LCOV - code coverage report
Current view: top level - lib_rend - ivas_reverb.c (source / functions) Hit Total Coverage
Test: Coverage on main -- short test vectors @ fec202a8f89be4a2f278a9fc377bfb58b58fab11 Lines: 563 641 87.8 %
Date: 2025-09-13 07:56:34 Functions: 34 34 100.0 %

          Line data    Source code
       1             : /******************************************************************************************************
       2             : 
       3             :    (C) 2022-2025 IVAS codec Public Collaboration with portions copyright Dolby International AB, Ericsson AB,
       4             :    Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
       5             :    Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
       6             :    Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
       7             :    contributors to this repository. All Rights Reserved.
       8             : 
       9             :    This software is protected by copyright law and by international treaties.
      10             :    The IVAS codec Public Collaboration consisting of Dolby International AB, Ericsson AB,
      11             :    Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
      12             :    Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
      13             :    Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
      14             :    contributors to this repository retain full ownership rights in their respective contributions in
      15             :    the software. This notice grants no license of any kind, including but not limited to patent
      16             :    license, nor is any license granted by implication, estoppel or otherwise.
      17             : 
      18             :    Contributors are required to enter into the IVAS codec Public Collaboration agreement before making
      19             :    contributions.
      20             : 
      21             :    This software is provided "AS IS", without any express or implied warranties. The software is in the
      22             :    development stage. It is intended exclusively for experts who have experience with such software and
      23             :    solely for the purpose of inspection. All implied warranties of non-infringement, merchantability
      24             :    and fitness for a particular purpose are hereby disclaimed and excluded.
      25             : 
      26             :    Any dispute, controversy or claim arising under or in relation to providing this software shall be
      27             :    submitted to and settled by the final, binding jurisdiction of the courts of Munich, Germany in
      28             :    accordance with the laws of the Federal Republic of Germany excluding its conflict of law rules and
      29             :    the United Nations Convention on Contracts on the International Sales of Goods.
      30             : 
      31             : *******************************************************************************************************/
      32             : 
      33             : #include <stdint.h>
      34             : #include "options.h"
      35             : #include "prot.h"
      36             : #include "ivas_prot_rend.h"
      37             : #include "ivas_cnst.h"
      38             : #ifdef DEBUGGING
      39             : #include "debug.h"
      40             : #endif
      41             : #include "math.h"
      42             : #include "ivas_rom_rend.h"
      43             : #include <assert.h>
      44             : #include "wmc_auto.h"
      45             : 
      46             : 
      47             : /* The reverberator structure implemented here is described in detail in:
      48             :  * Vilkamo, J., Neugebauer, B., & Plogsties, J. (2012). Sparse frequency-domain reverberator.
      49             :  * Journal of the Audio Engineering Society, 59(12), 936-943. */
      50             : 
      51             : /*-------------------------------------------------------------------------
      52             :  * Local constants
      53             :  *------------------------------------------------------------------------*/
      54             : 
      55             : #define BIN_REND_RANDOM_SEED 1 /* random seed for generating reverb decorrelators */
      56             : 
      57             : #define CLDFB_SLOTS_PER_SECOND 800 /* Used for initializing reverb */
      58             : 
      59             : #define REV_TIME_THRESHOLD ( 0.2f )
      60             : 
      61             : #define INNER_BLK_SIZE 80 /* size of data blocks used for more efficient delay line and IIR filter processing */
      62             : /* should be a divisor of the frame length at any sampling rate and an even number*/
      63             : #define FFT_FILTER_WND_FLAT_REGION  ( 0.40f ) /* flat section (==1) length of FFT filter window, in proportion to overlap */
      64             : #define FFT_FILTER_WND_TRANS_REGION ( 0.15f ) /* transition (1->0) length of FFT filter window, in proportion to overlap */
      65             : #define REF_LF_MIN                  ( 100.0f )
      66             : #define REF_LF_MAX                  ( 250.0f )
      67             : #define REF_HF_MIN                  ( 5000.0f )
      68             : #define REF_HF_MAX                  ( 7950.0f )
      69             : #define LF_BIAS                     ( 0.5f )
      70             : 
      71             : #define DEFAULT_SRC_DIST ( 1.5f ) /* default source distance [m] for reverb dmx factor computing */
      72             : 
      73             : #define IVAS_REVERB_FFT_SIZE_48K        ( 512 )
      74             : #define IVAS_REVERB_FFT_SIZE_32K        ( 512 )
      75             : #define IVAS_REVERB_FFT_SIZE_16K        ( 256 )
      76             : #define IVAS_REVERB_FFT_N_SUBBLOCKS_48K ( 1 )
      77             : #define IVAS_REVERB_FFT_N_SUBBLOCKS_32K ( 1 )
      78             : #define IVAS_REVERB_FFT_N_SUBBLOCKS_16K ( 1 )
      79             : 
      80             : #define MAX_NR_OUTPUTS ( 2 )
      81             : 
      82             : static const int16_t init_loop_delay[IVAS_REV_MAX_NR_BRANCHES] = { 37, 31, 29, 23, 19, 17, 13, 11 };
      83             : static const int16_t default_loop_delay_48k[IVAS_REV_MAX_NR_BRANCHES] = { 2309, 1861, 1523, 1259, 1069, 919, 809, 719 };
      84             : static const int16_t default_loop_delay_32k[IVAS_REV_MAX_NR_BRANCHES] = { 1531, 1237, 1013, 839, 709, 613, 541, 479 };
      85             : static const int16_t default_loop_delay_16k[IVAS_REV_MAX_NR_BRANCHES] = { 769, 619, 509, 421, 353, 307, 269, 239 };
      86             : 
      87             : /*------------------------------------------------------------------------------------------*
      88             :  * Local Struct definition
      89             :  *------------------------------------------------------------------------------------------*/
      90             : 
      91             : typedef struct ivas_reverb_params_t
      92             : {
      93             :     int16_t pre_delay;                                                                                   /* Delay of the FDC reverb, first peak after pre_delay samples. Note that               */
      94             :                                                                                                          /*       there may be non-zero samples earlier due to the filters being                 */
      95             :                                                                                                          /*       linear-phase.                                                                  */
      96             :     int16_t nr_loops;                                                                                    /* Number of feedback loops (= L)                                                       */
      97             :     int16_t pLoop_delays[IVAS_REV_MAX_NR_BRANCHES];                                                      /* Delay for each feedback loop in samples.                                             */
      98             :     float pLoop_feedback_matrix[IVAS_REV_MAX_NR_BRANCHES * IVAS_REV_MAX_NR_BRANCHES];                    /* Feedback [L][L] matrix that mixes the signals of the loops.                          */
      99             :     int16_t nr_outputs;                                                                                  /* Nr of signals extracted from the loops (= S).                                        */
     100             :                                                                                                          /*       Currently this is fixed to 2.                                                  */
     101             :     float pLoop_extract_matrix[MAX_NR_OUTPUTS * IVAS_REV_MAX_NR_BRANCHES];                               /* Mix [S][L] matrix from feedback loops to outputs.                                    */
     102             :                                                                                                          /* In Matlab: [S x L] - Currently S=2, later may be more than 2 for speaker playback.   */
     103             :     int16_t t60_filter_order;                                                                            /* Filter order (length of vector)                                                      */
     104             :     float pT60_filter_coeff[MAX_NR_OUTPUTS * IVAS_REV_MAX_NR_BRANCHES * IVAS_REV_MAX_IIR_FILTER_LENGTH]; /* Filters [][] in feedback loops, controlling T60.                                    */
     105             :                                                                                                          /* In Matlab: IIR: [(2 * L) x (<order> + 1)] (odd: b-vector, even: a-vector)            */
     106             :                                                                                                          /* In Matlab: FIR: [L       x <order>]                                                  */
     107             :     float *pFc;                                                                                          /* Center frequencies for FFT filter design                                             */
     108             :     float *pRt60;                                                                                        /* RT60 values at these frequencies                                                     */
     109             :     float *pDsr;                                                                                         /* DSR values at these frequencies                                                      */
     110             :     const float *pHrtf_avg_pwr_response_l_const;                                                         /* The HRTF set's average left  ear power response                                      */
     111             :     const float *pHrtf_avg_pwr_response_r_const;                                                         /* The HRTF set's average right ear power response                                      */
     112             :     const float *pHrtf_inter_aural_coherence_const;                                                      /* The HRTF set's inter-aural coherence for diffuse sound                               */
     113             : 
     114             :     int16_t do_corr_filter; /* Flag indicating whether correlation filters should be used.                          */
     115             :                             /*        Correlation only supported and needed for binaural playback (i.e.             */
     116             :                             /*        when nr_outputs != 2 correlation filtering is never supported).               */
     117             : } ivas_reverb_params_t;
     118             : 
     119             : 
     120             : /*------------------------------------------------------------------------------------------*
     121             :  * Static functions declarations
     122             :  *------------------------------------------------------------------------------------------*/
     123             : 
     124             : static ivas_error calc_jot_t60_coeffs( float *pH_dB, const uint16_t nrFrequencies, float *pFrequencies, float *pCoeffA, float *pCoeffB, const float fNyquist );
     125             : 
     126             : 
     127             : /*-------------------------------------------------------------------------
     128             :  * binRend_rand()
     129             :  *
     130             :  *
     131             :  *------------------------------------------------------------------------*/
     132             : 
     133    15463385 : static uint16_t binRend_rand(
     134             :     REVERB_STRUCT_HANDLE hReverb /* i/o: binaural reverb handle          */
     135             : )
     136             : {
     137    15463385 :     hReverb->binRend_RandNext = hReverb->binRend_RandNext * 1103515245 + 12345;
     138             : 
     139    15463385 :     return (uint16_t) ( hReverb->binRend_RandNext / 65536 ) % 32768;
     140             : }
     141             : 
     142             : 
     143             : /*-------------------------------------------------------------------------
     144             :  * ivas_binaural_reverb_setPreDelay()
     145             :  *
     146             :  *
     147             :  *------------------------------------------------------------------------*/
     148             : 
     149        2139 : static void ivas_binaural_reverb_setPreDelay(
     150             :     REVERB_STRUCT_HANDLE hReverb, /* i/o: binaural reverb handle          */
     151             :     const int16_t delaySamples    /* i  : reverb pre-delay in CLDFB slots */
     152             : )
     153             : {
     154        2139 :     if ( delaySamples < 1 )
     155             :     {
     156           0 :         hReverb->preDelayBufferLength = 1;
     157             : 
     158           0 :         return;
     159             :     }
     160             : 
     161        2139 :     if ( delaySamples > IVAS_REVERB_PREDELAY_MAX )
     162             :     {
     163          12 :         hReverb->preDelayBufferLength = IVAS_REVERB_PREDELAY_MAX;
     164             : 
     165          12 :         return;
     166             :     }
     167             : 
     168        2127 :     hReverb->preDelayBufferLength = delaySamples;
     169             : 
     170        2127 :     return;
     171             : }
     172             : 
     173             : 
     174             : /*-------------------------------------------------------------------------
     175             :  * ivas_binaural_reverb_setReverbTimes()
     176             :  *
     177             :  *
     178             :  *------------------------------------------------------------------------*/
     179             : 
     180        2139 : static void ivas_binaural_reverb_setReverbTimes(
     181             :     REVERB_STRUCT_HANDLE hReverb, /* i/o: binaural reverb handle                                  */
     182             :     const int32_t output_Fs,      /* i  : sampling_rate                                           */
     183             :     const float *revTimes,        /* i  : reverberation times T60 for each CLDFB bin in seconds   */
     184             :     const float *revEnes          /* i  : spectrum for reverberated sound at each CLDFB bin       */
     185             : )
     186             : {
     187             :     int16_t bin, ch, tap, sample;
     188             :     float binCenterFreq, diffuseFieldICC, tmpVal, attenuationFactorPerSample;
     189             :     float intendedEnergy, actualizedEnergy, energyBuildup, currentEnergy, attenuationFactorPerSampleSq;
     190             : 
     191        2139 :     hReverb->binRend_RandNext = (uint16_t) BIN_REND_RANDOM_SEED;
     192        2139 :     hReverb->highestBinauralCoherenceBin = 0;
     193       95799 :     for ( bin = 0; bin < hReverb->numBins; bin++ )
     194             :     {
     195             :         /* Determine the diffuse field binaural coherence */
     196       93660 :         binCenterFreq = ( (float) bin + 0.5f ) / ( (float) hReverb->numBins ) * ( (float) output_Fs ) / 2.0f;
     197       93660 :         if ( bin == 0 )
     198             :         {
     199        2139 :             diffuseFieldICC = 1.0f;
     200             :         }
     201       91521 :         else if ( binCenterFreq < 2700.0f )
     202             :         {
     203       12546 :             diffuseFieldICC = sinf( EVS_PI * binCenterFreq / 550.0f + 1e-20f ) / ( EVS_PI * binCenterFreq / 550.0f + 1e-20f ) * ( 1.0f - binCenterFreq / 2700.0f );
     204       12546 :             hReverb->highestBinauralCoherenceBin = bin;
     205             :         }
     206             :         else
     207             :         {
     208       78975 :             diffuseFieldICC = 0.0f;
     209             :         }
     210             : 
     211             :         /* Mixing gains to generate a diffuse-binaural sound based on incoherent sound */
     212       93660 :         tmpVal = ( 1.0f - sqrtf( 1.0f - powf( diffuseFieldICC, 2.0 ) ) ) / 2.0f;
     213       93660 :         if ( diffuseFieldICC > 0 )
     214             :         {
     215        8268 :             hReverb->binauralCoherenceCrossmixGains[bin] = sqrtf( fabsf( tmpVal ) );
     216             :         }
     217             :         else
     218             :         {
     219       85392 :             hReverb->binauralCoherenceCrossmixGains[bin] = -sqrtf( fabsf( tmpVal ) );
     220             :         }
     221       93660 :         hReverb->binauralCoherenceDirectGains[bin] = sqrtf( 1.0f - fabsf( tmpVal ) );
     222             : 
     223             :         /* Determine attenuation factor that generates the appropriate energy decay according to reverberation time */
     224       93660 :         attenuationFactorPerSample = powf( 10.0f, -3.0f * ( 1.0f / ( (float) CLDFB_SLOTS_PER_SECOND * revTimes[bin] ) ) );
     225       93660 :         hReverb->loopAttenuationFactor[bin] = powf( attenuationFactorPerSample, hReverb->loopBufLength[bin] );
     226       93660 :         attenuationFactorPerSampleSq = attenuationFactorPerSample * attenuationFactorPerSample;
     227             : 
     228             :         /* Design sparse decorrelation filters. The decorrelation filters, due to random procedures involved,
     229             :          * may affect the spectrum of the output. The spectral effect is therefore monitored and compensated for. */
     230       93660 :         intendedEnergy = 0.0f;
     231       93660 :         actualizedEnergy = 0.0f;
     232             : 
     233      280980 :         for ( ch = 0; ch < BINAURAL_CHANNELS; ch++ )
     234             :         {
     235      187320 :             energyBuildup = 0.0f;
     236      187320 :             currentEnergy = 1.0f;
     237      187320 :             tap = 0;
     238             : 
     239    11466464 :             for ( sample = 0; sample < hReverb->loopBufLength[bin]; sample++ )
     240             :             {
     241    11279144 :                 intendedEnergy += currentEnergy;
     242             : 
     243             :                 /* The randomization at the energy build up affects where the sparse taps are located */
     244    11279144 :                 energyBuildup += currentEnergy + 0.1f * ( (float) binRend_rand( hReverb ) / PCM16_TO_FLT_FAC - 0.5f );
     245             : 
     246    11279144 :                 if ( energyBuildup >= 1.0f ) /* A new filter tap is added at this condition */
     247             :                 {
     248             :                     /* Four efficient phase operations: n*pi/2, n=0,1,2,3 */
     249     4184241 :                     hReverb->tapPhaseShiftType[bin][ch][tap] = (int16_t) ( binRend_rand( hReverb ) % 4 );
     250             :                     /* Set the tapPointer to point to the determined sample at the loop buffer */
     251     4184241 :                     hReverb->tapPointersReal[bin][ch][tap] = &( hReverb->loopBufReal[bin][sample] );
     252     4184241 :                     hReverb->tapPointersImag[bin][ch][tap] = &( hReverb->loopBufImag[bin][sample] );
     253     4184241 :                     energyBuildup -= 1.0f; /* A tap is added, thus remove its energy from the buildup */
     254     4184241 :                     tap++;
     255     4184241 :                     actualizedEnergy += 1.0f;
     256             :                 }
     257    11279144 :                 currentEnergy *= attenuationFactorPerSampleSq;
     258             :             }
     259             :             /* In some configurations with small T60s it is possible the number of taps randomizes to zero.
