));
    1684             : 
    1685           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[6], 192));
    1686           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[6], 240));
    1687             : 
    1688           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[7], 176));
    1689           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[7], 144));
    1690             : 
    1691           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[8], 80));
    1692           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[8], 32));
    1693             : 
    1694           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[9], 160));
    1695           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[9], 128));
    1696             : 
    1697           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[10], 112));
    1698           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[10], 96));
    1699             : 
    1700           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[11], 224));
    1701           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[11], 176));
    1702             : 
    1703           0 :     syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[12], 240));
    1704           0 :     syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[12], 160));
    1705             : 
    1706           0 :     if (cw_poly_deg >= 13)
    1707             :     {
    1708           0 :         syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[13], 208));
    1709           0 :         syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[13], 224));
    1710             :     }
    1711             : 
    1712           0 :     if (cw_poly_deg >= 14)
    1713             :     {
    1714           0 :         syndromes[0] = GF16_ADD(syndromes[0], GF16_MUL0(buffer[14], 144));
    1715           0 :         syndromes[1] = GF16_ADD(syndromes[1], GF16_MUL0(buffer[14], 208));
    1716             :     }
    1717             : 
    1718             :      
    1719           0 : }
    1720             : 
    1721           0 : FEC_STATIC LC3_INT8 rs16_calculate_elp(LC3_UINT8 *elp, LC3_UINT8 *syndromes, LC3_INT16 t)
    1722             : /* calculates error locator polynomial vie Petterson's algorithm */
    1723             : {
    1724             :         LC3_INT8  ret;
    1725             :         LC3_UINT8 det, det_inv, aux, all_s, *s;
    1726             :         LC3_UINT8 s22, s33, s44, s13, s14, s15;
    1727             :         LC3_UINT8 s23, s24, s25, s34, s35;
    1728             :         LC3_UINT8 a, b, c, d, e, f;
    1729             : 
    1730           0 :     ret    = 0;
    1731           0 :     all_s  = 0;
    1732           0 :     s      = syndromes;
    1733           0 :     elp[0] = 1;
    1734           0 :     memset(elp + 1, 0, 3);
    1735             : 
    1736           0 :     switch (t)
    1737             :     {
    1738           0 :     case 3:
    1739             :     {
    1740             :         /* check for errors */
    1741           0 :         all_s = s[0] | s[1] | s[2] | s[3] | s[4] | s[5];
    1742             : 
    1743           0 :         if (all_s == 0)
    1744             :         {
    1745           0 :             break;
    1746             :         }
    1747             : 
    1748             :         /* assume 3 errors */
    1749           0 :         s22 = GF16_MUL(s[1], s[1]);
    1750           0 :         s33 = GF16_MUL(s[2], s[2]);
    1751           0 :         s44 = GF16_MUL(s[3], s[3]);
    1752           0 :         s13 = GF16_MUL(s[0], s[2]);
    1753             : 
    1754           0 :         det = GF16_ADD(GF16_ADD(GF16_MUL(s13, s[4]), GF16_MUL(s44, s[0])),
    1755             :                        GF16_ADD(GF16_MUL(s22, s[4]), GF16_MUL(s33, s[2])));
    1756             : 
    1757           0 :         if (det)
    1758             :         {
    1759           0 :             det_inv = gf16_inv_table[det] << 4;
    1760             : 
    1761           0 :             s14 = GF16_MUL(s[0], s[3]);
    1762           0 :             s15 = GF16_MUL(s[0], s[4]);
    1763             : 
    1764           0 :             s23 = GF16_MUL(s[1], s[2]);
    1765           0 :             s24 = GF16_MUL(s[1], s[3]);
    1766           0 :             s25 = GF16_MUL(s[1], s[4]);
    1767             : 
