LCOV - code coverage report
Current view: top level - lib_rend - ivas_reverb.c (source / functions) Hit Total Coverage
Test: Coverage on main -- short test vectors @ 6c9ddc4024a9c0e1ecb8f643f114a84a0e26ec6b Lines: 565 643 87.9 %
Date: 2025-05-23 08:37:30 Functions: 34 34 100.0 %

          Line data    Source code
       1             : /******************************************************************************************************
       2             : 
       3             :    (C) 2022-2025 IVAS codec Public Collaboration with portions copyright Dolby International AB, Ericsson AB,
       4             :    Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
       5             :    Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
       6             :    Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
       7             :    contributors to this repository. All Rights Reserved.
       8             : 
       9             :    This software is protected by copyright law and by international treaties.
      10             :    The IVAS codec Public Collaboration consisting of Dolby International AB, Ericsson AB,
      11             :    Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
      12             :    Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
      13             :    Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
      14             :    contributors to this repository retain full ownership rights in their respective contributions in
      15             :    the software. This notice grants no license of any kind, including but not limited to patent
      16             :    license, nor is any license granted by implication, estoppel or otherwise.
      17             : 
      18             :    Contributors are required to enter into the IVAS codec Public Collaboration agreement before making
      19             :    contributions.
      20             : 
      21             :    This software is provided "AS IS", without any express or implied warranties. The software is in the
      22             :    development stage. It is intended exclusively for experts who have experience with such software and
      23             :    solely for the purpose of inspection. All implied warranties of non-infringement, merchantability
      24             :    and fitness for a particular purpose are hereby disclaimed and excluded.
      25             : 
      26             :    Any dispute, controversy or claim arising under or in relation to providing this software shall be
      27             :    submitted to and settled by the final, binding jurisdiction of the courts of Munich, Germany in
      28             :    accordance with the laws of the Federal Republic of Germany excluding its conflict of law rules and
      29             :    the United Nations Convention on Contracts on the International Sales of Goods.
      30             : 
      31             : *******************************************************************************************************/
      32             : 
      33             : #include <stdint.h>
      34             : #include "options.h"
      35             : #include "prot.h"
      36             : #include "ivas_prot_rend.h"
      37             : #include "ivas_cnst.h"
      38             : #ifdef DEBUGGING
      39             : #include "debug.h"
      40             : #endif
      41             : #include "math.h"
      42             : #include "ivas_rom_rend.h"
      43             : #include <assert.h>
      44             : #include "wmc_auto.h"
      45             : 
      46             : 
      47             : /* The reverberator structure implemented here is described in detail in:
      48             :  * Vilkamo, J., Neugebauer, B., & Plogsties, J. (2012). Sparse frequency-domain reverberator.
      49             :  * Journal of the Audio Engineering Society, 59(12), 936-943. */
      50             : 
      51             : /*-------------------------------------------------------------------------
      52             :  * Local constants
      53             :  *------------------------------------------------------------------------*/
      54             : 
      55             : #define BIN_REND_RANDOM_SEED 1 /* random seed for generating reverb decorrelators */
      56             : 
      57             : #define CLDFB_SLOTS_PER_SECOND 800 /* Used for initializing reverb */
      58             : 
      59             : #define REV_TIME_THRESHOLD ( 0.2f )
      60             : 
      61             : #define INNER_BLK_SIZE 80 /* size of data blocks used for more efficient delay line and IIR filter processing */
      62             : /* should be a divisor of the frame length at any sampling rate and an even number*/
      63             : #define FFT_FILTER_WND_FLAT_REGION  ( 0.40f ) /* flat section (==1) length of FFT filter window, in proportion to overlap */
      64             : #define FFT_FILTER_WND_TRANS_REGION ( 0.15f ) /* transition (1->0) length of FFT filter window, in proportion to overlap */
      65             : #define REF_LF_MIN                  ( 100.0f )
      66             : #define REF_LF_MAX                  ( 250.0f )
      67             : #define REF_HF_MIN                  ( 5000.0f )
      68             : #define REF_HF_MAX                  ( 7950.0f )
      69             : #define LF_BIAS                     ( 0.5f )
      70             : 
      71             : #define DEFAULT_SRC_DIST ( 1.5f ) /* default source distance [m] for reverb dmx factor computing */
      72             : 
      73             : #define IVAS_REVERB_FFT_SIZE_48K        ( 512 )
      74             : #define IVAS_REVERB_FFT_SIZE_32K        ( 512 )
      75             : #define IVAS_REVERB_FFT_SIZE_16K        ( 256 )
      76             : #define IVAS_REVERB_FFT_N_SUBBLOCKS_48K ( 1 )
      77             : #define IVAS_REVERB_FFT_N_SUBBLOCKS_32K ( 1 )
      78             : #define IVAS_REVERB_FFT_N_SUBBLOCKS_16K ( 1 )
      79             : 
      80             : #define MAX_NR_OUTPUTS ( 2 )
      81             : 
      82             : const int16_t init_loop_delay[IVAS_REV_MAX_NR_BRANCHES] = { 37, 31, 29, 23, 19, 17, 13, 11 };
      83             : const int16_t default_loop_delay_48k[IVAS_REV_MAX_NR_BRANCHES] = { 2309, 1861, 1523, 1259, 1069, 919, 809, 719 };
      84             : const int16_t default_loop_delay_32k[IVAS_REV_MAX_NR_BRANCHES] = { 1531, 1237, 1013, 839, 709, 613, 541, 479 };
      85             : const int16_t default_loop_delay_16k[IVAS_REV_MAX_NR_BRANCHES] = { 769, 619, 509, 421, 353, 307, 269, 239 };
      86             : 
      87             : /*------------------------------------------------------------------------------------------*
      88             :  * Local Struct definition
      89             :  *------------------------------------------------------------------------------------------*/
      90             : 
      91             : typedef struct ivas_reverb_params_t