     260             :                Ensure at least 1 filter tap. */
     261      187320 :             if ( tap == 0 )
     262             :             {
     263           0 :                 hReverb->tapPhaseShiftType[bin][ch][0] = (int16_t) ( binRend_rand( hReverb ) % 4 );
     264           0 :                 hReverb->tapPointersReal[bin][ch][0] = &( hReverb->loopBufReal[bin][0] );
     265           0 :                 hReverb->tapPointersImag[bin][ch][0] = &( hReverb->loopBufImag[bin][0] );
     266           0 :                 tap = 1;
     267           0 :                 actualizedEnergy = 1;
     268             :             }
     269             : 
     270      187320 :             hReverb->taps[bin][ch] = tap; /* Number of taps determined at the above random procedure */
     271             :         }
     272             : 
     273             :         /* The decorrelator design and IIR attenuation rate affects the energy of reverb, which is compensated here */
     274       93660 :         hReverb->reverbEqGains[bin] = sqrtf( revEnes[bin] );                                    /* Determined reverb spectrum */
     275       93660 :         hReverb->reverbEqGains[bin] *= sqrtf( intendedEnergy / actualizedEnergy );              /* Correction of random effects at the decorrelator design */
     276       93660 :         hReverb->reverbEqGains[bin] *= sqrtf( 0.5f * ( 1.0f - attenuationFactorPerSampleSq ) ); /* Correction of IIR decay rate */
     277             :     }
     278             : 
     279        2139 :     return;
     280             : }
     281             : 
     282             : 
     283             : /*-----------------------------------------------------------------------------------------*
     284             :  * Function compute_feedback_matrix()
     285             :  *
     286             :  * Compute the N x N matrix for the mixing the N feedback loop outputs into the N inputs again
     287             :  *-----------------------------------------------------------------------------------------*/
     288             : 
     289        2394 : static ivas_error compute_feedback_matrix(
     290             :     float *pFeedbackMatrix,
     291             :     const int16_t n )
     292             : {
     293             :     float u, v;
     294             :     int16_t i, j, x;
     295             : 
     296        2394 :     if ( n == 6 )
     297             :     {
     298             :         /* special case (there is no 6 x 6 Hadamard matrix in set R) */
     299           0 :         u = -1.0f / 3;
     300           0 :         v = 1.0f + u;
     301           0 :         for ( i = 0; i < n; i++ )
     302             :         {
     303           0 :             for ( j = 0; j < n; j++ )
     304             :             {
     305           0 :                 if ( i == j )
     306             :                 {
     307           0 :                     pFeedbackMatrix[i * n + j] = v;
     308             :                 }
     309             :                 else
     310             :                 {
     311           0 :                     pFeedbackMatrix[i * n + j] = u;
     312             :                 }
     313             :             }
     314             :         }
     315             :     }
     316             :     else
     317             :     {
     318        2394 :         if ( !( n == 4 || n == 8 || n == 16 ) )
     319             :         {
     320           0 :             return IVAS_ERR_INTERNAL; /* n must be 4, 6, 8 or 16, else ERROR */
     321             :         }
     322             : 
     323        2394 :         u = inv_sqrt( n );
     324             : 
     325        2394 :         if ( n == 4 )
     326             :         {
     327           0 :             u = -u;
     328             :         }
     329             : 
     330        2394 :         pFeedbackMatrix[0] = u;
     331        9576 :         for ( x = 1; x < n; x += x )
     332             :         {
     333       23940 :             for ( i = 0; i < x; i++ )
     334             :             {
     335       67032 :                 for ( j = 0; j < x; j++ )
     336             :                 {
     337       50274 :                     pFeedbackMatrix[( i + x ) * n + j] = pFeedbackMatrix[i * n + j];
     338       50274 :                     pFeedbackMatrix[i * n + j + x] = pFeedbackMatrix[i * n + j];
     339       50274 :                     pFeedbackMatrix[( i + x ) * n + j + x] = -pFeedbackMatrix[i * n + j];
     340             :                 }
     341             :             }
     342             :         }
     343             : 
     344        2394 :         if ( n == 4 )
     345             :         {
     346             :             /* special case */
     347           0 :             for ( j = 12; j < 16; j++ )
     348             :             {
     349           0 :                 pFeedbackMatrix[j] = -pFeedbackMatrix[j];
     350             :             }
     351             :         }
     352             :     }
     353             : 
     354        2394 :     return IVAS_ERR_OK;
     355             : }
     356             : 
     357             : 
     358             : /*-----------------------------------------------------------------------------------------*
     359             :  * Function compute_2_out_extract_matrix()
     360             :  *
     361             :  * Compute the N x 2 matrix for mixing the N Jot feedback loops to 2 outputs
     362             :  *-----------------------------------------------------------------------------------------*/
     363             : 
     364        2394 : static void compute_2_out_extract_matrix(
     365             :     float *pExtractMatrix,
     366             :     const int16_t n )
     367             : {
     368             :     float ff;
     369             :     int16_t i;
     370             : 
     371        2394 :     ff = 1.0;
     372       21546 :     for ( i = 0; i < n; i++ )
     373             :     {
     374       19152 :         pExtractMatrix[i] = 1.0;
     375       19152 :         pExtractMatrix[i + n] = ff;
     376       19152 :         ff = -ff;
     377             :     }
     378             : 
     379        2394 :     return;
     380             : }
     381             : 
     382             : 
     383             : /*-----------------------------------------------------------------------------------------*
     384             :  * Function set_base_config()
     385             :  *
     386             :  * Set all jot reverb parameters that are independent of the input reverb configuration
     387             :  *-----------------------------------------------------------------------------------------*/
     388             : 
     389        2394 : static ivas_error set_base_config(
     390             :     ivas_reverb_params_t *pParams,
     391             :     const int32_t output_Fs )
     392             : {
     393             :     ivas_error error;
     394             :     int16_t loop_idx;
     395        2394 :     const int16_t *selected_loop_delay = NULL;
     396             : 
     397        2394 :     if ( pParams == NULL )
     398             :     {
     399           0 :         return IVAS_ERR_INTERNAL;
     400             :     }
     401             : 
     402        2394 :     pParams->pre_delay = 0;
     403        2394 :     pParams->nr_outputs = BINAURAL_CHANNELS;
     404        2394 :     pParams->nr_loops = IVAS_REV_MAX_NR_BRANCHES;
     405             : 
     406             :     /* set loop delays to default */
     407        2394 :     if ( output_Fs == 48000 )
     408             :     {
     409         793 :         selected_loop_delay = default_loop_delay_48k;
     410             :     }
     411        1601 :     else if ( output_Fs == 32000 )
     412             :     {
     413         754 :         selected_loop_delay = default_loop_delay_32k;
     414             :     }
     415         847 :     else if ( output_Fs == 16000 )
     416             :     {
     417         847 :         selected_loop_delay = default_loop_delay_16k;
     418             :     }
     419             : 
     420       21546 :     for ( loop_idx = 0; loop_idx < pParams->nr_loops; loop_idx++ )
     421             :     {
     422       19152 :         pParams->pLoop_delays[loop_idx] = selected_loop_delay[loop_idx];
     423             :     }
     424             : 
     425             :     /* set feedback and output matrices */
     426        2394 :     if ( ( error = compute_feedback_matrix( pParams->pLoop_feedback_matrix, pParams->nr_loops ) ) != IVAS_ERR_OK )
     427             :     {
     428           0 :         return error;
     429             :     }
     430             : 
     431        2394 :     compute_2_out_extract_matrix( pParams->pLoop_extract_matrix, pParams->nr_loops );
     432             : 
     433             :     /* pre-set the various filters; they will be set later based on reverb configuration */
     434        2394 :     pParams->t60_filter_order = 1; /* set to 1 in base config. */
     435             : 
     436        2394 :     if ( pParams->nr_outputs == 2 )
     437             :     {
     438        2394 :         pParams->do_corr_filter = 1;
     439             :     }
     440             :     else
     441             :     {
     442           0 :         pParams->do_corr_filter = 0;
     443             :     }
     444             : 
     445        2394 :     return IVAS_ERR_OK;
     446             : }
     447             : 
     448             : 
     449             : /*-----------------------------------------------------------------------------------------*
     450             :  * Function calc_dmx_gain()
     451             :  *
     452             :  * Computes the downmix gain
     453             :  *-----------------------------------------------------------------------------------------*/
     454             : 
     455        2229 : static float calc_dmx_gain( void )
     456             : {
     457        2229 :     const float dist = DEFAULT_SRC_DIST;
     458        2229 :     return sqrtf( 4.0f * EVS_PI * dist * dist / 0.001f );
     459             : }
     460             : 
     461             : 
     462             : /*-----------------------------------------------------------------------------------------*
     463             :  * Function calc_predelay()
     464             :  *
     465             :  * Calculate the predelay, taking shortest jot loop delay into account
     466             :  *-----------------------------------------------------------------------------------------*/
     467             : 
     468        2394 : static void calc_predelay(
     469             :     ivas_reverb_params_t *pParams,
     470             :     float acoustic_predelay_sec,
     471             :     const int32_t output_Fs )
     472             : {
     473             :     int16_t predelay, fbdelay, output_frame;
     474             : 
     475        2394 :     predelay = (int16_t) roundf( acoustic_predelay_sec * (float) output_Fs );
     476        2394 :     output_frame = (int16_t) ( output_Fs / FRAMES_PER_SEC );
     477        2394 :     fbdelay = pParams->pLoop_delays[pParams->nr_loops - 1];
     478        2394 :     predelay -= fbdelay;
     479             : 
     480        2394 :     if ( predelay < 0 )
     481             :     {
     482           0 :         predelay = 0;
     483             :     }
     484             : 
     485        2394 :     if ( output_frame < predelay )
     486             :     {
     487           0 :         predelay = output_frame;
     488             :     }
     489             : 
     490        2394 :     pParams->pre_delay = predelay;
     491             : 
     492        2394 :     return;
     493             : }
     494             : 
     495             : 
     496             : /*-----------------------------------------------------------------------------------------*
     497             :  * Function compute_t60_coeffs()
     498             :  *
     499             :  * Calculate Jot reverb's T60 filter coefficients
     500             :  *-----------------------------------------------------------------------------------------*/
     501             : 
     502        2394 : static ivas_error compute_t60_coeffs(
     503             :     ivas_reverb_params_t *pParams,
     504             :     const int16_t nr_fc_fft_filter,
     505             :     const int32_t output_Fs )
     506             : {
     507             :     int16_t bin_idx, loop_idx, tf_T60_len, len;
     508             :     float loop_delay_sec, freq_Nyquist, inv_hfs;
     509             :     float target_gains_db[RV_LENGTH_NR_FC];
     510             :     float norm_f[RV_LENGTH_NR_FC];
     511             :     float *pCoeffs_a, *pCoeffs_b;
     512             :     float *targetT60, *freqT60;
     513             :     ivas_error error;
     514             : 
     515        2394 :     targetT60 = pParams->pRt60;
     516        2394 :     freqT60 = pParams->pFc;
     517             : 
     518        2394 :     error = IVAS_ERR_OK;
     519        2394 :     tf_T60_len = nr_fc_fft_filter;
     520        2394 :     len = pParams->t60_filter_order + 1;
     521        2394 :     freq_Nyquist = 0.5f * (float) output_Fs;
     522             : 
     523             :     /* normalize pFrequencies: 0 .. 1/2 output_Fs --> 0.0 .. 1.0 */
     524        2394 :     inv_hfs = 1.0f / freq_Nyquist;
     525      509236 :     for ( bin_idx = 0; bin_idx < tf_T60_len; bin_idx++ )
     526             :     {
     527      506842 :         norm_f[bin_idx] = freqT60[bin_idx] * inv_hfs;
     528             :     }
     529             : 
     530       21546 :     for ( loop_idx = 0; loop_idx < pParams->nr_loops; loop_idx++ )
     531             :     {
     532       19152 :         loop_delay_sec = (float) pParams->pLoop_delays[loop_idx] / (float) output_Fs;
     533     4073888 :         for ( bin_idx = 0; bin_idx < tf_T60_len; bin_idx++ )
     534             :         {
     535     4054736 :             target_gains_db[bin_idx] = -60.0f * loop_delay_sec / targetT60[bin_idx];
     536     4054736 :             target_gains_db[bin_idx] = max( target_gains_db[bin_idx], -120.0f );
     537             :         }
     538             : 