    1768           0 :             s34 = GF16_MUL(s[2], s[3]);
    1769           0 :             s35 = GF16_MUL(s[2], s[4]);
    1770             : 
    1771           0 :             a = GF16_ADD(s35, s44) << 4;
    1772           0 :             b = GF16_ADD(s15, s33) << 4;
    1773           0 :             c = GF16_ADD(s13, s22) << 4;
    1774           0 :             d = GF16_ADD(s34, s25) << 4;
    1775           0 :             e = GF16_ADD(s23, s14) << 4;
    1776           0 :             f = GF16_ADD(s24, s33) << 4;
    1777             : 
    1778           0 :             aux    = GF16_ADD(GF16_ADD(GF16_MUL0(a, s[3]), GF16_MUL0(d, s[4])), GF16_MUL0(f, s[5]));
    1779           0 :             elp[3] = GF16_MUL0(aux, det_inv);
    1780             : 
    1781           0 :             aux    = GF16_ADD(GF16_ADD(GF16_MUL0(d, s[3]), GF16_MUL0(b, s[4])), GF16_MUL0(e, s[5]));
    1782           0 :             elp[2] = GF16_MUL0(aux, det_inv);
    1783             : 
    1784           0 :             aux    = GF16_ADD(GF16_ADD(GF16_MUL0(f, s[3]), GF16_MUL0(e, s[4])), GF16_MUL0(c, s[5]));
    1785           0 :             elp[1] = GF16_MUL0(aux, det_inv);
    1786             : 
    1787           0 :             if (elp[3] == 0)
    1788             :             {
    1789           0 :                 ret = t+1;
    1790             :             }
    1791             :             else
    1792             :             {
    1793           0 :                 ret = 3;
    1794             :             }
    1795           0 :             break;
    1796             :         }
    1797             : 
    1798             :         /* assume two errors */
    1799           0 :         det = GF16_ADD(GF16_MUL(syndromes[0], syndromes[2]), GF16_MUL(syndromes[1], syndromes[1]));
    1800             : 
    1801           0 :         if (det)
    1802             :         {
    1803           0 :             det_inv = gf16_inv_table[det] << 4;
    1804             : 
    1805           0 :             aux    = GF16_ADD(GF16_MUL(syndromes[1], syndromes[2]), GF16_MUL(syndromes[0], syndromes[3]));
    1806           0 :             elp[1] = GF16_MUL0(aux, det_inv);
    1807             : 
    1808           0 :             aux    = GF16_ADD(GF16_MUL(syndromes[2], syndromes[2]), GF16_MUL(syndromes[1], syndromes[3]));
    1809           0 :             elp[2] = GF16_MUL0(aux, det_inv);
    1810             : 
    1811             :             /* check remaining LSF relations */
    1812           0 :             aux = GF16_ADD(GF16_ADD(GF16_MUL(elp[2], s[2]), GF16_MUL(elp[1], s[3])), s[4])
    1813           0 :                     | GF16_ADD(GF16_ADD(GF16_MUL(elp[2], s[3]), GF16_MUL(elp[1], s[4])), s[5]);
    1814             : 
    1815           0 :             aux |= elp[2] == 0;
    1816             : 
    1817           0 :             if (aux != 0)
    1818             :             {
    1819           0 :                 ret = t + 1;
    1820             :             }
    1821             :             else
    1822             :             {
    1823           0 :                 ret = 2;
    1824             :             }
    1825           0 :             break;
    1826             :         }
    1827             : 
    1828             :         /* assume one error */
    1829           0 :         if (syndromes[0] != 0)
    1830             :         {
    1831           0 :             elp[1] = GF16_MUL(syndromes[1], gf16_inv_table[syndromes[0]]);
    1832             : 
    1833             :             /* check remaining LSF relations */
    1834           0 :             aux = GF16_ADD(GF16_MUL(elp[1], s[1]), s[2])
    1835           0 :                     | GF16_ADD(GF16_MUL(elp[1], s[2]), s[3])
    1836           0 :                     | GF16_ADD(GF16_MUL(elp[1], s[3]), s[4])
    1837           0 :                     | GF16_ADD(GF16_MUL(elp[1], s[4]), s[5]);
    1838             : 
    1839           0 :             aux |= elp[1] == 0;
    1840             : 
    1841           0 :             if (aux != 0)
    1842             :             {
    1843           0 :                 ret = t + 1;
    1844             :             }
    1845             :             else
    1846             :             {
    1847           0 :                 ret = 1;
    1848             :             }
    1849           0 :             break;
    1850             :         }