      92             : {
      93             :     int16_t pre_delay;                                                                                   /* Delay of the FDC reverb, first peak after pre_delay samples. Note that               */
      94             :                                                                                                          /*       there may be non-zero samples earlier due to the filters being                 */
      95             :                                                                                                          /*       linear-phase.                                                                  */
      96             :     int16_t nr_loops;                                                                                    /* Number of feedback loops (= L)                                                       */
      97             :     int16_t pLoop_delays[IVAS_REV_MAX_NR_BRANCHES];                                                      /* Delay for each feedback loop in samples.                                             */
      98             :     float pLoop_feedback_matrix[IVAS_REV_MAX_NR_BRANCHES * IVAS_REV_MAX_NR_BRANCHES];                    /* Feedback [L][L] matrix that mixes the signals of the loops.                          */
      99             :     int16_t nr_outputs;                                                                                  /* Nr of signals extracted from the loops (= S).                                        */
     100             :                                                                                                          /*       Currently this is fixed to 2.                                                  */
     101             :     float pLoop_extract_matrix[MAX_NR_OUTPUTS * IVAS_REV_MAX_NR_BRANCHES];                               /* Mix [S][L] matrix from feedback loops to outputs.                                    */
     102             :                                                                                                          /* In Matlab: [S x L] - Currently S=2, later may be more than 2 for speaker playback.   */
     103             :     int16_t t60_filter_order;                                                                            /* Filter order (length of vector)                                                      */
     104             :     float pT60_filter_coeff[MAX_NR_OUTPUTS * IVAS_REV_MAX_NR_BRANCHES * IVAS_REV_MAX_IIR_FILTER_LENGTH]; /* Filters [][] in feedback loops, controlling T60.                                    */
     105             :                                                                                                          /* In Matlab: IIR: [(2 * L) x (<order> + 1)] (odd: b-vector, even: a-vector)            */
     106             :                                                                                                          /* In Matlab: FIR: [L       x <order>]                                                  */
     107             :     float *pFc;                                                                                          /* Center frequencies for FFT filter design                                             */
     108             :     float *pRt60;                                                                                        /* RT60 values at these frequencies                                                     */
     109             :     float *pDsr;                                                                                         /* DSR values at these frequencies                                                      */
     110             :     const float *pHrtf_avg_pwr_response_l_const;                                                         /* The HRTF set's average left  ear power response                                      */
     111             :     const float *pHrtf_avg_pwr_response_r_const;                                                         /* The HRTF set's average right ear power response                                      */
     112             :     const float *pHrtf_inter_aural_coherence_const;                                                      /* The HRTF set's inter-aural coherence for diffuse sound                               */
     113             : 
     114             :     int16_t do_corr_filter; /* Flag indicating whether correlation filters should be used.                          */
     115             :                             /*        Correlation only supported and needed for binaural playback (i.e.             */
     116             :                             /*        when nr_outputs != 2 correlation filtering is never supported).               */
     117             : } ivas_reverb_params_t;
     118             : 
     119             : 
     120             : /*------------------------------------------------------------------------------------------*
     121             :  * Static functions declarations
     122             :  *------------------------------------------------------------------------------------------*/
     123             : 
     124             : static ivas_error calc_jot_t60_coeffs( float *pH_dB, const uint16_t nrFrequencies, float *pFrequencies, float *pCoeffA, float *pCoeffB, const float fNyquist );
     125             : 
     126             : 
     127             : /*-------------------------------------------------------------------------
     128             :  * binRend_rand()
     129             :  *
     130             :  *
     131             :  *------------------------------------------------------------------------*/
     132             : 
     133    11986911 : static uint16_t binRend_rand(
     134             :     REVERB_STRUCT_HANDLE hReverb /* i/o: binaural reverb handle          */
     135             : )
     136             : {
     137    11986911 :     hReverb->binRend_RandNext = hReverb->binRend_RandNext * 1103515245 + 12345;
     138             : 
     139    11986911 :     return (uint16_t) ( hReverb->binRend_RandNext / 65536 ) % 32768;
     140             : }
     141             : 
     142             : 
     143             : /*-------------------------------------------------------------------------
     144             :  * ivas_binaural_reverb_setPreDelay()
     145             :  *
     146             :  *
     147             :  *------------------------------------------------------------------------*/
     148             : 
     149        1656 : static void ivas_binaural_reverb_setPreDelay(
     150             :     REVERB_STRUCT_HANDLE hReverb, /* i/o: binaural reverb handle          */
     151             :     const int16_t delaySamples    /* i  : reverb pre-delay in CLDFB slots */
     152             : )
     153             : {
     154        1656 :     if ( delaySamples < 1 )
     155             :     {