     539       19152 :         pCoeffs_a = &pParams->pT60_filter_coeff[2 * len * loop_idx + len];
     540       19152 :         pCoeffs_b = &pParams->pT60_filter_coeff[2 * len * loop_idx];
     541       19152 :         if ( ( error = calc_jot_t60_coeffs( target_gains_db, tf_T60_len, norm_f, pCoeffs_a, pCoeffs_b, freq_Nyquist ) ) != IVAS_ERR_OK )
     542             :         {
     543           0 :             return error;
     544             :         }
     545             :     }
     546             : 
     547        2394 :     len = ( pParams->t60_filter_order + 1 ) >> 1; /* == floor( (order+1) / 2) */
     548       21546 :     for ( loop_idx = 0; loop_idx < pParams->nr_loops; loop_idx++ )
     549             :     {
     550       19152 :         pParams->pLoop_delays[loop_idx] -= len;
     551             :     }
     552             : 
     553        2394 :     return error;
     554             : }
     555             : 
     556             : 
     557             : /*-----------------------------------------------------------------------------------------*
     558             :  * Function calc_low_shelf_first_order_filter()
     559             :  *
     560             :  * Calculate 1st order low shelf filter
     561             :  *-----------------------------------------------------------------------------------------*/
     562             : 
     563       19152 : static void calc_low_shelf_first_order_filter(
     564             :     float *pNum,
     565             :     float *pDen,
     566             :     const float f0,
     567             :     const float lin_gain_lf,
     568             :     const float lin_gain_hf )
     569             : {
     570             :     float w0, gain;
     571             : 
     572       19152 :     w0 = tanf( EVS_PI * f0 / 2.0f );
     573       19152 :     gain = lin_gain_lf / lin_gain_hf;
     574             : 
     575       19152 :     if ( gain < 1.0f )
     576             :     {
     577           0 :         pNum[0] = 1 + w0 * gain;
     578           0 :         pNum[1] = w0 * gain - 1;
     579           0 :         pDen[0] = 1 + w0;
     580           0 :         pDen[1] = w0 - 1;
     581             :     }
     582             :     else
     583             :     {
     584       19152 :         pNum[0] = 1 + w0;
     585       19152 :         pNum[1] = w0 - 1;
     586       19152 :         pDen[0] = 1 + w0 / gain;
     587       19152 :         pDen[1] = w0 / gain - 1;
     588             :     }
     589             : 
     590             :     /* Normalize and adjust gain to match target amplitudes */
     591       19152 :     pNum[0] = ( pNum[0] / pDen[0] ) * lin_gain_hf;
     592       19152 :     pNum[1] = ( pNum[1] / pDen[0] ) * lin_gain_hf;
     593       19152 :     pDen[1] = pDen[1] / pDen[0];
     594       19152 :     pDen[0] = 1.0f;
     595             : 
     596       19152 :     return;
     597             : }
     598             : 
     599             : 
     600             : /*-----------------------------------------------------------------------------------------*
     601             :  * Function calc_jot_t60_coeffs()
     602             :  *
     603             :  * Calculate Jot reverb's T60 filters
     604             :  *-----------------------------------------------------------------------------------------*/
     605             : 
     606       19152 : static ivas_error calc_jot_t60_coeffs(
     607             :     float *pH_dB,
     608             :     const uint16_t nrFrequencies,
     609             :     float *pFrequencies,
     610             :     float *pCoeffA,
     611             :     float *pCoeffB,
     612             :     const float fNyquist )
     613             : {
     614       19152 :     const float ref_lf_min_norm = REF_LF_MIN / fNyquist;
     615       19152 :     const float ref_lf_max_norm = REF_LF_MAX / fNyquist;
     616       19152 :     const float ref_hf_min_norm = REF_HF_MIN / fNyquist;
     617       19152 :     const float ref_hf_max_norm = REF_HF_MAX / fNyquist;
     618             :     int16_t f_idx, minidx;
     619             :     float f0, tmp, minval, lf_target_gain_dB, hf_target_gain_dB, mid_crossing_gain_dB;
     620             :     uint16_t n_points_lf, n_points_hf;
     621             :     float lin_gain_lf, lin_gain_hf;
     622             : 
     623       19152 :     minidx = nrFrequencies - 1;
     624       19152 :     minval = 1e+20f;
     625       19152 :     lf_target_gain_dB = 0.0f;
     626       19152 :     hf_target_gain_dB = 0.0f;
     627       19152 :     n_points_lf = 0;
     628       19152 :     n_points_hf = 0;
     629             : 
     630     4073888 :     for ( f_idx = 0; f_idx < nrFrequencies; f_idx++ )
     631             :     {
     632     4054736 :         if ( ( pFrequencies[f_idx] >= ref_lf_min_norm ) && ( pFrequencies[f_idx] <= ref_lf_max_norm ) )
     633             :         {
     634       44768 :             lf_target_gain_dB += pH_dB[f_idx];
     635       44768 :             n_points_lf++;
     636             :         }
     637     4054736 :         if ( ( pFrequencies[f_idx] >= ref_hf_min_norm ) && ( pFrequencies[f_idx] <= ref_hf_max_norm ) )
     638             :         {
     639      811448 :             hf_target_gain_dB += pH_dB[f_idx];
     640      811448 :             n_points_hf++;
     641             :         }
     642             :     }
     643             : 
     644       19152 :     if ( ( n_points_lf == 0 ) || ( n_points_hf == 0 ) )
     645             :     {
     646           0 :         return IVAS_ERR_INTERNAL;
     647             :     }
     648             : 
     649       19152 :     lf_target_gain_dB = lf_target_gain_dB / (float) n_points_lf;
     650       19152 :     hf_target_gain_dB = hf_target_gain_dB / (float) n_points_hf;
     651       19152 :     mid_crossing_gain_dB = hf_target_gain_dB + LF_BIAS * ( lf_target_gain_dB - hf_target_gain_dB );
     652             : 
     653     4035584 :     for ( f_idx = 1; f_idx < nrFrequencies - 1; f_idx++ )
     654             :     {
     655     4016432 :         tmp = fabsf( pH_dB[f_idx] - mid_crossing_gain_dB );
     656     4016432 :         if ( tmp < minval )
     657             :         {
     658      343536 :             minval = tmp;
     659      343536 :             minidx = f_idx;
     660             :         }
     661             :     }
     662             : 
     663       19152 :     f0 = pFrequencies[minidx];
     664       19152 :     lin_gain_lf = powf( 10.0f, lf_target_gain_dB * 0.05f );
     665       19152 :     lin_gain_hf = powf( 10.0f, hf_target_gain_dB * 0.05f );
     666             : 
     667             :     /* call low-pass iir shelf */
     668       19152 :     calc_low_shelf_first_order_filter( pCoeffB, pCoeffA, f0, lin_gain_lf, lin_gain_hf );
     669             : 
     670       19152 :     return IVAS_ERR_OK;
     671             : }
     672             : 
     673             : 
     674             : /*-----------------------------------------------------------------------------------------*
     675             :  * Function initialize_reverb_filters()
     676             :  *
     677             :  * Set the number of branches (feedback loops) and Initializes the memory structure (pointers to data)
     678             :  *-----------------------------------------------------------------------------------------*/
     679             : 
     680        2229 : static ivas_error initialize_reverb_filters(
     681             :     REVERB_HANDLE hReverb )
     682             : {
     683             :     ivas_error error;
     684             : 
     685             :     /* init correlation and coloration filters */
     686        2229 :     if ( ( error = ivas_reverb_t2f_f2t_init( &hReverb->fft_filter_ols, hReverb->fft_size, hReverb->fft_subblock_size ) ) != IVAS_ERR_OK )
     687             :     {
     688           0 :         return error;
     689             :     }
     690             : 
     691        2229 :     if ( ( error = ivas_reverb_fft_filter_init( &hReverb->fft_filter_correl_0, hReverb->fft_size ) ) != IVAS_ERR_OK )
     692             :     {
     693           0 :         return error;
     694             :     }
     695             : 
     696        2229 :     if ( ( error = ivas_reverb_fft_filter_init( &hReverb->fft_filter_correl_1, hReverb->fft_size ) ) != IVAS_ERR_OK )
     697             :     {
     698           0 :         return error;
     699             :     }
     700             : 
     701        2229 :     if ( ( error = ivas_reverb_fft_filter_init( &hReverb->fft_filter_color_0, hReverb->fft_size ) ) != IVAS_ERR_OK )
     702             :     {
     703           0 :         return error;
     704             :     }
     705             : 
     706        2229 :     if ( ( error = ivas_reverb_fft_filter_init( &hReverb->fft_filter_color_1, hReverb->fft_size ) ) != IVAS_ERR_OK )
     707             :     {
     708           0 :         return error;
     709             :     }
     710             : 
     711        2229 :     return IVAS_ERR_OK;
     712             : }
     713             : 
     714             : 
     715             : /*-----------------------------------------------------------------------------------------*
     716             :  * Function set_t60_filter()
     717             :  *
     718             :  * Sets t60 number of taps and coefficients A and B
     719             :  *-----------------------------------------------------------------------------------------*/
     720             : 
     721       19152 : static ivas_error set_t60_filter(
     722             :     REVERB_HANDLE hReverb,
     723             :     const uint16_t branch,
     724             :     const uint16_t nr_taps,
     725             :     const float coefA[],
     726             :     const float coefB[] )
     727             : {
     728       19152 :     if ( branch >= hReverb->nr_of_branches )
     729             :     {
     730           0 :         return IVAS_ERR_INTERNAL;
     731             :     }
     732             : 
     733       19152 :     if ( nr_taps > IVAS_REV_MAX_IIR_FILTER_LENGTH )
     734             :     {
     735           0 :         return IVAS_ERR_INTERNAL;
     736             :     }
     737             : 
     738       19152 :     ivas_reverb_iir_filt_set( &( hReverb->t60[branch] ), nr_taps, coefA, coefB );
     739             : 
     740       19152 :     return IVAS_ERR_OK;
     741             : }
     742             : 
     743             : 
     744             : /*-----------------------------------------------------------------------------------------*
     745             :  * Function set_feedback_delay()
     746             :  *
     747             :  * Sets Delay of feedback branch in number of samples
     748             :  *-----------------------------------------------------------------------------------------*/
     749             : 
     750       17832 : static ivas_error set_feedback_delay(
     751             :     REVERB_HANDLE hReverb,
     752             :     const uint16_t branch,
     753             :     const int16_t fb_delay )
     754             : {
     755       17832 :     if ( branch >= hReverb->nr_of_branches )
     756             :     {
     757           0 :         return IVAS_ERR_INTERNAL;
     758             :     }
     759             : 
     760       17832 :     hReverb->delay_line[branch].Delay = fb_delay;
     761             : 
     762       17832 :     return IVAS_ERR_OK;
     763             : }
     764             : 
     765             : 
     766             : /*-----------------------------------------------------------------------------------------*
     767             :  * Function set_feedback_gain()
     768             :  *
     769             :  * Sets nr_of_branches feedback gain values in feedback matrix
     770             :  *-----------------------------------------------------------------------------------------*/
     771             : 
     772       17832 : static ivas_error set_feedback_gain(
     773             :     REVERB_HANDLE hReverb,
     774             :     const uint16_t branch,
     775             :     const float *pGain )
     776             : {
     777             :     uint16_t gain_idx;
     778       17832 :     if ( branch >= hReverb->nr_of_branches )
     779             :     {
     780           0 :         return IVAS_ERR_INTERNAL;
     781             :     }
     782             : 
     783      160488 :     for ( gain_idx = 0; gain_idx < hReverb->nr_of_branches; gain_idx++ )
     784             :     {
     785      142656 :         hReverb->gain_matrix[branch][gain_idx] = pGain[gain_idx];
     786             :     }
     787             : 
     788       17832 :     return IVAS_ERR_OK;
     789             : }
     790             : 
     791             : 
     792             : /*-----------------------------------------------------------------------------------------*
     793             :  * Function set_correl_fft_filter()
     794             :  *
     795             :  * Sets correlation filter complex gains
     796             :  *-----------------------------------------------------------------------------------------*/
     797             : 
     798        4788 : static ivas_error set_correl_fft_filter(
     799             :     REVERB_HANDLE hReverb,
     800             :     const uint16_t channel,
     801             :     rv_fftwf_type_complex *pSpectrum )
     802             : {
     803        4788 :     if ( channel > 1 )
     804             :     {
     805           0 :         return IVAS_ERR_INTERNAL;
     806             :     }
     807             : 
     808        4788 :     if ( channel == 0 )
     809             :     {
     810        2394 :         ivas_reverb_fft_filter_ConvertFFTWF_2_FFTR( pSpectrum, hReverb->fft_filter_correl_0.fft_spectrum, hReverb->fft_filter_correl_0.fft_size );
     811             :     }
     812             :     else
     813             :     {
     814        2394 :         ivas_reverb_fft_filter_ConvertFFTWF_2_FFTR( pSpectrum, hReverb->fft_filter_correl_1.fft_spectrum, hReverb->fft_filter_correl_1.fft_size );
     815             :     }
     816             : 
     817        4788 :     return IVAS_ERR_OK;
     818             : }
     819             : 
     820             : 
     821             : /*-----------------------------------------------------------------------------------------*