    1851             : 
    1852           0 :         ret = t + 1;
    1853           0 :         break;
    1854             :     }
    1855           0 :     case 2:
    1856             :     {
    1857           0 :         all_s = s[0] | s[1] | s[2] | s[3];
    1858             : 
    1859           0 :         if (all_s == 0)
    1860             :         {
    1861           0 :             break;
    1862             :         }
    1863             : 
    1864             :         /* assume two errors */
    1865           0 :         det = GF16_ADD(GF16_MUL(syndromes[0], syndromes[2]), GF16_MUL(syndromes[1], syndromes[1]));
    1866             : 
    1867           0 :         if (det)
    1868             :         {
    1869           0 :             det_inv = gf16_inv_table[det] << 4;
    1870             : 
    1871           0 :             aux    = GF16_ADD(GF16_MUL(syndromes[1], syndromes[2]), GF16_MUL(syndromes[0], syndromes[3]));
    1872           0 :             elp[1] = GF16_MUL0(aux, det_inv);
    1873             : 
    1874           0 :             aux    = GF16_ADD(GF16_MUL(syndromes[2], syndromes[2]), GF16_MUL(syndromes[1], syndromes[3]));
    1875           0 :             elp[2] = GF16_MUL0(aux, det_inv);
    1876             : 
    1877           0 :             if (elp[2] == 0)
    1878             :             {
    1879           0 :                 ret = t + 1;
    1880             :             }
    1881             :             else
    1882             :             {
    1883           0 :                 ret = 2;
    1884             :             }
    1885           0 :             break;
    1886             :         }
    1887             : 
    1888             :         /* assume one error */
    1889           0 :         if (syndromes[0] != 0)
    1890             :         {
    1891           0 :             elp[1] = GF16_MUL(syndromes[1], gf16_inv_table[syndromes[0]]);
    1892             : 
    1893             :             /* check remaining LSF relation */
    1894           0 :             aux = GF16_ADD(GF16_MUL(elp[1], s[1]), s[2]) | GF16_ADD(GF16_MUL(elp[1], s[2]), s[3]);
    1895           0 :             aux |= elp[1] == 0;
    1896             : 
    1897           0 :             if (aux != 0)
    1898             :             {
    1899           0 :                 ret = t + 1;
    1900             :             }
    1901             :             else
    1902             :             {
    1903           0 :                 ret = 1;
    1904             :             }
    1905           0 :             break;
    1906             :         }
    1907             : 
    1908           0 :         ret = t + 1;
    1909           0 :         break;
    1910             :     }
    1911           0 :     case 1:
    1912             :     {
    1913           0 :         all_s = s[0] | s[1];
    1914             : 
    1915           0 :         if (all_s == 0)
    1916             :         {
    1917           0 :             break;
    1918             :         }
    1919             : 
    1920           0 :         if (syndromes[0] != 0)
    1921             :         {
    1922           0 :             elp[1] = GF16_MUL(syndromes[1], gf16_inv_table[syndromes[0]]);
    1923           0 :             if (elp[1] == 0)
    1924             :             {
    1925           0 :                 ret = t + 1;
    1926             :             }
    1927             :             else
    1928             :             {
    1929           0 :                 ret = 1;
    1930             :             }
    1931           0 :             break;
    1932             :         }
    1933             : 
    1934           0 :         ret = t + 1;
    1935           0 :         break;
    1936             :     }
    1937           0 :     default: assert(0 && "calculating elp of this degree not implemented");
    1938             :     }
    1939             : 
    1940             :      
    1941           0 :     return ret;
    1942             : }
    1943             : 
    1944           0 : FEC_STATIC LC3_INT16 rs16_factorize_elp(LC3_UINT8 *err_pos, LC3_UINT8 *elp, LC3_INT16 deg_elp, LC3_INT16 max_pos)
    1945             : {
    1946             :         LC3_UINT8 beta, gamma;
    1947             :         LC3_INT16 zeros, err_pos0, err_pos1, err_pos2, ret;
    1948             : 
    1949           0 :     beta  = 0;