     156           0 :         hReverb->preDelayBufferLength = 1;
     157             : 
     158           0 :         return;
     159             :     }
     160             : 
     161        1656 :     if ( delaySamples > IVAS_REVERB_PREDELAY_MAX )
     162             :     {
     163          12 :         hReverb->preDelayBufferLength = IVAS_REVERB_PREDELAY_MAX;
     164             : 
     165          12 :         return;
     166             :     }
     167             : 
     168        1644 :     hReverb->preDelayBufferLength = delaySamples;
     169             : 
     170        1644 :     return;
     171             : }
     172             : 
     173             : 
     174             : /*-------------------------------------------------------------------------
     175             :  * ivas_binaural_reverb_setReverbTimes()
     176             :  *
     177             :  *
     178             :  *------------------------------------------------------------------------*/
     179             : 
     180        1656 : static void ivas_binaural_reverb_setReverbTimes(
     181             :     REVERB_STRUCT_HANDLE hReverb, /* i/o: binaural reverb handle                                  */
     182             :     const int32_t output_Fs,      /* i  : sampling_rate                                           */
     183             :     const float *revTimes,        /* i  : reverberation times T60 for each CLDFB bin in seconds   */
     184             :     const float *revEnes          /* i  : spectrum for reverberated sound at each CLDFB bin       */
     185             : )
     186             : {
     187             :     int16_t bin, ch, tap, sample;
     188             :     float binCenterFreq, diffuseFieldICC, tmpVal, attenuationFactorPerSample;
     189             :     float intendedEnergy, actualizedEnergy, energyBuildup, currentEnergy, attenuationFactorPerSampleSq;
     190             : 
     191        1656 :     hReverb->binRend_RandNext = (uint16_t) BIN_REND_RANDOM_SEED;
     192        1656 :     hReverb->highestBinauralCoherenceBin = 0;
     193       75966 :     for ( bin = 0; bin < hReverb->numBins; bin++ )
     194             :     {
     195             :         /* Determine the diffuse field binaural coherence */
     196       74310 :         binCenterFreq = ( (float) bin + 0.5f ) / ( (float) hReverb->numBins ) * ( (float) output_Fs ) / 2.0f;
     197       74310 :         if ( bin == 0 )
     198             :         {
     199        1656 :             diffuseFieldICC = 1.0f;
     200             :         }
     201       72654 :         else if ( binCenterFreq < 2700.0f )
     202             :         {
     203        9651 :             diffuseFieldICC = sinf( EVS_PI * binCenterFreq / 550.0f + 1e-20f ) / ( EVS_PI * binCenterFreq / 550.0f + 1e-20f ) * ( 1.0f - binCenterFreq / 2700.0f );
     204        9651 :             hReverb->highestBinauralCoherenceBin = bin;
     205             :         }
     206             :         else
     207             :         {
     208       63003 :             diffuseFieldICC = 0.0f;
     209             :         }
     210             : 
     211             :         /* Mixing gains to generate a diffuse-binaural sound based on incoherent sound */
     212       74310 :         tmpVal = ( 1.0f - sqrtf( 1.0f - powf( diffuseFieldICC, 2.0 ) ) ) / 2.0f;
     213       74310 :         if ( diffuseFieldICC > 0 )
     214             :         {
     215        6339 :             hReverb->binauralCoherenceCrossmixGains[bin] = sqrtf( fabsf( tmpVal ) );
     216             :         }
     217             :         else
     218             :         {
     219       67971 :             hReverb->binauralCoherenceCrossmixGains[bin] = -sqrtf( fabsf( tmpVal ) );
     220             :         }
     221       74310 :         hReverb->binauralCoherenceDirectGains[bin] = sqrtf( 1.0f - fabsf( tmpVal ) );
     222             : 
     223             :         /* Determine attenuation factor that generates the appropriate energy decay according to reverberation time */
     224       74310 :         attenuationFactorPerSample = powf( 10.0f, -3.0f * ( 1.0f / ( (float) CLDFB_SLOTS_PER_SECOND * revTimes[bin] ) ) );
     225       74310 :         hReverb->loopAttenuationFactor[bin] = powf( attenuationFactorPerSample, hReverb->loopBufLength[bin] );
     226       74310 :         attenuationFactorPerSampleSq = attenuationFactorPerSample * attenuationFactorPerSample;
     227             : 
     228             :         /* Design sparse decorrelation filters. The decorrelation filters, due to random procedures involved,
     229             :          * may affect the spectrum of the output. The spectral effect is therefore monitored and compensated for. */
     230       74310 :         intendedEnergy = 0.0f;
     231       74310 :         actualizedEnergy = 0.0f;
     232             : 
     233      222930 :         for ( ch = 0; ch < BINAURAL_CHANNELS; ch++ )
     234             :         {
     235      148620 :             energyBuildup = 0.0f;
     236      148620 :             currentEnergy = 1.0f;
     237      148620 :             tap = 0;
     238             : 
     239     8916108 :             for ( sample = 0; sample < hReverb->loopBufLength[bin]; sample++ )
     240             :             {
     241     8767488 :                 intendedEnergy += currentEnergy;
     242             : 
     243             :                 /* The randomization at the energy build up affects where the sparse taps are located */
     244     8767488 :                 energyBuildup += currentEnergy + 0.1f * ( (float) binRend_rand( hReverb ) / PCM16_TO_FLT_FAC - 0.5f );
     245             : 
     246     8767488 :                 if ( energyBuildup >= 1.0f ) /* A new filter tap is added at this condition */
     247             :                 {
     248             :                     /* Four efficient phase operations: n*pi/2, n=0,1,2,3 */
     249     3219423 :                     hReverb->tapPhaseShiftType[bin][ch][tap] = (int16_t) ( binRend_rand( hReverb ) % 4 );
     250             :                     /* Set the tapPointer to point to the determined sample at the loop buffer */
     251     3219423 :                     hReverb->tapPointersReal[bin][ch][tap] = &( hReverb->loopBufReal[bin][sample] );
     252     3219423 :                     hReverb->tapPointersImag[bin][ch][tap] = &( hReverb->loopBufImag[bin][sample] );
     253     3219423 :                     energyBuildup -= 1.0f; /* A tap is added, thus remove its energy from the buildup */
     254     3219423 :                     tap++;
     255     3219423 :                     actualizedEnergy += 1.0f;
     256             :                 }
     257     8767488 :                 currentEnergy *= attenuationFactorPerSampleSq;
     258             :             }
     259             :             /* In some configurations with small T60s it is possible the number of taps randomizes to zero.