     822             :  * Function set_color_fft_filter()
     823             :  *
     824             :  * Sets coloration filter complex gains
     825             :  *-----------------------------------------------------------------------------------------*/
     826             : 
     827        4788 : static ivas_error set_color_fft_filter(
     828             :     REVERB_HANDLE hReverb,
     829             :     const uint16_t channel,
     830             :     rv_fftwf_type_complex *pSpectrum )
     831             : {
     832        4788 :     if ( channel > 1 )
     833             :     {
     834           0 :         return IVAS_ERR_INTERNAL;
     835             :     }
     836             : 
     837        4788 :     if ( channel == 0 )
     838             :     {
     839        2394 :         ivas_reverb_fft_filter_ConvertFFTWF_2_FFTR( pSpectrum, hReverb->fft_filter_color_0.fft_spectrum, hReverb->fft_filter_color_0.fft_size );
     840             :     }
     841             :     else
     842             :     {
     843        2394 :         ivas_reverb_fft_filter_ConvertFFTWF_2_FFTR( pSpectrum, hReverb->fft_filter_color_1.fft_spectrum, hReverb->fft_filter_color_1.fft_size );
     844             :     }
     845             : 
     846        4788 :     return IVAS_ERR_OK;
     847             : }
     848             : 
     849             : 
     850             : /*-----------------------------------------------------------------------------------------*
     851             :  * Function set_mixer_level()
     852             :  *
     853             :  * Sets Mixer level: to mix 2 output channels from 8 feedback branches
     854             :  *-----------------------------------------------------------------------------------------*/
     855             : 
     856        4458 : static ivas_error set_mixer_level(
     857             :     REVERB_HANDLE hReverb,
     858             :     const uint16_t channel,
     859             :     const float level[] )
     860             : {
     861             :     uint16_t branch_idx;
     862        4458 :     if ( channel >= BINAURAL_CHANNELS )
     863             :     {
     864           0 :         return IVAS_ERR_INTERNAL;
     865             :     }
     866             : 
     867       40122 :     for ( branch_idx = 0; branch_idx < hReverb->nr_of_branches; branch_idx++ )
     868             :     {
     869       35664 :         hReverb->mixer[channel][branch_idx] = level[branch_idx];
     870             :     }
     871             : 
     872        4458 :     return IVAS_ERR_OK;
     873             : }
     874             : 
     875             : 
     876             : /*-----------------------------------------------------------------------------------------*
     877             :  * Function clear_buffers()
     878             :  *
     879             :  * Clears buffers of delay lines and filters
     880             :  *-----------------------------------------------------------------------------------------*/
     881             : 
     882        2229 : static void clear_buffers(
     883             :     REVERB_HANDLE hReverb )
     884             : {
     885             :     int16_t branch_idx;
     886             :     ivas_rev_iir_filter_t *iirFilter;
     887             :     ivas_rev_delay_line_t *delay_line;
     888             : 
     889       20061 :     for ( branch_idx = 0; branch_idx < IVAS_REV_MAX_NR_BRANCHES; branch_idx++ )
     890             :     {
     891       17832 :         delay_line = &( hReverb->delay_line[branch_idx] );
     892       17832 :         set_f( delay_line->pBuffer, 0, delay_line->MaxDelay );
     893       17832 :         delay_line->BufferPos = 0;
     894             : 
     895       17832 :         iirFilter = &( hReverb->t60[branch_idx] );
     896       17832 :         set_f( iirFilter->pBuffer, 0, iirFilter->MaxTaps );
     897             :     }
     898             : 
     899        2229 :     ivas_reverb_t2f_f2t_ClearHistory( &hReverb->fft_filter_ols );
     900             : 
     901        2229 :     return;
     902             : }
     903             : 
     904             : 
     905             : /*-----------------------------------------------------------------------------------------*
     906             :  * Function set_fft_and_datablock_sizes()
     907             :  *
     908             :  * Sets frame size and fft-filter related sizes
     909             :  *-----------------------------------------------------------------------------------------*/
     910             : 
     911        2394 : static void set_fft_and_datablock_sizes(
     912             :     REVERB_HANDLE hReverb,
     913             :     const int16_t subframe_len )
     914             : {
     915        2394 :     hReverb->full_block_size = subframe_len;
     916        2394 :     if ( subframe_len == L_FRAME48k / MAX_PARAM_SPATIAL_SUBFRAMES )
     917             :     {
     918         793 :         hReverb->fft_size = IVAS_REVERB_FFT_SIZE_48K;
     919         793 :         hReverb->num_fft_subblocks = IVAS_REVERB_FFT_N_SUBBLOCKS_48K;
     920             :     }
     921        1601 :     else if ( subframe_len == L_FRAME32k / MAX_PARAM_SPATIAL_SUBFRAMES )
     922             :     {
     923         754 :         hReverb->fft_size = IVAS_REVERB_FFT_SIZE_32K;
     924         754 :         hReverb->num_fft_subblocks = IVAS_REVERB_FFT_N_SUBBLOCKS_32K;
     925             :     }
     926         847 :     else if ( subframe_len == L_FRAME16k / MAX_PARAM_SPATIAL_SUBFRAMES )
     927             :     {
     928         847 :         hReverb->fft_size = IVAS_REVERB_FFT_SIZE_16K;
     929         847 :         hReverb->num_fft_subblocks = IVAS_REVERB_FFT_N_SUBBLOCKS_16K;
     930             :     }
     931             :     else
     932             :     {
     933           0 :         assert( 0 ); /* unsupported block size */
     934             :     }
     935             : 
     936        2394 :     hReverb->fft_subblock_size = subframe_len / hReverb->num_fft_subblocks;
     937             : 
     938        2394 :     return;
     939             : }
     940             : 
     941             : 
     942             : /*-----------------------------------------------------------------------------------------*
     943             :  * Function set_reverb_acoustic_data()
     944             :  *
     945             :  * Sets reverb acoustic data (room acoustics and HRTF), interpolating it to the filter grid
     946             :  *-----------------------------------------------------------------------------------------*/
     947             : 
     948        2394 : static void set_reverb_acoustic_data(
     949             :     ivas_reverb_params_t *pParams,
     950             :     IVAS_ROOM_ACOUSTICS_CONFIG_DATA *pRoomAcoustics,
     951             :     const int16_t nr_fc_input,
     952             :     const int16_t nr_fc_fft_filter )
     953             : {
     954             :     int16_t bin_idx;
     955             :     float ln_1e6_inverted, delay_diff, exp_argument;
     956             :     /* interpolate input table data for T60 and DSR to the FFT filter grid */
     957        2394 :     ivas_reverb_interpolate_acoustic_data( nr_fc_input, pRoomAcoustics->pFc_input, pRoomAcoustics->pAcoustic_rt60, pRoomAcoustics->pAcoustic_dsr,
     958        2394 :                                            nr_fc_fft_filter, pParams->pFc, pParams->pRt60, pParams->pDsr );
     959             : 
     960             :     /* adjust DSR for the delay difference */
     961        2394 :     delay_diff = pRoomAcoustics->inputPreDelay - pRoomAcoustics->acousticPreDelay;
     962        2394 :     ln_1e6_inverted = 1.0f / logf( 1e06f );
     963      509236 :     for ( bin_idx = 0; bin_idx < nr_fc_fft_filter; bin_idx++ )
     964             :     {
     965      506842 :         exp_argument = delay_diff / ( pParams->pRt60[bin_idx] * ln_1e6_inverted );
     966             :         /* Limit exponent to approx +/-100 dB in case of incoherent value of delay_diff, to prevent overflow */
     967      506842 :         exp_argument = min( exp_argument, 23.0f );
     968      506842 :         exp_argument = max( exp_argument, -23.0f );
     969      506842 :         pParams->pDsr[bin_idx] *= expf( exp_argument );
     970             :     }
     971             : 
     972        2394 :     return;
     973             : }
     974             : 
     975             : 
     976             : /*-----------------------------------------------------------------------------------------*
     977             :  * Function setup_FDN_branches()
     978             :  *
     979             :  * Sets up feedback delay network system
     980             :  *-----------------------------------------------------------------------------------------*/
     981             : 
     982        2229 : static ivas_error setup_FDN_branches(
     983             :     REVERB_HANDLE hReverb,
     984             :     ivas_reverb_params_t *pParams )
     985             : {
     986             :     int16_t nr_coefs, branch_idx, channel_idx;
     987             :     ivas_error error;
     988        2229 :     error = IVAS_ERR_OK;
     989             : 
     990             :     /* initialize feedback branches */
     991       20061 :     for ( branch_idx = 0; branch_idx < IVAS_REV_MAX_NR_BRANCHES; branch_idx++ )
     992             :     {
     993       17832 :         ivas_rev_delay_line_init( &( hReverb->delay_line[branch_idx] ), hReverb->loop_delay_buffer[branch_idx], init_loop_delay[branch_idx], pParams->pLoop_delays[branch_idx] );
     994       17832 :         ivas_reverb_iir_filt_init( &( hReverb->t60[branch_idx] ), IVAS_REV_MAX_IIR_FILTER_LENGTH );
     995       17832 :         hReverb->mixer[0][branch_idx] = 0.0f;
     996       17832 :         hReverb->mixer[1][branch_idx] = 0.0f;
     997             :     }
     998        2229 :     clear_buffers( hReverb );
     999        2229 :     nr_coefs = pParams->t60_filter_order + 1;
    1000             : 
    1001        2229 :     if ( IVAS_REV_MAX_IIR_FILTER_LENGTH < nr_coefs )
    1002             :     {
    1003           0 :         return IVAS_ERR_INTERNAL;
    1004             :     }
    1005             :     else
    1006             :     {
    1007       20061 :         for ( branch_idx = 0; branch_idx < pParams->nr_loops; branch_idx++ )
    1008             :         {
    1009       17832 :             if ( ( error = set_feedback_delay( hReverb, branch_idx, pParams->pLoop_delays[branch_idx] ) ) != IVAS_ERR_OK )
    1010             :             {
    1011           0 :                 return error;
    1012             :             }
    1013             : 
    1014       17832 :             if ( ( error = set_feedback_gain( hReverb, branch_idx, &( pParams->pLoop_feedback_matrix[branch_idx * pParams->nr_loops] ) ) ) != IVAS_ERR_OK )
    1015             :             {
    1016           0 :                 return error;
    1017             :             }
    1018             :         }
    1019             :     }
    1020             : 
    1021        6687 :     for ( channel_idx = 0; channel_idx < pParams->nr_outputs; channel_idx++ )
    1022             :     {
    1023        4458 :         if ( ( error = set_mixer_level( hReverb, channel_idx, &( pParams->pLoop_extract_matrix[channel_idx * pParams->nr_loops] ) ) ) != IVAS_ERR_OK )
    1024             :         {
    1025           0 :             return error;
    1026             :         }
    1027             :     }
    1028             : 
    1029        2229 :     return error;
    1030             : }
    1031             : 
    1032             : 
    1033             : /*-------------------------------------------------------------------------
    1034             :  * ivas_reverb_open()
    1035             :  *
    1036             :  * Allocate and initialize FDN reverberation handle
    1037             :  *------------------------------------------------------------------------*/
    1038             : 
    1039        2394 : ivas_error ivas_reverb_open(
    1040             :     REVERB_HANDLE *hReverb,                        /* i/o: Reverberator handle               */
    1041             :     const HRTFS_STATISTICS_HANDLE hHrtfStatistics, /* i  : HRTF statistics handle            */
    1042             :     RENDER_CONFIG_HANDLE hRenderConfig,            /* i  : Renderer configuration handle     */
    1043             :     const int32_t output_Fs                        /* i  : output sampling rate              */
    1044             : )
    1045             : {
    1046             :     ivas_error error;
    1047        2394 :     REVERB_HANDLE pState = *hReverb;
    1048             :     int16_t nr_coefs, branch_idx;
    1049             :     float *pCoef_a, *pCoef_b;
    1050             :     int16_t bin_idx, subframe_len, output_frame, predelay_bf_len, loop_idx;
    1051             :     ivas_reverb_params_t params;
    1052             :     rv_fftwf_type_complex pFft_wf_filter_ch0[RV_LENGTH_NR_FC];
    1053             :     rv_fftwf_type_complex pFft_wf_filter_ch1[RV_LENGTH_NR_FC];
    1054             :     float pColor_target_l[RV_LENGTH_NR_FC];
    1055             :     float pColor_target_r[RV_LENGTH_NR_FC];
    1056             :     float pTime_window[RV_FILTER_MAX_FFT_SIZE];
    1057             :     float freq_step;
    1058             :     int16_t fft_hist_size, transition_start, transition_length;
    1059             :     int16_t nr_fc_input, nr_fc_fft_filter;
    1060             : 
    1061        2394 :     output_frame = (int16_t) ( output_Fs / FRAMES_PER_SEC );
    1062        2394 :     subframe_len = output_frame / MAX_PARAM_SPATIAL_SUBFRAMES;
    1063        2394 :     predelay_bf_len = output_frame;
    1064        2394 :     nr_fc_input = hRenderConfig->roomAcoustics.nBands;
    1065             : 
    1066        2394 :     if ( *hReverb == NULL )
    1067             :     {
    1068             :         /* Allocate main reverb. handle */
    1069        2229 :         if ( ( pState = (REVERB_HANDLE) malloc( sizeof( REVERB_DATA ) ) ) == NULL )
    1070             :         {
    1071           0 :             return IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Cannot allocate memory for FDN Reverberator " );
    1072             :         }
    1073             :     }
    1074             : 