    1950           0 :     gamma = 0;
    1951           0 :     zeros = 0;
    1952           0 :     ret   = 0;
    1953             : 
    1954           0 :     switch (deg_elp)
    1955             :     {
    1956           0 :     case 0: break;
    1957             : 
    1958           0 :     case 1:
    1959           0 :         err_pos0 = gf16_log_g[elp[1]];
    1960           0 :         if (err_pos0 > max_pos)
    1961             :         {
    1962           0 :             ret = 1;
    1963           0 :             break;
    1964             :         }
    1965             : 
    1966           0 :         err_pos[0] = (LC3_UINT8)err_pos0;
    1967           0 :         break;
    1968             : 
    1969           0 :     case 2:
    1970           0 :         zeros = rs16_elp_deg2_table[elp[1] | (elp[2] << 4)];
    1971           0 :         if (zeros == 0)
    1972             :         {  
    1973             :              
    1974           0 :             return 1;
    1975             :         }
    1976             : 
    1977           0 :         err_pos0 = zeros & 15;
    1978           0 :         err_pos1 = (zeros >> 4) & 15;
    1979             : 
    1980           0 :         if (err_pos0 > max_pos || err_pos1 > max_pos)
    1981             :         {
    1982           0 :             ret = 1;
    1983           0 :             break;
    1984             :         }
    1985             : 
    1986           0 :         err_pos[0] = (LC3_UINT8)err_pos0;
    1987           0 :         err_pos[1] = (LC3_UINT8)err_pos1;
    1988           0 :         break;
    1989             : 
    1990           0 :     case 3:
    1991             :         /* beta = a*a + b, gamma = a*b + c */
    1992           0 :         beta  = GF16_ADD(GF16_MUL(elp[1], elp[1]), elp[2]);
    1993           0 :         gamma = GF16_ADD(GF16_MUL(elp[1], elp[2]), elp[3]);
    1994           0 :         zeros = rs16_elp_deg3_table[beta | gamma << 4];
    1995             : 
    1996           0 :         if (zeros == 0)
    1997             :         /* elp does not split over GF(16) or has multiple zeros */
    1998             :         {
    1999           0 :             ret = 1;
    2000           0 :             break;
    2001             :         }
    2002             : 
    2003             :         /* remove shift from zeros */
    2004           0 :         err_pos0 = GF16_ADD(zeros & 15, elp[1]);
    2005           0 :         err_pos1 = GF16_ADD((zeros >> 4) & 15, elp[1]);
    2006           0 :         err_pos2 = GF16_ADD((zeros >> 8) & 15, elp[1]);
    2007             : 
    2008           0 :         if (err_pos0 == 0 || err_pos1 == 0 || err_pos2 == 0)
    2009             :         {
    2010             :              
    2011           0 :             return 1;
    2012             :         }
    2013             : 
    2014           0 :         err_pos0 = gf16_log_g[err_pos0];
    2015           0 :         err_pos1 = gf16_log_g[err_pos1];
    2016           0 :         err_pos2 = gf16_log_g[err_pos2];
    2017             : 
    2018           0 :         if (err_pos0 > max_pos || err_pos1 > max_pos || err_pos2 > max_pos)
    2019             :         {
    2020           0 :             ret = 1;
    2021           0 :             break;
    2022             :         }
    2023             : 
    2024           0 :         err_pos[0] = (LC3_UINT8)err_pos0;
    2025           0 :         err_pos[1] = (LC3_UINT8)err_pos1;
    2026           0 :         err_pos[2] = (LC3_UINT8)err_pos2;
    2027             : 
    2028           0 :         break;
    2029             : 
    2030           0 :     default: assert(0 && "invalid degree in rs16_error_locator");
    2031             :     }
    2032             : 
    2033             :      
    2034           0 :     return ret;
    2035             : }
    2036             : 
    2037           0 : FEC_STATIC void rs16_calculate_errors(LC3_UINT8 *err_symb, LC3_UINT8 *err_pos, LC3_UINT8 *syndromes, LC3_INT8 deg_elp, LC3_INT8 t)
    2038             : {
    2039             :         LC3_UINT8 det_inv;
    2040             :         LC3_UINT8 x0, x1, x2;
    2041             :         LC3_UINT8 x0sq, x1sq, x2sq;
    2042             :         LC3_UINT8 c0, c1, c2;
    2043             :         LC3_UINT8 s0, s1, s2;
    2044             :         LC3_UINT8 tmp;
    2045             :     