     260             :                Ensure at least 1 filter tap. */
     261      148620 :             if ( tap == 0 )
     262             :             {
     263           0 :                 hReverb->tapPhaseShiftType[bin][ch][0] = (int16_t) ( binRend_rand( hReverb ) % 4 );
     264           0 :                 hReverb->tapPointersReal[bin][ch][0] = &( hReverb->loopBufReal[bin][0] );
     265           0 :                 hReverb->tapPointersImag[bin][ch][0] = &( hReverb->loopBufImag[bin][0] );
     266           0 :                 tap = 1;
     267           0 :                 actualizedEnergy = 1;
     268             :             }
     269             : 
     270      148620 :             hReverb->taps[bin][ch] = tap; /* Number of taps determined at the above random procedure */
     271             :         }
     272             : 
     273             :         /* The decorrelator design and IIR attenuation rate affects the energy of reverb, which is compensated here */
     274       74310 :         hReverb->reverbEqGains[bin] = sqrtf( revEnes[bin] );                                    /* Determined reverb spectrum */
     275       74310 :         hReverb->reverbEqGains[bin] *= sqrtf( intendedEnergy / actualizedEnergy );              /* Correction of random effects at the decorrelator design */
     276       74310 :         hReverb->reverbEqGains[bin] *= sqrtf( 0.5f * ( 1.0f - attenuationFactorPerSampleSq ) ); /* Correction of IIR decay rate */
     277             :     }
     278             : 
     279        1656 :     return;
     280             : }
     281             : 
     282             : 
     283             : /*-----------------------------------------------------------------------------------------*
     284             :  * Function compute_feedback_matrix()
     285             :  *
     286             :  * Compute the N x N matrix for the mixing the N feedback loop outputs into the N inputs again
     287             :  *-----------------------------------------------------------------------------------------*/
     288             : 
     289         570 : static ivas_error compute_feedback_matrix(
     290             :     float *pFeedbackMatrix,
     291             :     const int16_t n )
     292             : {
     293             :     float u, v;
     294             :     int16_t i, j, x;
     295             : 
     296         570 :     if ( n == 6 )
     297             :     {
     298             :         /* special case (there is no 6 x 6 Hadamard matrix in set R) */
     299           0 :         u = -1.0f / 3;
     300           0 :         v = 1.0f + u;
     301           0 :         for ( i = 0; i < n; i++ )
     302             :         {
     303           0 :             for ( j = 0; j < n; j++ )
     304             :             {
     305           0 :                 if ( i == j )
     306             :                 {
     307           0 :                     pFeedbackMatrix[i * n + j] = v;
     308             :                 }
     309             :                 else
     310             :                 {
     311           0 :                     pFeedbackMatrix[i * n + j] = u;
     312             :                 }
     313             :             }
     314             :         }
     315             :     }
     316             :     else
     317             :     {
     318         570 :         if ( !( n == 4 || n == 8 || n == 16 ) )
     319             :         {
     320           0 :             return IVAS_ERR_INTERNAL; /* n must be 4, 6, 8 or 16, else ERROR */
     321             :         }
     322             : 
     323         570 :         u = inv_sqrt( n );
     324             : 
     325         570 :         if ( n == 4 )
     326             :         {
     327           0 :             u = -u;
     328             :         }
     329             : 
     330         570 :         pFeedbackMatrix[0] = u;
     331        2280 :         for ( x = 1; x < n; x += x )
     332             :         {
     333        5700 :             for ( i = 0; i < x; i++ )
     334             :             {
     335       15960 :                 for ( j = 0; j < x; j++ )
     336             :                 {
     337       11970 :                     pFeedbackMatrix[( i + x ) * n + j] = pFeedbackMatrix[i * n + j];
     338       11970 :                     pFeedbackMatrix[i * n + j + x] = pFeedbackMatrix[i * n + j];
     339       11970 :                     pFeedbackMatrix[( i + x ) * n + j + x] = -pFeedbackMatrix[i * n + j];
     340             :                 }
     341             :             }
     342             :         }
     343             : 
     344         570 :         if ( n == 4 )
     345             :         {
     346             :             /* special case */
     347           0 :             for ( j = 12; j < 16; j++ )
     348             :             {
     349           0 :                 pFeedbackMatrix[j] = -pFeedbackMatrix[j];
     350             :             }
     351             :         }
     352             :     }
     353             : 
     354         570 :     return IVAS_ERR_OK;
     355             : }
     356             : 
     357             : 
     358             : /*-----------------------------------------------------------------------------------------*
     359             :  * Function compute_2_out_extract_matrix()
     360             :  *
     361             :  * Compute the N x 2 matrix for mixing the N Jot feedback loops to 2 outputs
     362             :  *-----------------------------------------------------------------------------------------*/
     363             : 
     364         570 : static void compute_2_out_extract_matrix(
     365             :     float *pExtractMatrix,
     366             :     const int16_t n )
     367             : {
     368             :     float ff;
     369             :     int16_t i;
     370             : 
     371         570 :     ff = 1.0;
     372        5130 :     for ( i = 0; i < n; i++ )
     373             :     {
     374        4560 :         pExtractMatrix[i] = 1.0;
     375        4560 :         pExtractMatrix[i + n] = ff;
     376        4560 :         ff = -ff;
     377             :     }
     378             : 
     379         570 :     return;
     380             : }
     381             : 
     382             : 
     383             : /*-----------------------------------------------------------------------------------------*
     384             :  * Function set_base_config()
     385             :  *
     386             :  * Set all jot reverb parameters that are independent of the input reverb configuration
     387             :  *-----------------------------------------------------------------------------------------*/
     388             : 
     389         570 : static ivas_error set_base_config(