    1075        2394 :     if ( ( error = set_base_config( &params, output_Fs ) ) != IVAS_ERR_OK )
    1076             :     {
    1077           0 :         return error;
    1078             :     }
    1079             : 
    1080        2394 :     if ( *hReverb == NULL )
    1081             :     {
    1082             :         /* Allocate memory for feedback delay lines */
    1083       20061 :         for ( loop_idx = 0; loop_idx < IVAS_REV_MAX_NR_BRANCHES; loop_idx++ )
    1084             :         {
    1085       17832 :             if ( ( pState->loop_delay_buffer[loop_idx] = (float *) malloc( params.pLoop_delays[loop_idx] * sizeof( float ) ) ) == NULL )
    1086             :             {
    1087           0 :                 return IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Cannot allocate memory for FDN Reverberator" );
    1088             :             }
    1089             :         }
    1090             : 
    1091             :         /* Allocate memory for the pre-delay delay line */
    1092        2229 :         if ( ( pState->pPredelay_buffer = (float *) malloc( output_frame * sizeof( float ) ) ) == NULL )
    1093             :         {
    1094           0 :             return IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Cannot allocate memory for FDN Reverberator" );
    1095             :         }
    1096             :     }
    1097             : 
    1098        2394 :     pState->nr_of_branches = IVAS_REV_MAX_NR_BRANCHES;
    1099        2394 :     set_fft_and_datablock_sizes( pState, subframe_len );
    1100             : 
    1101        2394 :     nr_fc_fft_filter = ( pState->fft_size >> 1 ) + 1;
    1102             : 
    1103             :     /* === 'Control logic': compute the reverb processing parameters from the              === */
    1104             :     /* === room, source and listener acoustic information provided in the reverb config    === */
    1105             :     /* Setting up shared temporary buffers for fc, RT60, DSR, etc.                             */
    1106        2394 :     params.pRt60 = &pFft_wf_filter_ch1[0][0];
    1107        2394 :     params.pDsr = params.pRt60 + nr_fc_fft_filter;
    1108        2394 :     params.pFc = &pState->fft_filter_color_0.fft_spectrum[0];
    1109             : 
    1110             :     /* Note: these temp buffers can only be used before the final step of the FFT filter design :     */
    1111             :     /* before calls to ivas_reverb_calc_correl_filters(...) or to ivas_reverb_calc_color_filters(...) */
    1112             : 
    1113             :     /* set the uniform frequency grid for FFT filtering                                               */
    1114        2394 :     freq_step = 0.5f * output_Fs / ( nr_fc_fft_filter - 1 );
    1115      509236 :     for ( bin_idx = 0; bin_idx < nr_fc_fft_filter; bin_idx++ )
    1116             :     {
    1117      506842 :         params.pFc[bin_idx] = freq_step * bin_idx;
    1118             :     }
    1119             : 
    1120        2394 :     set_reverb_acoustic_data( &params, &hRenderConfig->roomAcoustics, nr_fc_input, nr_fc_fft_filter );
    1121        2394 :     params.pHrtf_avg_pwr_response_l_const = hHrtfStatistics->average_energy_l;
    1122        2394 :     params.pHrtf_avg_pwr_response_r_const = hHrtfStatistics->average_energy_r;
    1123        2394 :     params.pHrtf_inter_aural_coherence_const = hHrtfStatistics->inter_aural_coherence;
    1124             : 
    1125             :     /* set reverb acoustic configuration based on renderer config  */
    1126             : #ifdef DEBUGGING
    1127             :     pState->pConfig.renderer_type_override = hRenderConfig->renderer_type_override;
    1128             : #endif
    1129        2394 :     pState->pConfig.roomAcoustics.nBands = hRenderConfig->roomAcoustics.nBands;
    1130             : 
    1131        2394 :     if ( hRenderConfig->roomAcoustics.use_er == 1 )
    1132             :     {
    1133          21 :         pState->pConfig.roomAcoustics.use_er = hRenderConfig->roomAcoustics.use_er;
    1134          21 :         pState->pConfig.roomAcoustics.lowComplexity = hRenderConfig->roomAcoustics.lowComplexity;
    1135             :     }
    1136             : 
    1137             :     /*  set up input downmix  */
    1138        2394 :     if ( *hReverb == NULL )
    1139             :     {
    1140        2229 :         pState->dmx_gain = calc_dmx_gain();
    1141             :     }
    1142             : 
    1143             :     /*  set up predelay - must be after set_base_config() and before compute_t60_coeffs() */
    1144        2394 :     calc_predelay( &params, hRenderConfig->roomAcoustics.acousticPreDelay, output_Fs );
    1145             : 
    1146             :     /*  set up jot reverb 60 filters - must be set up after set_reverb_acoustic_data() */
    1147        2394 :     if ( ( error = compute_t60_coeffs( &params, nr_fc_fft_filter, output_Fs ) ) != IVAS_ERR_OK )
    1148             :     {
    1149           0 :         return error;
    1150             :     }
    1151             : 
    1152             :     /* Compute target levels (gains) for the coloration filters */
    1153        2394 :     ivas_reverb_calc_color_levels( output_Fs, nr_fc_fft_filter, params.nr_loops, params.pFc, params.pDsr, params.pHrtf_avg_pwr_response_l_const, params.pHrtf_avg_pwr_response_r_const,
    1154             :                                    params.pLoop_delays, params.pT60_filter_coeff, pColor_target_l, pColor_target_r );
    1155             : 
    1156             :     /* Defining appropriate windowing parameters for FFT filters to prevent aliasing */
    1157        2394 :     fft_hist_size = pState->fft_size - pState->fft_subblock_size;
    1158             : 
    1159        2394 :     transition_start = (int16_t) roundf( FFT_FILTER_WND_FLAT_REGION * fft_hist_size );
    1160        2394 :     transition_length = (int16_t) roundf( FFT_FILTER_WND_TRANS_REGION * fft_hist_size );
    1161             : 
    1162             :     /* Compute the window used for FFT filters */
    1163        2394 :     ivas_reverb_define_window_fft( pTime_window, transition_start, transition_length, nr_fc_fft_filter );
    1164             : 
    1165             :     /* === Copy parameters from ivas_reverb_params_t into DSP blocks   === */
    1166             :     /* === to be used for subsequent audio signal processing           === */
    1167        2394 :     if ( *hReverb == NULL )
    1168             :     {
    1169        2229 :         pState->do_corr_filter = params.do_corr_filter;
    1170             : 
    1171             :         /* clear & init jot reverb fft filters */
    1172        2229 :         if ( ( error = initialize_reverb_filters( pState ) ) != IVAS_ERR_OK )
    1173             :         {
    1174           0 :             return error;
    1175             :         }
    1176             :     }
    1177             : 
    1178        2394 :     if ( pState->do_corr_filter )
    1179             :     {
    1180             :         /* Computing correlation filters on the basis of target IA coherence */
    1181        2394 :         ivas_reverb_calc_correl_filters( params.pHrtf_inter_aural_coherence_const, pTime_window, pState->fft_size, 0.0f, pFft_wf_filter_ch0, pFft_wf_filter_ch1 );
    1182             : 
    1183             :         /* Copying the computed FFT correlation filters to the fft_filter components */
    1184        2394 :         if ( ( error = set_correl_fft_filter( pState, 0, pFft_wf_filter_ch0 ) ) != IVAS_ERR_OK )
    1185             :         {
    1186           0 :             return error;
    1187             :         }
    1188             : 
    1189        2394 :         if ( ( error = set_correl_fft_filter( pState, 1, pFft_wf_filter_ch1 ) ) != IVAS_ERR_OK )
    1190             :         {
    1191           0 :             return error;
    1192             :         }
    1193             :     }
    1194             : 
    1195             :     /* Computing coloration filters on the basis of target responses */
    1196        2394 :     ivas_reverb_calc_color_filters( pColor_target_l, pColor_target_r, pTime_window, pState->fft_size, 0.0f, pFft_wf_filter_ch0, pFft_wf_filter_ch1 );
    1197             : 
    1198             :     /* Copying the computed FFT colorations filters to the fft_filter components */
    1199        2394 :     if ( ( error = set_color_fft_filter( pState, 0, pFft_wf_filter_ch0 ) ) != IVAS_ERR_OK )
    1200             :     {
    1201           0 :         return error;
    1202             :     }
    1203             : 
    1204        2394 :     if ( ( error = set_color_fft_filter( pState, 1, pFft_wf_filter_ch1 ) ) != IVAS_ERR_OK )
    1205             :     {
    1206           0 :         return error;
    1207             :     }
    1208             : 
    1209        2394 :     if ( *hReverb == NULL )
    1210             :     {
    1211             :         /* init predelay */
    1212        2229 :         ivas_rev_delay_line_init( &( pState->predelay_line ), pState->pPredelay_buffer, params.pre_delay, predelay_bf_len );
    1213             : 
    1214             :         /* set up feedback delay network */
    1215        2229 :         if ( ( error = setup_FDN_branches( pState, &params ) ) != IVAS_ERR_OK )
    1216             :         {
    1217           0 :             return error;
    1218             :         }
    1219             :     }
    1220             :     else
    1221             :     {
    1222         165 :         pState->predelay_line.Delay = params.pre_delay;
    1223             :     }
    1224             : 
    1225        2394 :     nr_coefs = params.t60_filter_order + 1;
    1226             : 
    1227       21546 :     for ( branch_idx = 0; branch_idx < params.nr_loops; branch_idx++ )
    1228             :     {
    1229       19152 :         pCoef_a = &params.pT60_filter_coeff[2 * nr_coefs * branch_idx + nr_coefs];
    1230       19152 :         pCoef_b = &params.pT60_filter_coeff[2 * nr_coefs * branch_idx];
    1231             : 
    1232       19152 :         if ( ( error = set_t60_filter( pState, branch_idx, nr_coefs, pCoef_a, pCoef_b ) ) != IVAS_ERR_OK )
    1233             :         {
    1234           0 :             return error;
    1235             :         }
    1236             :     }
    1237             : 
    1238        2394 :     *hReverb = pState;
    1239             : 
    1240        2394 :     return IVAS_ERR_OK;
    1241             : }
    1242             : 
    1243             : 
    1244             : /*-------------------------------------------------------------------------
    1245             :  * ivas_reverb_close()
    1246             :  *
    1247             :  * Deallocate Crend reverberation handle
    1248             :  *------------------------------------------------------------------------*/
    1249             : 
    1250       48667 : void ivas_reverb_close(
    1251             :     REVERB_HANDLE *hReverb_in /* i/o: Reverberator handle       */
    1252             : )
    1253             : {
    1254             :     REVERB_HANDLE hReverb;
    1255             :     int16_t loop_idx;
    1256             : 
    1257       48667 :     hReverb = *hReverb_in;
    1258             : 
    1259       48667 :     if ( hReverb_in == NULL || *hReverb_in == NULL )
    1260             :     {
    1261       46438 :         return;
    1262             :     }
    1263             : 
    1264       20061 :     for ( loop_idx = 0; loop_idx < IVAS_REV_MAX_NR_BRANCHES; loop_idx++ )
    1265             :     {
    1266       17832 :         if ( hReverb->loop_delay_buffer[loop_idx] != NULL )
    1267             :         {
    1268       17832 :             free( hReverb->loop_delay_buffer[loop_idx] );
    1269       17832 :             hReverb->loop_delay_buffer[loop_idx] = NULL;
    1270             :         }
    1271             :     }
    1272             : 
    1273        2229 :     free( hReverb->pPredelay_buffer );
    1274        2229 :     hReverb->pPredelay_buffer = NULL;
    1275             : 
    1276        2229 :     free( *hReverb_in );
    1277        2229 :     *hReverb_in = NULL;
    1278             : 
    1279        2229 :     return;
    1280             : }
    1281             : 
    1282             : 
    1283             : /*-----------------------------------------------------------------------------------------*
    1284             :  * Function post_fft_filter()
    1285             :  *
    1286             :  *
    1287             :  *-----------------------------------------------------------------------------------------*/
    1288             : 
    1289     6604248 : static void post_fft_filter(
    1290             :     REVERB_HANDLE hReverb,
    1291             :     float *p0,
    1292             :     float *p1,
    1293             :     float *pBuffer_0,
    1294             :     float *pBuffer_1 )
    1295             : {
    1296     6604248 :     if ( hReverb->do_corr_filter )
    1297             :     {
    1298     6604248 :         ivas_reverb_t2f_f2t_in( &hReverb->fft_filter_ols, p0, p1, pBuffer_0, pBuffer_1 );
    1299     6604248 :         ivas_reverb_fft_filter_ComplexMul( &hReverb->fft_filter_correl_0, pBuffer_0 );
    1300     6604248 :         ivas_reverb_fft_filter_ComplexMul( &hReverb->fft_filter_correl_1, pBuffer_1 );
    1301     6604248 :         ivas_reverb_fft_filter_CrossMix( pBuffer_0, pBuffer_1, hReverb->fft_filter_correl_0.fft_size );
    1302             :     }
    1303             :     else
    1304             :     {
    1305           0 :         ivas_reverb_t2f_f2t_in( &hReverb->fft_filter_ols, p0, p1, pBuffer_0, pBuffer_1 );
    1306             :     }
    1307             : 
    1308     6604248 :     ivas_reverb_fft_filter_ComplexMul( &hReverb->fft_filter_color_0, pBuffer_0 );
    1309     6604248 :     ivas_reverb_fft_filter_ComplexMul( &hReverb->fft_filter_color_1, pBuffer_1 );
    1310     6604248 :     ivas_reverb_t2f_f2t_out( &hReverb->fft_filter_ols, pBuffer_0, pBuffer_1, p0, p1 );
    1311             : 
    1312     6604248 :     return;
    1313             : }
    1314             : 
    1315             : 
    1316             : /*-----------------------------------------------------------------------------------------*
    1317             :  * Function reverb_block()
    1318             :  *
    1319             :  * Input a block (mono) and calculate the 2 output blocks.