    2046             :     UNUSED(t);
    2047             : 
    2048           0 :     assert(deg_elp <= t);
    2049             : 
    2050           0 :     switch (deg_elp)
    2051             :     {
    2052           0 :     case 0: break;
    2053             : 
    2054           0 :     case 1:
    2055           0 :         err_symb[0] = GF16_MUL(gf16_g_pow[15 - err_pos[0]], syndromes[0]);
    2056             : 
    2057           0 :         break;
    2058             : 
    2059           0 :     case 2:
    2060           0 :         s0 = (LC3_UINT8) (syndromes[0] << 4);
    2061           0 :         s1 = (LC3_UINT8) (syndromes[1] << 4);
    2062             : 
    2063           0 :         x0 = gf16_g_pow[err_pos[0]];
    2064           0 :         x1 = gf16_g_pow[err_pos[1]];
    2065             : 
    2066           0 :         x0sq = GF16_MUL(x0, x0);
    2067           0 :         x1sq = GF16_MUL(x1, x1);
    2068             : 
    2069           0 :         tmp     = GF16_ADD(GF16_MUL(x0sq, x1), GF16_MUL(x1sq, x0));
    2070           0 :         det_inv = gf16_inv_table[tmp] << 4;
    2071             : 
    2072           0 :         tmp         = GF16_ADD(GF16_MUL0(x1sq, s0), GF16_MUL0(x1, s1));
    2073           0 :         err_symb[0] = GF16_MUL0(tmp, det_inv);
    2074             : 
    2075           0 :         tmp         = GF16_ADD(GF16_MUL0(x0sq, s0), GF16_MUL0(x0, s1));
    2076           0 :         err_symb[1] = GF16_MUL0(tmp, det_inv);
    2077             : 
    2078           0 :         break;
    2079             : 
    2080           0 :     case 3:
    2081           0 :         s0 = syndromes[0] << 4;
    2082           0 :         s1 = syndromes[1] << 4;
    2083           0 :         s2 = syndromes[2] << 4;
    2084             : 
    2085           0 :         x0 = gf16_g_pow[err_pos[0]];
    2086           0 :         x1 = gf16_g_pow[err_pos[1]];
    2087           0 :         x2 = gf16_g_pow[err_pos[2]];
    2088             : 
    2089           0 :         x0sq = GF16_MUL(x0, x0);
    2090           0 :         x1sq = GF16_MUL(x1, x1);
    2091           0 :         x2sq = GF16_MUL(x2, x2);
    2092             : 
    2093           0 :         tmp     = GF16_MUL(GF16_ADD(x1, x0), GF16_ADD(x2, x0));
    2094           0 :         tmp     = GF16_MUL(GF16_ADD(x2, x1), tmp);
    2095           0 :         det_inv = gf16_inv_table[tmp] << 4;
    2096             : 
    2097           0 :         c0 = GF16_ADD(GF16_MUL(x1, x2sq), GF16_MUL(x2, x1sq));
    2098           0 :         c1 = GF16_ADD(x2sq, x1sq);
    2099           0 :         c2 = GF16_ADD(x2, x1);
    2100             : 
    2101           0 :         err_symb[0] = GF16_ADD(GF16_ADD(GF16_MUL0(c0, s0), GF16_MUL0(c1, s1)), GF16_MUL0(c2, s2));
    2102             : 
    2103           0 :         c0 = GF16_ADD(GF16_MUL(x0, x2sq), GF16_MUL(x2, x0sq));
    2104           0 :         c1 = GF16_ADD(x2sq, x0sq);
    2105           0 :         c2 = GF16_ADD(x2, x0);
    2106             : 
    2107           0 :         err_symb[1] = GF16_ADD(GF16_ADD(GF16_MUL0(c0, s0), GF16_MUL0(c1, s1)), GF16_MUL0(c2, s2));
    2108             : 
    2109           0 :         c0 = GF16_ADD(GF16_MUL(x0, x1sq), GF16_MUL(x1, x0sq));
    2110           0 :         c1 = GF16_ADD(x1sq, x0sq);
    2111           0 :         c2 = GF16_ADD(x1, x0);
    2112             : 
    2113           0 :         err_symb[2] = GF16_ADD(GF16_ADD(GF16_MUL0(c0, s0), GF16_MUL0(c1, s1)), GF16_MUL0(c2, s2));
    2114             : 
    2115           0 :         tmp         = GF16_MUL0(err_symb[0], det_inv);
    2116           0 :         err_symb[0] = GF16_MUL(tmp, gf16_inv_table[x0]);
    2117             : 
    2118           0 :         tmp         = GF16_MUL0(err_symb[1], det_inv);
    2119           0 :         err_symb[1] = GF16_MUL(tmp, gf16_inv_table[x1]);
    2120             : 
    2121           0 :         tmp         = GF16_MUL0(err_symb[2], det_inv);
    2122           0 :         err_symb[2] = GF16_MUL(tmp, gf16_inv_table[x2]);
    2123             : 
    2124           0 :         break;
    2125             : 
    2126           0 :     default: assert(0 && "method not implemented\n"); break;
    2127             :     }
    2128             : 
    2129             :      
    2130           0 : }
    2131             : 
    2132             : /* hash functions for data validation */
    2133             : 