     390             :     ivas_reverb_params_t *pParams,
     391             :     const int32_t output_Fs )
     392             : {
     393             :     ivas_error error;
     394             :     int16_t loop_idx;
     395         570 :     const int16_t *selected_loop_delay = NULL;
     396             : 
     397         570 :     if ( pParams == NULL )
     398             :     {
     399           0 :         return IVAS_ERR_INTERNAL;
     400             :     }
     401             : 
     402         570 :     pParams->pre_delay = 0;
     403         570 :     pParams->nr_outputs = BINAURAL_CHANNELS;
     404         570 :     pParams->nr_loops = IVAS_REV_MAX_NR_BRANCHES;
     405             : 
     406             :     /* set loop delays to default */
     407         570 :     if ( output_Fs == 48000 )
     408             :     {
     409         297 :         selected_loop_delay = default_loop_delay_48k;
     410             :     }
     411         273 :     else if ( output_Fs == 32000 )
     412             :     {
     413          90 :         selected_loop_delay = default_loop_delay_32k;
     414             :     }
     415         183 :     else if ( output_Fs == 16000 )
     416             :     {
     417         183 :         selected_loop_delay = default_loop_delay_16k;
     418             :     }
     419             : 
     420        5130 :     for ( loop_idx = 0; loop_idx < pParams->nr_loops; loop_idx++ )
     421             :     {
     422        4560 :         pParams->pLoop_delays[loop_idx] = selected_loop_delay[loop_idx];
     423             :     }
     424             : 
     425             :     /* set feedback and output matrices */
     426         570 :     if ( ( error = compute_feedback_matrix( pParams->pLoop_feedback_matrix, pParams->nr_loops ) ) != IVAS_ERR_OK )
     427             :     {
     428           0 :         return error;
     429             :     }
     430             : 
     431         570 :     compute_2_out_extract_matrix( pParams->pLoop_extract_matrix, pParams->nr_loops );
     432             : 
     433             :     /* pre-set the various filters; they will be set later based on reverb configuration */
     434         570 :     pParams->t60_filter_order = 1; /* set to 1 in base config. */
     435             : 
     436         570 :     if ( pParams->nr_outputs == 2 )
     437             :     {
     438         570 :         pParams->do_corr_filter = 1;
     439             :     }
     440             :     else
     441             :     {
     442           0 :         pParams->do_corr_filter = 0;
     443             :     }
     444             : 
     445         570 :     return IVAS_ERR_OK;
     446             : }
     447             : 
     448             : 
     449             : /*-----------------------------------------------------------------------------------------*
     450             :  * Function calc_dmx_gain()
     451             :  *
     452             :  * Computes the downmix gain
     453             :  *-----------------------------------------------------------------------------------------*/
     454             : 
     455         405 : static float calc_dmx_gain( void )
     456             : {
     457         405 :     const float dist = DEFAULT_SRC_DIST;
     458         405 :     return sqrtf( 4.0f * EVS_PI * dist * dist / 0.001f );
     459             : }
     460             : 
     461             : 
     462             : /*-----------------------------------------------------------------------------------------*
     463             :  * Function calc_predelay()
     464             :  *
     465             :  * Calculate the predelay, taking shortest jot loop delay into account
     466             :  *-----------------------------------------------------------------------------------------*/
     467             : 
     468         570 : static void calc_predelay(
     469             :     ivas_reverb_params_t *pParams,
     470             :     float acoustic_predelay_sec,
     471             :     const int32_t output_Fs )
     472             : {
     473             :     int16_t predelay, fbdelay, output_frame;
     474             : 
     475         570 :     predelay = (int16_t) roundf( acoustic_predelay_sec * (float) output_Fs );
     476         570 :     output_frame = (int16_t) ( output_Fs / FRAMES_PER_SEC );
     477         570 :     fbdelay = pParams->pLoop_delays[pParams->nr_loops - 1];
     478         570 :     predelay -= fbdelay;
     479             : 
     480         570 :     if ( predelay < 0 )
     481             :     {
     482           0 :         predelay = 0;
     483             :     }
     484             : 
     485         570 :     if ( output_frame < predelay )
     486             :     {
     487           0 :         predelay = output_frame;
     488             :     }
     489             : 
     490         570 :     pParams->pre_delay = predelay;
     491             : 
     492         570 :     return;
     493             : }
     494             : 
     495             : 
     496             : /*-----------------------------------------------------------------------------------------*
     497             :  * Function compute_t60_coeffs()
     498             :  *
     499             :  * Calculate Jot reverb's T60 filter coefficients
     500             :  *-----------------------------------------------------------------------------------------*/
     501             : 
     502         570 : static ivas_error compute_t60_coeffs(
     503             :     ivas_reverb_params_t *pParams,
     504             :     const int16_t nr_fc_fft_filter,
     505             :     const int32_t output_Fs )
     506             : {
     507             :     int16_t bin_idx, loop_idx, tf_T60_len, len;
     508             :     float loop_delay_sec, freq_Nyquist, inv_hfs;
     509             :     float target_gains_db[RV_LENGTH_NR_FC];
     510             :     float norm_f[RV_LENGTH_NR_FC];
     511             :     float *pCoeffs_a, *pCoeffs_b;
     512             :     float *targetT60, *freqT60;
     513             :     ivas_error error;
     514             : 
     515         570 :     targetT60 = pParams->pRt60;
     516         570 :     freqT60 = pParams->pFc;
     517             : 
     518         570 :     error = IVAS_ERR_OK;
     519         570 :     tf_T60_len = nr_fc_fft_filter;
     520         570 :     len = pParams->t60_filter_order + 1;
     521         570 :     freq_Nyquist = 0.5f * (float) output_Fs;
     522             : 
     523             :     /* normalize pFrequencies: 0 .. 1/2 output_Fs --> 0.0 .. 1.0 */
     524         570 :     inv_hfs = 1.0f / freq_Nyquist;
     525      123636 :     for ( bin_idx = 0; bin_idx < tf_T60_len; bin_idx++ )
     526             :     {