    1320             :  *-----------------------------------------------------------------------------------------*/
    1321             : 
    1322     6604248 : static void reverb_block(
    1323             :     REVERB_HANDLE hReverb,
    1324             :     float *pInput,
    1325             :     float *pOut0,
    1326             :     float *pOut1 )
    1327             : 
    1328             : {
    1329     6604248 :     uint16_t nr_branches = hReverb->nr_of_branches;
    1330     6604248 :     uint16_t bsize = hReverb->full_block_size;
    1331     6604248 :     uint16_t inner_bsize = INNER_BLK_SIZE;
    1332             :     uint16_t i, j, k, ns, branch_idx, blk_idx, start_sample_idx;
    1333             : 
    1334             :     float *pFFT_buf[2], FFT_buf_1[RV_FILTER_MAX_FFT_SIZE], FFT_buf_2[RV_FILTER_MAX_FFT_SIZE];
    1335             :     float pFeedback_input[INNER_BLK_SIZE];
    1336             :     float pTemp[INNER_BLK_SIZE];
    1337             :     float *ppOutput[IVAS_REV_MAX_NR_BRANCHES];
    1338             :     float Output[IVAS_REV_MAX_NR_BRANCHES][INNER_BLK_SIZE];
    1339             : 
    1340     6604248 :     pFFT_buf[0] = &FFT_buf_1[0];
    1341     6604248 :     pFFT_buf[1] = &FFT_buf_2[0];
    1342             : 
    1343    59438232 :     for ( branch_idx = 0; branch_idx < nr_branches; branch_idx++ )
    1344             :     {
    1345    52833984 :         ppOutput[branch_idx] = (float *) Output + branch_idx * inner_bsize;
    1346             :     }
    1347             : 
    1348    19898253 :     for ( k = 0; k < bsize; k += inner_bsize )
    1349             :     {
    1350    13294005 :         float *pO0 = &pOut0[k];
    1351    13294005 :         float *pO1 = &pOut1[k];
    1352  1076814405 :         for ( i = 0; i < inner_bsize; i++ )
    1353             :         {
    1354  1063520400 :             pO0[i] = 0.0f;
    1355  1063520400 :             pO1[i] = 0.0f;
    1356             :         }
    1357             : 
    1358             :         /* feedback network: */
    1359   119646045 :         for ( i = 0; i < nr_branches; i++ )
    1360             :         {
    1361   106352040 :             float *pOutput_i = &ppOutput[i][0];
    1362   106352040 :             float mixer_0_i = hReverb->mixer[0][i];
    1363   106352040 :             float mixer_1_i = hReverb->mixer[1][i];
    1364             : 
    1365             :             /* output and feedback are same, get sample from delay line ... */
    1366   106352040 :             ivas_rev_delay_line_get_sample_blk( &( hReverb->delay_line[i] ), inner_bsize, pTemp );
    1367   106352040 :             ivas_reverb_iir_filt_2taps_feed_blk( &( hReverb->t60[i] ), inner_bsize, pTemp, ppOutput[i] );
    1368  8614515240 :             for ( ns = 0; ns < inner_bsize; ns++ )
    1369             :             {
    1370  8508163200 :                 pO0[ns] += pOutput_i[ns] * mixer_0_i; /* mixer ch 0 */
    1371  8508163200 :                 pO1[ns] += pOutput_i[ns] * mixer_1_i; /* mixer ch 1 */
    1372             :             }
    1373             :         }
    1374             : 
    1375   119646045 :         for ( i = 0; i < nr_branches; i++ )
    1376             :         {
    1377   106352040 :             float *pIn = &pInput[k];
    1378             : 
    1379  8614515240 :             for ( ns = 0; ns < inner_bsize; ns++ )
    1380             :             {
    1381  8508163200 :                 pFeedback_input[ns] = pIn[ns];
    1382             :             }
    1383             : 
    1384   957168360 :             for ( j = 0; j < nr_branches; j++ )
    1385             :             {
    1386   850816320 :                 float gain_matrix_j_i = hReverb->gain_matrix[j][i];
    1387   850816320 :                 float *pOutput = &ppOutput[j][0];
    1388 68916121920 :                 for ( ns = 0; ns < inner_bsize; ns++ )
    1389             :                 {
    1390 68065305600 :                     pFeedback_input[ns] += gain_matrix_j_i * pOutput[ns];
    1391             :                 }
    1392             :             }
    1393             : 
    1394   106352040 :             ivas_rev_delay_line_feed_sample_blk( &( hReverb->delay_line[i] ), inner_bsize, pFeedback_input );
    1395             :         }
    1396             :     }
    1397             : 
    1398             :     /* Applying FFT filter to each sub-frame */
    1399    13208496 :     for ( blk_idx = 0; blk_idx < hReverb->num_fft_subblocks; blk_idx++ )
    1400             :     {
    1401     6604248 :         start_sample_idx = blk_idx * hReverb->fft_subblock_size;
    1402     6604248 :         post_fft_filter( hReverb, pOut0 + start_sample_idx, pOut1 + start_sample_idx, pFFT_buf[0], pFFT_buf[1] );
    1403             :     }
    1404             : 
    1405     6604248 :     return;
    1406             : }
    1407             : 
    1408             : 
    1409             : /*-----------------------------------------------------------------------------------------*
    1410             :  * Function downmix_input_block()
    1411             :  *
    1412             :  * Downmix input to mono, taking also DSR gain into account
    1413             :  *-----------------------------------------------------------------------------------------*/
    1414             : 
    1415     6604248 : static ivas_error downmix_input_block(
    1416             :     const REVERB_HANDLE hReverb,
    1417             :     float *pcm_in[],
    1418             :     const AUDIO_CONFIG input_audio_config,
    1419             :     float *pPcm_out,
    1420             :     const int16_t input_offset )
    1421             : {
    1422             :     int16_t i, s, nchan_transport;
    1423     6604248 :     float dmx_gain = hReverb->dmx_gain;
    1424             : 
    1425     6604248 :     switch ( input_audio_config )
    1426             :     {
    1427     5129019 :         case IVAS_AUDIO_CONFIG_STEREO:
    1428             :         case IVAS_AUDIO_CONFIG_5_1:
    1429             :         case IVAS_AUDIO_CONFIG_7_1:
    1430             :         case IVAS_AUDIO_CONFIG_5_1_2:
    1431             :         case IVAS_AUDIO_CONFIG_5_1_4:
    1432             :         case IVAS_AUDIO_CONFIG_7_1_4:
    1433             :         case IVAS_AUDIO_CONFIG_ISM1:
    1434             :         case IVAS_AUDIO_CONFIG_ISM2:
    1435             :         case IVAS_AUDIO_CONFIG_ISM3:
    1436             :         case IVAS_AUDIO_CONFIG_ISM4:
    1437             :         {
    1438     5129019 :             nchan_transport = audioCfg2channels( input_audio_config );
    1439   830322459 :             for ( s = 0; s < hReverb->full_block_size; s++ )
    1440             :             {
    1441   825193440 :                 float temp = pcm_in[0][input_offset + s];
    1442  1303672320 :                 for ( i = 1; i < nchan_transport; i++ )
    1443             :                 {
    1444   478478880 :                     temp += pcm_in[i][input_offset + s];
    1445             :                 }
    1446   825193440 :                 pPcm_out[s] = dmx_gain * temp;
    1447             :             }
    1448     5129019 :             break;
    1449             :         }
    1450     1475229 :         case IVAS_AUDIO_CONFIG_MONO: /* ~'ZOA_1' */
    1451             :         case IVAS_AUDIO_CONFIG_FOA:
    1452             :         case IVAS_AUDIO_CONFIG_HOA2:
    1453             :         case IVAS_AUDIO_CONFIG_HOA3:
    1454             :         {
    1455   239802189 :             for ( s = 0; s < hReverb->full_block_size; s++ )
    1456             :             {
    1457   238326960 :                 pPcm_out[s] = dmx_gain * pcm_in[0][input_offset + s];
    1458             :             }
    1459     1475229 :             break;
    1460             :         }
    1461           0 :         default:
    1462           0 :             return IVAS_ERROR( IVAS_ERR_INTERNAL_FATAL, "Unsupported input format for reverb" );
    1463             :             break;
    1464             :     }
    1465             : 
    1466     6604248 :     return IVAS_ERR_OK;
    1467             : }
    1468             : 
    1469             : 
    1470             : /*-----------------------------------------------------------------------------------------*
    1471             :  * Function predelay_block()
    1472             :  *
    1473             :  * Perform a predelay
    1474             :  *-----------------------------------------------------------------------------------------*/
    1475             : 
    1476     6604248 : static void predelay_block(
    1477             :     const REVERB_HANDLE hReverb,
    1478             :     float *pInput,
    1479             :     float *pOutput )
    1480             : {
    1481             :     uint16_t i, idx, n_samples, blk_size;
    1482     6604248 :     uint16_t max_blk_size = (uint16_t) hReverb->predelay_line.Delay;
    1483             : 
    1484     6604248 :     if ( max_blk_size < 2 )
    1485             :     {
    1486           0 :         if ( max_blk_size == 0 ) /* zero-length delay line: just copy the data from input to output */
    1487             :         {
    1488           0 :             for ( i = 0; i < hReverb->full_block_size; i++ )
    1489             :             {
    1490           0 :                 pOutput[i] = pInput[i];
    1491             :             }
    1492             :         }
    1493             :         else /* 1-sample length delay line: feed the data sample-by-sample */
    1494             :         {
    1495           0 :             for ( i = 0; i < hReverb->full_block_size; i++ )
    1496             :             {
    1497           0 :                 pOutput[i] = ivas_rev_delay_line_get_sample( &( hReverb->predelay_line ) );
    1498           0 :                 ivas_rev_delay_line_feed_sample( &( hReverb->predelay_line ), pInput[i] );
    1499             :             }
    1500             :         }
    1501             :     }
    1502             :     else /* multiple-sample length delay line: use block processing */
    1503             :     {
    1504     6604248 :         idx = 0;
    1505     6604248 :         n_samples = hReverb->full_block_size;
    1506    39625488 :         while ( n_samples > 0 )
    1507             :         {
    1508    33021240 :             blk_size = n_samples;
    1509    33021240 :             if ( blk_size > max_blk_size )
    1510             :             {
    1511    26416992 :                 blk_size = max_blk_size;
    1512             :             }
    1513    33021240 :             ivas_rev_delay_line_get_sample_blk( &( hReverb->predelay_line ), blk_size, &pOutput[idx] );
    1514    33021240 :             ivas_rev_delay_line_feed_sample_blk( &( hReverb->predelay_line ), blk_size, &pInput[idx] );
    1515    33021240 :             idx += blk_size;
    1516    33021240 :             n_samples -= blk_size;
    1517             :         }
    1518             :     }
    1519             : 
    1520     6604248 :     return;
    1521             : }
    1522             : 
    1523             : 
    1524             : /*-----------------------------------------------------------------------------------------*
    1525             :  * Function mix_output_block()
    1526             :  *
    1527             :  * mix one block of *pInL and *pInR samples into *pOutL and *pOutL respectively
    1528             :  *-----------------------------------------------------------------------------------------*/
    1529             : 
    1530     1721400 : static void mix_output_block(
    1531             :     const REVERB_HANDLE hReverb,
    1532             :     const float *pInL,
    1533             :     const float *pInR,
    1534             :     float *pOutL,
    1535             :     float *pOutR )
    1536             : {
    1537             :     uint16_t i;
    1538             : 
    1539   278815800 :     for ( i = 0; i < hReverb->full_block_size; i++ )
    1540             :     {
    1541   277094400 :         pOutL[i] += pInL[i];
    1542   277094400 :         pOutR[i] += pInR[i];
    1543             :     }
    1544             : 
    1545     1721400 :     return;
    1546             : }
    1547             : 
    1548             : 
    1549             : /*-----------------------------------------------------------------------------------------*
    1550             :  * ivas_reverb_process()
    1551             :  *
    1552             :  * Process the input PCM audio into output PCM audio, applying reverb
    1553             :  *-----------------------------------------------------------------------------------------*/
    1554             : 
    1555     6604248 : ivas_error ivas_reverb_process(
    1556             :     const REVERB_HANDLE hReverb,           /* i  : Reverberator handle                */
    1557             :     const AUDIO_CONFIG input_audio_config, /* i  : reverb. input audio configuration  */
    1558             :     const int16_t mix_signals,             /* i  : add reverb to output signal        */
    1559             :     float *pcm_in[],                       /* i  : the PCM audio to apply reverb on   */
    1560             :     float *pcm_out[],                      /* o  : the PCM audio with reverb applied  */
    1561             :     const int16_t i_ts                     /* i  : subframe index                     */
    1562             : )
    1563             : {
    1564             :     float tmp0[L_FRAME48k / MAX_PARAM_SPATIAL_SUBFRAMES], tmp1[L_FRAME48k / MAX_PARAM_SPATIAL_SUBFRAMES], tmp2[L_FRAME48k / MAX_PARAM_SPATIAL_SUBFRAMES];
    1565             :     ivas_error error;
    1566             : 
    1567     6604248 :     if ( ( error = downmix_input_block( hReverb, pcm_in, input_audio_config, tmp1, i_ts * hReverb->full_block_size ) ) != IVAS_ERR_OK )
    1568             :     {
    1569           0 :         return error;
    1570             :     }
    1571             : 
    1572     6604248 :     predelay_block( hReverb, tmp1, tmp0 );
    1573             : 
    1574     6604248 :     reverb_block( hReverb, tmp0, tmp1, tmp2 );
    1575             : 
    1576     6604248 :     if ( mix_signals )
    1577             :     {
    1578     1721400 :         mix_output_block( hReverb, tmp1, tmp2, &pcm_out[0][i_ts * hReverb->full_block_size], &pcm_out[1][i_ts * hReverb->full_block_size] );
    1579             :     }
    1580             :     else
    1581             :     {
    1582     4882848 :         mvr2r( tmp1, &pcm_out[0][i_ts * hReverb->full_block_size], hReverb->full_block_size );
    1583     4882848 :         mvr2r( tmp2, &pcm_out[1][i_ts * hReverb->full_block_size], hReverb->full_block_size );
    1584             :     }
    1585             : 
    1586     6604248 :     return IVAS_ERR_OK;
    1587             : }
    1588             : 
    1589             : 
    1590             : /*-------------------------------------------------------------------------
    1591             :  * ivas_binaural_reverb_processSubFrame()
    1592             :  *
    1593             :  * Compute the reverberation - room effect
    1594             :  *------------------------------------------------------------------------*/
    1595             : 
    1596     1083162 : void ivas_binaural_reverb_processSubframe(
    1597             :     REVERB_STRUCT_HANDLE hReverb,                                     /* i/o: binaural reverb handle      */
    1598             :     const int16_t numInChannels,                                      /* i  : num inputs to be processed  */
    1599             :     const int16_t numSlots,                                           /* i  : number of slots to be processed    */
    1600             :     float inReal[][CLDFB_SLOTS_PER_SUBFRAME][CLDFB_NO_CHANNELS_MAX],  /* i  : input CLDFB data real, Comment: This change swaps two first dimensions as first dimension is not constant. */
    1601             :     float inImag[][CLDFB_SLOTS_PER_SUBFRAME][CLDFB_NO_CHANNELS_MAX],  /* i  : input CLDFB data imag       */
    1602             :     float outReal[][CLDFB_SLOTS_PER_SUBFRAME][CLDFB_NO_CHANNELS_MAX], /* o  : output CLDFB data real      */
    1603             :     float outImag[][CLDFB_SLOTS_PER_SUBFRAME][CLDFB_NO_CHANNELS_MAX]  /* o  : output CLDFB data imag      */
    1604             : )
    1605             : {
    1606             :     /* Declare the required variables */
    1607             :     int16_t idx, bin, ch, sample, invertSampleIndex, tapIdx, *phaseShiftTypePr;
    1608             :     float **tapRealPr, **tapImagPr;
    1609     1083162 :     push_wmops( "binaural_reverb" );
    1610             : 
    1611             :     /* 1) Rotate the data in the loop buffer of the reverberator.