    2134             : /* hamming distance 4 */
    2135             : static const LC3_UINT32 crc14_mask[16] = {0,      17989,  35978,  51919,  71956,  89937,  103838, 119771,
    2136             :                                        143912, 160877, 179874, 194791, 207676, 224633, 239542, 254451};
    2137             : 
    2138             : /* hamming distance 4 */
    2139             : static const LC3_UINT32 crc22_mask[16] = {0,        4788009,  9576018,  14356859, 19152036, 23933837, 28713718, 33500639,
    2140             :                                        33650273, 38304072, 43214899, 47867674, 52775621, 57427436, 62346391, 67001278};
    2141             : 
    2142           0 : FEC_STATIC LC3_INT16 crc1(LC3_UINT8 *data, LC3_INT16 data_size, LC3_INT16 epmr, LC3_UINT8 *hash_val, LC3_INT16 hash_size, LC3_INT16 check)
    2143             : {
    2144             :         LC3_UINT32 const *mask;
    2145             :         LC3_INT32           shift, i, fail;
    2146             :         LC3_UINT32        rem;
    2147             : 
    2148           0 :     fail = 0;
    2149           0 :     rem  = 0;
    2150             : 
    2151           0 :     assert(hash_size > 0);
    2152             : 
    2153           0 :     switch (hash_size)
    2154             :     {
    2155           0 :     case 2:
    2156           0 :         shift = 14;
    2157           0 :         mask  = crc14_mask;
    2158           0 :         break;
    2159           0 :     case 3:
    2160           0 :         shift = 22;
    2161           0 :         mask  = crc22_mask;
    2162           0 :         break;
    2163           0 :     default:
    2164           0 :         shift = 0;
    2165           0 :         mask = 0;
    2166           0 :         assert(0 && "crc hash size not implemented");
    2167             :     }
    2168             : 
    2169             :     /* data array contains 4-bit words */
    2170           0 :     for (i = data_size - 1; i >= 0; i--)
    2171             :     {
    2172           0 :         rem = (rem << 4) ^ data[i];
    2173           0 :         rem ^= mask[(rem >> shift) & 15];
    2174             :     }
    2175             : 
    2176           0 :     rem = (rem << 4) ^ (epmr << 2);
    2177           0 :     rem ^= mask[(rem >> shift) & 15];
    2178             : 
    2179           0 :     for (i = 0; i < 2 * hash_size - 1; i++)
    2180             :     {
    2181           0 :         rem <<= 4;
    2182           0 :         rem ^= mask[(rem >> shift) & 15];
    2183             :     }
    2184             : 
    2185           0 :     rem ^= ((LC3_UINT32) epmr) << shift;
    2186             : 
    2187           0 :     if (check)
    2188             :     {
    2189             :         /* test hash value */
    2190           0 :         for (i = 0; i < 2 * hash_size; i++)
    2191             :         {
    2192           0 :             fail |= hash_val[i] ^ ((rem >> (4*i)) & 15);
    2193             :         }
    2194             :     }
    2195             :     else
    2196             :     {
    2197             :         /* write hash value */
    2198           0 :         for (i = 0; i < 2 * hash_size; i++)
    2199             :         {
    2200           0 :             hash_val[i] = (LC3_UINT8) ((rem >> (4*i)) & 15);
    2201             :         }
    2202             :     }
    2203             : 
    2204             :      
    2205           0 :     return fail;
    2206             : }
    2207             : 
    2208             : /* hamming distance = 4 */
    2209             : static const LC3_UINT32 crc16_mask[16] = {0,      107243, 190269, 214486, 289937, 380538, 428972, 469319,
    2210             :                                        579874, 621513, 671263, 761076, 832947, 857944, 938638, 1044581};
    2211             : 
    2212           0 : FEC_STATIC LC3_INT16 crc2(LC3_UINT8 *data, LC3_INT16 data_size, LC3_UINT8 *hash_val, LC3_INT16 hash_size, LC3_INT16 check)
    2213             : {
    2214             :         LC3_UINT32 const *mask;
    2215             :         LC3_INT32           shift, i, fail;
    2216             :         LC3_UINT32        rem;
    2217             : 
    2218           0 :     fail = 0;
    2219           0 :     rem  = 0;
    2220             : 
    2221           0 :     assert(hash_size > 0);
    2222             : 