     527      123066 :         norm_f[bin_idx] = freqT60[bin_idx] * inv_hfs;
     528             :     }
     529             : 
     530        5130 :     for ( loop_idx = 0; loop_idx < pParams->nr_loops; loop_idx++ )
     531             :     {
     532        4560 :         loop_delay_sec = (float) pParams->pLoop_delays[loop_idx] / (float) output_Fs;
     533      989088 :         for ( bin_idx = 0; bin_idx < tf_T60_len; bin_idx++ )
     534             :         {
     535      984528 :             target_gains_db[bin_idx] = -60.0f * loop_delay_sec / targetT60[bin_idx];
     536      984528 :             target_gains_db[bin_idx] = max( target_gains_db[bin_idx], -120.0f );
     537             :         }
     538             : 
     539        4560 :         pCoeffs_a = &pParams->pT60_filter_coeff[2 * len * loop_idx + len];
     540        4560 :         pCoeffs_b = &pParams->pT60_filter_coeff[2 * len * loop_idx];
     541        4560 :         if ( ( error = calc_jot_t60_coeffs( target_gains_db, tf_T60_len, norm_f, pCoeffs_a, pCoeffs_b, freq_Nyquist ) ) != IVAS_ERR_OK )
     542             :         {
     543           0 :             return error;
     544             :         }
     545             :     }
     546             : 
     547         570 :     len = ( pParams->t60_filter_order + 1 ) >> 1; /* == floor( (order+1) / 2) */
     548        5130 :     for ( loop_idx = 0; loop_idx < pParams->nr_loops; loop_idx++ )
     549             :     {
     550        4560 :         pParams->pLoop_delays[loop_idx] -= len;
     551             :     }
     552             : 
     553         570 :     return error;
     554             : }
     555             : 
     556             : 
     557             : /*-----------------------------------------------------------------------------------------*
     558             :  * Function calc_low_shelf_first_order_filter()
     559             :  *
     560             :  * Calculate 1st order low shelf filter
     561             :  *-----------------------------------------------------------------------------------------*/
     562             : 
     563        4560 : static void calc_low_shelf_first_order_filter(
     564             :     float *pNum,
     565             :     float *pDen,
     566             :     const float f0,
     567             :     const float lin_gain_lf,
     568             :     const float lin_gain_hf )
     569             : {
     570             :     float w0, gain;
     571             : 
     572        4560 :     w0 = tanf( EVS_PI * f0 / 2.0f );
     573        4560 :     gain = lin_gain_lf / lin_gain_hf;
     574             : 
     575        4560 :     if ( gain < 1.0f )
     576             :     {
     577           0 :         pNum[0] = 1 + w0 * gain;
     578           0 :         pNum[1] = w0 * gain - 1;
     579           0 :         pDen[0] = 1 + w0;
     580           0 :         pDen[1] = w0 - 1;
     581             :     }
     582             :     else
     583             :     {
     584        4560 :         pNum[0] = 1 + w0;
     585        4560 :         pNum[1] = w0 - 1;
     586        4560 :         pDen[0] = 1 + w0 / gain;
     587        4560 :         pDen[1] = w0 / gain - 1;
     588             :     }
     589             : 
     590             :     /* Normalize and adjust gain to match target amplitudes */
     591        4560 :     pNum[0] = ( pNum[0] / pDen[0] ) * lin_gain_hf;
     592        4560 :     pNum[1] = ( pNum[1] / pDen[0] ) * lin_gain_hf;
     593        4560 :     pDen[1] = pDen[1] / pDen[0];
     594        4560 :     pDen[0] = 1.0f;
     595             : 
     596        4560 :     return;
     597             : }
     598             : 
     599             : 
     600             : /*-----------------------------------------------------------------------------------------*
     601             :  * Function calc_jot_t60_coeffs()
     602             :  *
     603             :  * Calculate Jot reverb's T60 filters
     604             :  *-----------------------------------------------------------------------------------------*/
     605             : 
     606        4560 : static ivas_error calc_jot_t60_coeffs(
     607             :     float *pH_dB,
     608             :     const uint16_t nrFrequencies,
     609             :     float *pFrequencies,
     610             :     float *pCoeffA,
     611             :     float *pCoeffB,
     612             :     const float fNyquist )
     613             : {
     614        4560 :     const float ref_lf_min_norm = REF_LF_MIN / fNyquist;
     615        4560 :     const float ref_lf_max_norm = REF_LF_MAX / fNyquist;
     616        4560 :     const float ref_hf_min_norm = REF_HF_MIN / fNyquist;
     617        4560 :     const float ref_hf_max_norm = REF_HF_MAX / fNyquist;
     618             :     int16_t f_idx, minidx;
     619             :     float f0, tmp, minval, lf_target_gain_dB, hf_target_gain_dB, mid_crossing_gain_dB;
     620             :     uint16_t n_points_lf, n_points_hf;
     621             :     float lin_gain_lf, lin_gain_hf;
     622             : 
     623        4560 :     minidx = nrFrequencies - 1;
     624        4560 :     minval = 1e+20f;
     625        4560 :     lf_target_gain_dB = 0.0f;
     626        4560 :     hf_target_gain_dB = 0.0f;
     627        4560 :     n_points_lf = 0;
     628        4560 :     n_points_hf = 0;
     629             : 
     630      989088 :     for ( f_idx = 0; f_idx < nrFrequencies; f_idx++ )
     631             :     {
     632      984528 :         if ( ( pFrequencies[f_idx] >= ref_lf_min_norm ) && ( pFrequencies[f_idx] <= ref_lf_max_norm ) )
     633             :         {
     634        8928 :             lf_target_gain_dB += pH_dB[f_idx];
     635        8928 :             n_points_lf++;
     636             :         }
     637      984528 :         if ( ( pFrequencies[f_idx] >= ref_hf_min_norm ) && ( pFrequencies[f_idx] <= ref_hf_max_norm ) )
     638             :         {
     639      178488 :             hf_target_gain_dB += pH_dB[f_idx];
     640      178488 :             n_points_hf++;
     641             :         }
     642             :     }
     643             : 
     644        4560 :     if ( ( n_points_lf == 0 ) || ( n_points_hf == 0 ) )
     645             :     {
     646           0 :         return IVAS_ERR_INTERNAL;
     647             :     }
     648             : 
     649        4560 :     lf_target_gain_dB = lf_target_gain_dB / (float) n_points_lf;
     650        4560 :     hf_target_gain_dB = hf_target_gain_dB / (float) n_points_hf;
     651        4560 :     mid_crossing_gain_dB = hf_target_gain_dB + LF_BIAS * ( lf_target_gain_dB - hf_target_gain_dB );
     652             : 
     653      979968 :     for ( f_idx = 1; f_idx < nrFrequencies - 1; f_idx++ )
     654             :     {