    1612             :      * Notice that the audio at the loop buffers is at time-inverted order
    1613             :      * for convolution purposes later on. */
    1614    48361512 :     for ( bin = 0; bin < hReverb->numBins; bin++ )
    1615             :     {
    1616             :         /* Move the data forwards by blockSize (i.e. by the frame size of 16 CLDFB slots) */
    1617    47278350 :         mvr2r( hReverb->loopBufReal[bin], hReverb->loopBufReal[bin] + numSlots, hReverb->loopBufLength[bin] );
    1618    47278350 :         mvr2r( hReverb->loopBufImag[bin], hReverb->loopBufImag[bin] + numSlots, hReverb->loopBufLength[bin] );
    1619             : 
    1620             :         /* Add the data from the end of the loop to the beginning, with an attenuation factor
    1621             :          * according to RT60. This procedure generates an IIR decaying response. The response
    1622             :          * is decorrelated later on. */
    1623    47278350 :         v_multc( hReverb->loopBufReal[bin] + hReverb->loopBufLength[bin], hReverb->loopAttenuationFactor[bin], hReverb->loopBufReal[bin], numSlots );
    1624    47278350 :         v_multc( hReverb->loopBufImag[bin] + hReverb->loopBufLength[bin], hReverb->loopAttenuationFactor[bin], hReverb->loopBufImag[bin], numSlots );
    1625             :     }
    1626             : 
    1627             :     /* 2) Apply the determined pre-delay to the input audio, and add the delayed audio to the loop. */
    1628     1083162 :     idx = hReverb->preDelayBufferIndex;
    1629     5406825 :     for ( sample = 0; sample < numSlots; sample++ )
    1630             :     {
    1631     4323663 :         invertSampleIndex = numSlots - sample - 1;
    1632             : 
    1633   192944823 :         for ( bin = 0; bin < hReverb->numBins; bin++ )
    1634             :         {
    1635             :             /* Add from pre-delay buffer a sample to the loop buffer, in a time-inverted order.
    1636             :              * Also apply the spectral gains determined for the reverberation */
    1637   188621160 :             hReverb->loopBufReal[bin][invertSampleIndex] += hReverb->preDelayBufferReal[idx][bin] * hReverb->reverbEqGains[bin];
    1638   188621160 :             hReverb->loopBufImag[bin][invertSampleIndex] += hReverb->preDelayBufferImag[idx][bin] * hReverb->reverbEqGains[bin];
    1639   188621160 :             hReverb->preDelayBufferReal[idx][bin] = 0.0f;
    1640   188621160 :             hReverb->preDelayBufferImag[idx][bin] = 0.0f;
    1641             :         }
    1642             : 
    1643             :         /* Add every second input channel as is to the pre-delay buffer, and every second input channel with
    1644             :          * 90 degrees phase shift to reduce energy imbalances between coherent and incoherent sounds */
    1645    13036413 :         for ( ch = 0; ch < numInChannels; ch++ )
    1646             :         {
    1647     8712750 :             if ( ch % 2 )
    1648             :             {
    1649     4341903 :                 v_add( hReverb->preDelayBufferReal[idx], inReal[ch][sample], hReverb->preDelayBufferReal[idx], hReverb->numBins );
    1650     4341903 :                 v_add( hReverb->preDelayBufferImag[idx], inImag[ch][sample], hReverb->preDelayBufferImag[idx], hReverb->numBins );
    1651             :             }
    1652             :             else
    1653             :             {
    1654     4370847 :                 v_sub( hReverb->preDelayBufferReal[idx], inImag[ch][sample], hReverb->preDelayBufferReal[idx], hReverb->numBins );
    1655     4370847 :                 v_add( hReverb->preDelayBufferImag[idx], inReal[ch][sample], hReverb->preDelayBufferImag[idx], hReverb->numBins );
    1656             :             }
    1657             :         }
    1658     4323663 :         idx = ( idx + 1 ) % hReverb->preDelayBufferLength;
    1659             :     }
    1660     1083162 :     hReverb->preDelayBufferIndex = idx;
    1661             : 
    1662             :     /* 3) Perform the filtering/decorrelating, using complex and sparse FIR filtering */
    1663    48361512 :     for ( bin = 0; bin < hReverb->numBins; bin++ )
    1664             :     {
    1665   141835050 :         for ( ch = 0; ch < BINAURAL_CHANNELS; ch++ )
    1666             :         {
    1667             :             /* These tap pointers have been determined to point to the loop buffer at sparse locations */
    1668    94556700 :             tapRealPr = hReverb->tapPointersReal[bin][ch];
    1669    94556700 :             tapImagPr = hReverb->tapPointersImag[bin][ch];
    1670             : 
    1671    94556700 :             phaseShiftTypePr = hReverb->tapPhaseShiftType[bin][ch];
    1672             : 
    1673             :             /* Flush output */
    1674    94556700 :             set_f( hReverb->outputBufferReal[bin][ch], 0.0f, numSlots );
    1675    94556700 :             set_f( hReverb->outputBufferImag[bin][ch], 0.0f, numSlots );
    1676             : 
    1677             :             /* Add from temporally decaying sparse tap locations the audio to the output. */
    1678  2338440522 :             for ( tapIdx = 0; tapIdx < hReverb->taps[bin][ch]; tapIdx++ )
    1679             :             {
    1680  2243883822 :                 switch ( phaseShiftTypePr[tapIdx] )
    1681             :                 {
    1682   549576876 :                     case 0: /* 0 degrees phase */
    1683   549576876 :                         v_add( hReverb->outputBufferReal[bin][ch], tapRealPr[tapIdx], hReverb->outputBufferReal[bin][ch], numSlots );
    1684   549576876 :                         v_add( hReverb->outputBufferImag[bin][ch], tapImagPr[tapIdx], hReverb->outputBufferImag[bin][ch], numSlots );
    1685   549576876 :                         break;
    1686   588683950 :                     case 1: /* 90 degrees phase */
    1687   588683950 :                         v_sub( hReverb->outputBufferReal[bin][ch], tapImagPr[tapIdx], hReverb->outputBufferReal[bin][ch], numSlots );
    1688   588683950 :                         v_add( hReverb->outputBufferImag[bin][ch], tapRealPr[tapIdx], hReverb->outputBufferImag[bin][ch], numSlots );
    1689   588683950 :                         break;
    1690   562476363 :                     case 2: /* 180 degrees phase */
    1691   562476363 :                         v_sub( hReverb->outputBufferReal[bin][ch], tapRealPr[tapIdx], hReverb->outputBufferReal[bin][ch], numSlots );
    1692   562476363 :                         v_sub( hReverb->outputBufferImag[bin][ch], tapImagPr[tapIdx], hReverb->outputBufferImag[bin][ch], numSlots );
    1693   562476363 :                         break;
    1694   543146633 :                     default: /* 270 degrees phase */
    1695   543146633 :                         v_add( hReverb->outputBufferReal[bin][ch], tapImagPr[tapIdx], hReverb->outputBufferReal[bin][ch], numSlots );
    1696   543146633 :                         v_sub( hReverb->outputBufferImag[bin][ch], tapRealPr[tapIdx], hReverb->outputBufferImag[bin][ch], numSlots );
    1697   543146633 :                         break;
    1698             :                 }
    1699             :             }
    1700             :         }
    1701             : 
    1702             :         /* Generate diffuse field binaural coherence by mixing the incoherent reverberated channels with pre-defined gains */
    1703    47278350 :         if ( bin <= hReverb->highestBinauralCoherenceBin )
    1704             :         {
    1705     7422237 :             if ( hReverb->useBinauralCoherence )
    1706             :             {
    1707    37049730 :                 for ( sample = 0; sample < numSlots; sample++ )
    1708             :                 {
    1709             :                     float leftRe, rightRe, leftIm, rightIm;
    1710             : 
    1711    29627493 :                     leftRe = hReverb->binauralCoherenceDirectGains[bin] * hReverb->outputBufferReal[bin][0][sample] + hReverb->binauralCoherenceCrossmixGains[bin] * hReverb->outputBufferReal[bin][1][sample];
    1712    29627493 :                     rightRe = hReverb->binauralCoherenceDirectGains[bin] * hReverb->outputBufferReal[bin][1][sample] + hReverb->binauralCoherenceCrossmixGains[bin] * hReverb->outputBufferReal[bin][0][sample];
    1713    29627493 :                     leftIm = hReverb->binauralCoherenceDirectGains[bin] * hReverb->outputBufferImag[bin][0][sample] + hReverb->binauralCoherenceCrossmixGains[bin] * hReverb->outputBufferImag[bin][1][sample];
    1714    29627493 :                     rightIm = hReverb->binauralCoherenceDirectGains[bin] * hReverb->outputBufferImag[bin][1][sample] + hReverb->binauralCoherenceCrossmixGains[bin] * hReverb->outputBufferImag[bin][0][sample];
    1715             : 
    1716    29627493 :                     hReverb->outputBufferReal[bin][0][sample] = leftRe;
    1717    29627493 :                     hReverb->outputBufferReal[bin][1][sample] = rightRe;
    1718    29627493 :                     hReverb->outputBufferImag[bin][0][sample] = leftIm;
    1719    29627493 :                     hReverb->outputBufferImag[bin][1][sample] = rightIm;
    1720             :                 }
    1721             :             }
    1722             :         }
    1723             :     }
    1724             : 
    1725             :     /* 4) Write data to output */
    1726     3249486 :     for ( ch = 0; ch < BINAURAL_CHANNELS; ch++ )
    1727             :     {
    1728    10813650 :         for ( sample = 0; sample < numSlots; sample++ )
    1729             :         {
    1730             :             /* Audio was in the temporally inverted order for convolution, re-invert audio to output */
    1731     8647326 :             invertSampleIndex = numSlots - sample - 1;
    1732             : 
    1733   385889646 :             for ( bin = 0; bin < hReverb->numBins; bin++ )
    1734             :             {
    1735   377242320 :                 outReal[ch][sample][bin] = hReverb->outputBufferReal[bin][ch][invertSampleIndex];
    1736   377242320 :                 outImag[ch][sample][bin] = hReverb->outputBufferImag[bin][ch][invertSampleIndex];
    1737             :             }
    1738   150244566 :             for ( ; bin < CLDFB_NO_CHANNELS_MAX; bin++ )
    1739             :             {
    1740   141597240 :                 outReal[ch][sample][bin] = 0.0f;
    1741   141597240 :                 outImag[ch][sample][bin] = 0.0f;
    1742             :             }
    1743             :         }
    1744             :     }
    1745             : 
    1746     1083162 :     pop_wmops();
    1747     1083162 :     return;
    1748             : }
    1749             : 
    1750             : 
    1751             : /*-------------------------------------------------------------------------
    1752             :  * ivas_binaural_reverb_open()
    1753             :  *
    1754             :  * Allocate and initialize binaural room reverberator handle
    1755             :  *------------------------------------------------------------------------*/
    1756             : 
    1757        2139 : static ivas_error ivas_binaural_reverb_open(
    1758             :     REVERB_STRUCT_HANDLE *hReverbPr,     /* i/o: binaural reverb handle                                  */
    1759             :     const int16_t numBins,               /* i  : number of CLDFB bins                                    */
    1760             :     const int16_t numCldfbSlotsPerFrame, /* i  : number of CLDFB slots per frame                         */
    1761             :     const int32_t sampling_rate,         /* i  : sampling rate                                           */
    1762             :     const float *revTimes,               /* i  : reverberation times T60 for each CLDFB bin in seconds   */
    1763             :     const float *revEnes,                /* i  : spectrum for reverberated sound at each CLDFB bin       */
    1764             :     const int16_t preDelay               /* i  : reverb pre-delay in CLDFB slots                         */
    1765             : )
    1766             : {
    1767             :     int16_t bin, chIdx, k, len;
    1768             :     REVERB_STRUCT_HANDLE hReverb;
    1769             : 
    1770        2139 :     if ( ( *hReverbPr = (REVERB_STRUCT_HANDLE) malloc( sizeof( REVERB_STRUCT ) ) ) == NULL )
    1771             :     {
    1772           0 :         return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1773             :     }
    1774             : 
    1775        2139 :     hReverb = *hReverbPr;