    2223           0 :     switch (hash_size)
    2224             :     {
    2225           0 :     case 2:
    2226           0 :         shift = 16;
    2227           0 :         mask  = crc16_mask;
    2228           0 :         break;
    2229           0 :     default:
    2230           0 :         shift = 0;
    2231           0 :         mask = 0;
    2232           0 :         assert(0 && "crc hash size not implemented");
    2233             :     }
    2234             : 
    2235             :     /* data array contains 4-bit words */
    2236           0 :     for (i = data_size - 1; i >= 0; i--)
    2237             :     {
    2238           0 :         rem = (rem << 4) ^ data[i];
    2239           0 :         rem ^= mask[(rem >> shift) & 15];
    2240             :     }
    2241             : 
    2242           0 :     for (i = 0; i < 2 * hash_size; i++)
    2243             :     {
    2244           0 :         rem <<= 4;
    2245           0 :         rem ^= mask[(rem >> shift) & 15];
    2246             :     }
    2247             : 
    2248           0 :     if (check)
    2249             :     {
    2250             :         /* test hash value */
    2251           0 :         for (i = 0; i < 2 * hash_size; i++)
    2252             :         {
    2253           0 :             fail |= hash_val[i] ^ ((rem >> (4*i)) & 15);
    2254             :         }
    2255             :     }
    2256             :     else
    2257             :     {
    2258             :         /* write hash value */
    2259           0 :         for (i = 0; i < 2 * hash_size; i++)
    2260             :         {
    2261           0 :             hash_val[i] = (LC3_UINT8) ((rem >> (4*i)) & 15);
    2262             :         }
    2263             :     }
    2264             : 
    2265             :      
    2266           0 :     return fail;
    2267             : }
    2268             : 
    2269             : /* simple float implementation */
    2270           0 : FEC_STATIC simple_float simple_float_mul(simple_float op1, simple_float op2)
    2271             : {
    2272             :         simple_float rop;
    2273             :         LC3_INT32       aux;
    2274             :     
    2275           0 :     aux          = (op1.mantissa * op2.mantissa) >> 14;
    2276           0 :     rop.exponent = op1.exponent + op2.exponent;
    2277           0 :     if (aux & 32768L)
    2278             :     {
    2279           0 :         aux          >>= 1;
    2280           0 :         rop.exponent ++;
    2281             :     }
    2282           0 :     rop.mantissa = (LC3_INT16) aux;
    2283             : 
    2284             :      
    2285           0 :     return rop;
    2286             : }
    2287             : 
    2288             : /* Auxiliary */
    2289             : 
    2290           0 : FEC_STATIC LC3_INT16 simple_float_cmp(simple_float op1, simple_float op2)
    2291             : /* returns 1 if op1 > op2, 0 if op1 = op2, and -1 if op1 < op2 */
    2292             : {
    2293             :         LC3_INT16 rval;
    2294             :         LC3_INT16 mdiff;
    2295             :         LC3_INT16 ediff;
    2296             : 
    2297           0 :     rval = 0;
    2298             : 
    2299           0 :     ediff = op1.exponent - op2.exponent;
    2300           0 :     mdiff = (LC3_INT16) op1.mantissa - (LC3_INT16) op2.mantissa;
    2301             : 
    2302           0 :     if (ediff == 0)
    2303             :     {
    2304           0 :         if (mdiff > 0)
    2305             :         {
    2306           0 :             rval = 1;
    2307             :         }
    2308           0 :         if (mdiff < 0)
    2309             :         {
    2310           0 :             rval = -1;
    2311             :         }
    2312             :     }
    2313             :     else
    2314             :     {
    2315           0 :         if (ediff > 0)
    2316             :         {
    2317           0 :             rval = 1;
    2318             :         }
    2319           0 :         if (ediff < 0)
    2320             :         {
    2321           0 :             rval = -1;
    2322             :         }
    2323             :     }
    2324             : 
    2325             :      
    2326           0 :     return rval;
    2327             : }
    2328             : 

Generated by: LCOV version 1.14