     655      975408 :         tmp = fabsf( pH_dB[f_idx] - mid_crossing_gain_dB );
     656      975408 :         if ( tmp < minval )
     657             :         {
     658       78192 :             minval = tmp;
     659       78192 :             minidx = f_idx;
     660             :         }
     661             :     }
     662             : 
     663        4560 :     f0 = pFrequencies[minidx];
     664        4560 :     lin_gain_lf = powf( 10.0f, lf_target_gain_dB * 0.05f );
     665        4560 :     lin_gain_hf = powf( 10.0f, hf_target_gain_dB * 0.05f );
     666             : 
     667             :     /* call low-pass iir shelf */
     668        4560 :     calc_low_shelf_first_order_filter( pCoeffB, pCoeffA, f0, lin_gain_lf, lin_gain_hf );
     669             : 
     670        4560 :     return IVAS_ERR_OK;
     671             : }
     672             : 
     673             : 
     674             : /*-----------------------------------------------------------------------------------------*
     675             :  * Function initialize_reverb_filters()
     676             :  *
     677             :  * Set the number of branches (feedback loops) and Initializes the memory structure (pointers to data)
     678             :  *-----------------------------------------------------------------------------------------*/
     679             : 
     680         405 : static ivas_error initialize_reverb_filters(
     681             :     REVERB_HANDLE hReverb )
     682             : {
     683             :     ivas_error error;
     684             : 
     685         405 :     error = IVAS_ERR_OK;
     686             : 
     687             :     /* init correlation and coloration filters */
     688         405 :     if ( ( error = ivas_reverb_t2f_f2t_init( &hReverb->fft_filter_ols, hReverb->fft_size, hReverb->fft_subblock_size ) ) != IVAS_ERR_OK )
     689             :     {
     690           0 :         return error;
     691             :     }
     692             : 
     693         405 :     if ( ( error = ivas_reverb_fft_filter_init( &hReverb->fft_filter_correl_0, hReverb->fft_size ) ) != IVAS_ERR_OK )
     694             :     {
     695           0 :         return error;
     696             :     }
     697             : 
     698         405 :     if ( ( error = ivas_reverb_fft_filter_init( &hReverb->fft_filter_correl_1, hReverb->fft_size ) ) != IVAS_ERR_OK )
     699             :     {
     700           0 :         return error;
     701             :     }
     702             : 
     703         405 :     if ( ( error = ivas_reverb_fft_filter_init( &hReverb->fft_filter_color_0, hReverb->fft_size ) ) != IVAS_ERR_OK )
     704             :     {
     705           0 :         return error;
     706             :     }
     707             : 
     708         405 :     if ( ( error = ivas_reverb_fft_filter_init( &hReverb->fft_filter_color_1, hReverb->fft_size ) ) != IVAS_ERR_OK )
     709             :     {
     710           0 :         return error;
     711             :     }
     712             : 
     713         405 :     return error;
     714             : }
     715             : 
     716             : 
     717             : /*-----------------------------------------------------------------------------------------*
     718             :  * Function set_t60_filter()
     719             :  *
     720             :  * Sets t60 number of taps and coefficients A and B
     721             :  *-----------------------------------------------------------------------------------------*/
     722             : 
     723        4560 : static ivas_error set_t60_filter(
     724             :     REVERB_HANDLE hReverb,
     725             :     const uint16_t branch,
     726             :     const uint16_t nr_taps,
     727             :     const float coefA[],
     728             :     const float coefB[] )
     729             : {
     730        4560 :     if ( branch >= hReverb->nr_of_branches )
     731             :     {
     732           0 :         return IVAS_ERR_INTERNAL;
     733             :     }
     734             : 
     735        4560 :     if ( nr_taps > IVAS_REV_MAX_IIR_FILTER_LENGTH )
     736             :     {
     737           0 :         return IVAS_ERR_INTERNAL;
     738             :     }
     739             : 
     740        4560 :     ivas_reverb_iir_filt_set( &( hReverb->t60[branch] ), nr_taps, coefA, coefB );
     741             : 
     742        4560 :     return IVAS_ERR_OK;
     743             : }
     744             : 
     745             : 
     746             : /*-----------------------------------------------------------------------------------------*
     747             :  * Function set_feedback_delay()
     748             :  *
     749             :  * Sets Delay of feedback branch in number of samples
     750             :  *-----------------------------------------------------------------------------------------*/
     751             : 
     752        3240 : static ivas_error set_feedback_delay(
     753             :     REVERB_HANDLE hReverb,
     754             :     const uint16_t branch,
     755             :     const int16_t fb_delay )
     756             : {
     757        3240 :     if ( branch >= hReverb->nr_of_branches )
     758             :     {
     759           0 :         return IVAS_ERR_INTERNAL;
     760             :     }
     761             : 
     762        3240 :     hReverb->delay_line[branch].Delay = fb_delay;
     763             : 
     764        3240 :     return IVAS_ERR_OK;
     765             : }
     766             : 
     767             : 
     768             : /*-----------------------------------------------------------------------------------------*
     769             :  * Function set_feedback_gain()
     770             :  *
     771             :  * Sets nr_of_branches feedback gain values in feedback matrix
     772             :  *-----------------------------------------------------------------------------------------*/
     773             : 
     774        3240 : static ivas_error set_feedback_gain(
     775             :     REVERB_HANDLE hReverb,
     776             :     const uint16_t branch,
     777             :     const float *pGain )
     778             : {
     779             :     uint16_t gain_idx;
     780        3240 :     if ( branch >= hReverb->nr_of_branches )
     781             :     {
     782           0 :         return IVAS_ERR_INTERNAL;
     783             :     }
     784             : 
     785       29160 :     for ( gain_idx = 0; gain_idx < hReverb->nr_of_branches; gain_idx++ )
     786             :     {
     787       25920 :         hReverb->gain_matrix[branch][gain_idx] = pGain[gain_idx];
     788             :     }
     789             : 
     790        3240 :     return IVAS_ERR_OK;
     791             : }
     792             : 
     793             : 