    1776             : 
    1777        2139 :     hReverb->useBinauralCoherence = 1;
    1778        2139 :     hReverb->preDelayBufferLength = 1;
    1779        2139 :     hReverb->preDelayBufferIndex = 0;
    1780             : 
    1781        2139 :     hReverb->numBins = numBins;
    1782        2139 :     hReverb->blockSize = numCldfbSlotsPerFrame;
    1783             : 
    1784       47058 :     for ( k = 0; k < IVAS_REVERB_PREDELAY_MAX + 1; k++ )
    1785             :     {
    1786       44919 :         set_f( hReverb->preDelayBufferReal[k], 0.0f, hReverb->numBins );
    1787       44919 :         set_f( hReverb->preDelayBufferImag[k], 0.0f, hReverb->numBins );
    1788             :     }
    1789             : 
    1790       95799 :     for ( bin = 0; bin < hReverb->numBins; bin++ )
    1791             :     {
    1792             :         /* Loop Buffer */
    1793       93660 :         hReverb->loopBufLengthMax[bin] = (int16_t) ( 500 / ( 1 + bin ) + ( CLDFB_NO_CHANNELS_MAX - bin ) );
    1794             : 
    1795       93660 :         len = hReverb->loopBufLengthMax[bin] + hReverb->blockSize;
    1796       93660 :         if ( ( hReverb->loopBufReal[bin] = (float *) malloc( len * sizeof( float ) ) ) == NULL )
    1797             :         {
    1798           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1799             :         }
    1800             : 
    1801       93660 :         if ( ( hReverb->loopBufImag[bin] = (float *) malloc( len * sizeof( float ) ) ) == NULL )
    1802             :         {
    1803           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1804             :         }
    1805             : 
    1806       93660 :         set_f( hReverb->loopBufReal[bin], 0.0f, len );
    1807       93660 :         set_f( hReverb->loopBufImag[bin], 0.0f, len );
    1808             : 
    1809             :         /* Determine loop buffer length. The following formula is manually tuned to generate sufficiently long
    1810             :          * but not excessively long loops to generate reverberation. */
    1811             :         /* Note: the resulted length is very sensitive to the precision of the constants below (e.g. 1.45 vs. 1.45f) */
    1812       93660 :         hReverb->loopBufLength[bin] = (int16_t) ( 1.45 * (int16_t) ( revTimes[bin] * 150.0 ) + 1 );
    1813       93660 :         hReverb->loopBufLength[bin] = min( hReverb->loopBufLength[bin], hReverb->loopBufLengthMax[bin] );
    1814             : 
    1815             :         /* Sparse Filter Tap Locations */
    1816      280980 :         for ( chIdx = 0; chIdx < BINAURAL_CHANNELS; chIdx++ )
    1817             :         {
    1818      187320 :             len = hReverb->loopBufLength[bin];
    1819             : 
    1820      187320 :             if ( ( hReverb->tapPhaseShiftType[bin][chIdx] = (int16_t *) malloc( len * sizeof( int16_t ) ) ) == NULL )
    1821             :             {
    1822           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1823             :             }
    1824      187320 :             set_s( hReverb->tapPhaseShiftType[bin][chIdx], 0, len );
    1825             : 
    1826      187320 :             if ( ( hReverb->tapPointersReal[bin][chIdx] = (float **) malloc( len * sizeof( float * ) ) ) == NULL )
    1827             :             {
    1828           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1829             :             }
    1830             : 
    1831      187320 :             if ( ( hReverb->tapPointersImag[bin][chIdx] = (float **) malloc( len * sizeof( float * ) ) ) == NULL )
    1832             :             {
    1833           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1834             :             }
    1835             : 
    1836      187320 :             len = hReverb->blockSize;
    1837      187320 :             if ( ( hReverb->outputBufferReal[bin][chIdx] = (float *) malloc( len * sizeof( float ) ) ) == NULL )
    1838             :             {
    1839           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1840             :             }
    1841             : 
    1842      187320 :             if ( ( hReverb->outputBufferImag[bin][chIdx] = (float *) malloc( len * sizeof( float ) ) ) == NULL )
    1843             :             {
    1844           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1845             :             }
    1846             : 
    1847      187320 :             set_f( hReverb->outputBufferReal[bin][chIdx], 0.0f, len );
    1848      187320 :             set_f( hReverb->outputBufferImag[bin][chIdx], 0.0f, len );
    1849             :         }
    1850             :     }
    1851             : 
    1852        2139 :     ivas_binaural_reverb_setReverbTimes( hReverb, sampling_rate, revTimes, revEnes );
    1853             : 
    1854        2139 :     ivas_binaural_reverb_setPreDelay( hReverb, preDelay );
    1855             : 
    1856        2139 :     return IVAS_ERR_OK;
    1857             : }
    1858             : 
    1859             : 
    1860             : /*-------------------------------------------------------------------------
    1861             :  * ivas_binaural_reverb_init()
    1862             :  *
    1863             :  * Initialize binaural room reverberator handle for FastConv renderer
    1864             :  *------------------------------------------------------------------------*/
    1865             : 
    1866        2139 : ivas_error ivas_binaural_reverb_init(
    1867             :     REVERB_STRUCT_HANDLE *hReverbPr,                      /* i/o: binaural reverb handle               */
    1868             :     const HRTFS_STATISTICS_HANDLE hHrtfStatistics,        /* i  : HRTF statistics handle               */
    1869             :     const int16_t numBins,                                /* i  : number of CLDFB bins                 */
    1870             :     const int16_t numCldfbSlotsPerFrame,                  /* i  : number of CLDFB slots per frame      */
    1871             :     const IVAS_ROOM_ACOUSTICS_CONFIG_DATA *roomAcoustics, /* i/o: room acoustics parameters            */
    1872             :     const int32_t sampling_rate,                          /* i  : sampling rate                        */
    1873             :     const float *defaultTimes,                            /* i  : default reverberation times          */
    1874             :     const float *defaultEne,                              /* i  : default reverberation energies       */
    1875             :     float *earlyEne                                       /* i/o: Early part energies to be modified   */
    1876             : )
    1877             : {
    1878             :     ivas_error error;
    1879             :     int16_t preDelay, bin;
    1880             :     float revTimes[CLDFB_NO_CHANNELS_MAX];
    1881             :     float revEne[CLDFB_NO_CHANNELS_MAX];
    1882             : 
    1883        2139 :     if ( roomAcoustics != NULL )
    1884             :     {
    1885         975 :         if ( ( error = ivas_reverb_prepare_cldfb_params( roomAcoustics, hHrtfStatistics, sampling_rate, revTimes, revEne ) ) != IVAS_ERR_OK )
    1886             :         {
    1887           0 :             return error;
    1888             :         }
    1889             : 
    1890             :         /* Convert preDelay from seconds to CLDFB slots as needed by binaural reverb */
    1891         975 :         preDelay = (int16_t) roundf( roomAcoustics->acousticPreDelay * CLDFB_SLOTS_PER_SECOND );
    1892             :     }
    1893             :     else
    1894             :     {
    1895             : #ifdef FIX_1995_REVERB_INIT
    1896       57984 :         for ( bin = 0; bin < numBins; bin++ )
    1897             : #else
    1898             :         for ( bin = 0; bin < CLDFB_NO_CHANNELS_MAX; bin++ )
    1899             : #endif
    1900             :         {
    1901       56820 :             revTimes[bin] = defaultTimes[bin];
    1902       56820 :             revEne[bin] = defaultEne[bin];
    1903             :         }
    1904        1164 :         preDelay = 10;
    1905             :     }
    1906             : 
    1907             : #ifdef FIX_1995_REVERB_INIT
    1908       95799 :     for ( bin = 0; bin < numBins; bin++ )
    1909             : #else
    1910             :     for ( bin = 0; bin < CLDFB_NO_CHANNELS_MAX; bin++ )
    1911             : #endif
    1912             :     {
    1913             :         /* Adjust the room effect parameters when the reverberation time is less than a threshold value, to avoid
    1914             :            spectral artefacts with the synthetic reverberator. */
    1915       93660 :         if ( revTimes[bin] < REV_TIME_THRESHOLD )
    1916             :         {
    1917             :             float adjustedEarlyEne, adjustedLateEne, adjustedRevTime;
    1918             :             float revTimeModifier, energyModifier;
    1919             : 
    1920             :             /* Adjust reverberation times, higher towards a threshold */
    1921       23897 :             revTimeModifier = fmaxf( 0.0f, 1.0f - ( revTimes[bin] / REV_TIME_THRESHOLD ) );
    1922       23897 :             adjustedRevTime = ( 1.0f - revTimeModifier ) * revTimes[bin];
    1923       23897 :             adjustedRevTime += revTimeModifier * ( revTimes[bin] + REV_TIME_THRESHOLD ) * 0.5f;
    1924       23897 :             energyModifier = ( adjustedRevTime - revTimes[bin] ) / adjustedRevTime;
    1925             : 
    1926             :             /* Adjust early and late energies, by moving late energy to early energy */
    1927       23897 :             if ( earlyEne != NULL )
    1928             :             {
    1929       21686 :                 adjustedEarlyEne = earlyEne[bin] + revEne[bin] * energyModifier;
    1930       21686 :                 earlyEne[bin] = adjustedEarlyEne; /* Store already here */
    1931             :             }
    1932             : 
    1933       23897 :             adjustedLateEne = revEne[bin] * ( 1.0f - energyModifier );
    1934             : 
    1935             :             /* Store adjusted room effect parameters to be used in reverb processing */
    1936       23897 :             revTimes[bin] = adjustedRevTime;
    1937       23897 :             revEne[bin] = adjustedLateEne;
    1938             :         }
    1939             :     }
    1940             : 
    1941        2139 :     error = ivas_binaural_reverb_open( hReverbPr, numBins, numCldfbSlotsPerFrame, sampling_rate, revTimes, revEne, preDelay );
    1942             : 
    1943        2139 :     return error;
    1944             : }
    1945             : 
    1946             : 
    1947             : /*-------------------------------------------------------------------------
    1948             :  * ivas_binaural_reverb_close()
    1949             :  *
    1950             :  * Close binaural room reverberator handle
    1951             :  *------------------------------------------------------------------------*/
    1952             : 
    1953        2139 : void ivas_binaural_reverb_close(
    1954             :     REVERB_STRUCT_HANDLE *hReverb /* i/o: binaural reverb handle */
    1955             : )
    1956             : {
    1957             :     int16_t bin, chIdx;
    1958             : 
    1959        2139 :     if ( hReverb == NULL || *hReverb == NULL )
    1960             :     {
    1961           0 :         return;
    1962             :     }
    1963             : 
    1964       95799 :     for ( bin = 0; bin < ( *hReverb )->numBins; bin++ )
    1965             :     {
    1966      280980 :         for ( chIdx = 0; chIdx < BINAURAL_CHANNELS; chIdx++ )
    1967             :         {
    1968      187320 :             free( ( *hReverb )->tapPhaseShiftType[bin][chIdx] );
    1969      187320 :             free( ( *hReverb )->tapPointersReal[bin][chIdx] );
    1970      187320 :             free( ( *hReverb )->tapPointersImag[bin][chIdx] );
    1971      187320 :             free( ( *hReverb )->outputBufferReal[bin][chIdx] );
    1972      187320 :             free( ( *hReverb )->outputBufferImag[bin][chIdx] );
    1973             :         }
    1974       93660 :         free( ( *hReverb )->loopBufReal[bin] );
    1975       93660 :         free( ( *hReverb )->loopBufImag[bin] );
    1976             :     }
    1977             : 
    1978        2139 :     free( ( *hReverb ) );
    1979        2139 :     ( *hReverb ) = NULL;
    1980             : 
    1981        2139 :     return;
    1982             : }

Generated by: LCOV version 1.14