     794             : /*-----------------------------------------------------------------------------------------*
     795             :  * Function set_correl_fft_filter()
     796             :  *
     797             :  * Sets correlation filter complex gains
     798             :  *-----------------------------------------------------------------------------------------*/
     799             : 
     800        1140 : static ivas_error set_correl_fft_filter(
     801             :     REVERB_HANDLE hReverb,
     802             :     const uint16_t channel,
     803             :     rv_fftwf_type_complex *pSpectrum )
     804             : {
     805        1140 :     if ( channel > 1 )
     806             :     {
     807           0 :         return IVAS_ERR_INTERNAL;
     808             :     }
     809             : 
     810        1140 :     if ( channel == 0 )
     811             :     {
     812         570 :         ivas_reverb_fft_filter_ConvertFFTWF_2_FFTR( pSpectrum, hReverb->fft_filter_correl_0.fft_spectrum, hReverb->fft_filter_correl_0.fft_size );
     813             :     }
     814             :     else
     815             :     {
     816         570 :         ivas_reverb_fft_filter_ConvertFFTWF_2_FFTR( pSpectrum, hReverb->fft_filter_correl_1.fft_spectrum, hReverb->fft_filter_correl_1.fft_size );
     817             :     }
     818             : 
     819        1140 :     return IVAS_ERR_OK;
     820             : }
     821             : 
     822             : 
     823             : /*-----------------------------------------------------------------------------------------*
     824             :  * Function set_color_fft_filter()
     825             :  *
     826             :  * Sets coloration filter complex gains
     827             :  *-----------------------------------------------------------------------------------------*/
     828             : 
     829        1140 : static ivas_error set_color_fft_filter(
     830             :     REVERB_HANDLE hReverb,
     831             :     const uint16_t channel,
     832             :     rv_fftwf_type_complex *pSpectrum )
     833             : {
     834        1140 :     if ( channel > 1 )
     835             :     {
     836           0 :         return IVAS_ERR_INTERNAL;
     837             :     }
     838             : 
     839        1140 :     if ( channel == 0 )
     840             :     {
     841         570 :         ivas_reverb_fft_filter_ConvertFFTWF_2_FFTR( pSpectrum, hReverb->fft_filter_color_0.fft_spectrum, hReverb->fft_filter_color_0.fft_size );
     842             :     }
     843             :     else
     844             :     {
     845         570 :         ivas_reverb_fft_filter_ConvertFFTWF_2_FFTR( pSpectrum, hReverb->fft_filter_color_1.fft_spectrum, hReverb->fft_filter_color_1.fft_size );
     846             :     }
     847             : 
     848        1140 :     return IVAS_ERR_OK;
     849             : }
     850             : 
     851             : 
     852             : /*-----------------------------------------------------------------------------------------*
     853             :  * Function set_mixer_level()
     854             :  *
     855             :  * Sets Mixer level: to mix 2 output channels from 8 feedback branches
     856             :  *-----------------------------------------------------------------------------------------*/
     857             : 
     858         810 : static ivas_error set_mixer_level(
     859             :     REVERB_HANDLE hReverb,
     860             :     const uint16_t channel,
     861             :     const float level[] )
     862             : {
     863             :     uint16_t branch_idx;
     864         810 :     if ( channel >= BINAURAL_CHANNELS )
     865             :     {
     866           0 :         return IVAS_ERR_INTERNAL;
     867             :     }
     868             : 
     869        7290 :     for ( branch_idx = 0; branch_idx < hReverb->nr_of_branches; branch_idx++ )
     870             :     {
     871        6480 :         hReverb->mixer[channel][branch_idx] = level[branch_idx];
     872             :     }
     873             : 
     874         810 :     return IVAS_ERR_OK;
     875             : }
     876             : 
     877             : 
     878             : /*-----------------------------------------------------------------------------------------*
     879             :  * Function clear_buffers()
     880             :  *
     881             :  * Clears buffers of delay lines and filters
     882             :  *-----------------------------------------------------------------------------------------*/
     883             : 
     884         405 : static void clear_buffers(
     885             :     REVERB_HANDLE hReverb )
     886             : {
     887             :     int16_t branch_idx;
     888             :     ivas_rev_iir_filter_t *iirFilter;
     889             :     ivas_rev_delay_line_t *delay_line;
     890             : 
     891        3645 :     for ( branch_idx = 0; branch_idx < IVAS_REV_MAX_NR_BRANCHES; branch_idx++ )
     892             :     {
     893        3240 :         delay_line = &( hReverb->delay_line[branch_idx] );
     894        3240 :         set_f( delay_line->pBuffer, 0, delay_line->MaxDelay );
     895        3240 :         delay_line->BufferPos = 0;
     896             : 
     897        3240 :         iirFilter = &( hReverb->t60[branch_idx] );
     898        3240 :         set_f( iirFilter->pBuffer, 0, iirFilter->MaxTaps );
     899             :     }
     900             : 
     901         405 :     ivas_reverb_t2f_f2t_ClearHistory( &hReverb->fft_filter_ols );
     902             : 
     903         405 :     return;
     904             : }
     905             : 
     906             : 
     907             : /*-----------------------------------------------------------------------------------------*
     908             :  * Function set_fft_and_datablock_sizes()
     909             :  *
     910             :  * Sets frame size and fft-filter related sizes
     911             :  *-----------------------------------------------------------------------------------------*/
     912             : 
     913         570 : static void set_fft_and_datablock_sizes(
     914             :     REVERB_HANDLE hReverb,
     915             :     const int16_t subframe_len )
     916             : {
     917         570 :     hReverb->full_block_size = subframe_len;
     918         570 :     if ( subframe_len == L_FRAME48k / MAX_PARAM_SPATIAL_SUBFRAMES )
     919             :     {
     920         297 :         hReverb->fft_size = IVAS_REVERB_FFT_SIZE_48K;
     921         297 :         hReverb->num_fft_subblocks = IVAS_REVERB_FFT_N_SUBBLOCKS_48K;
     922             :     }
     923         273 :     else if ( subframe_len == L_FRAME32k / MAX_PARAM_SPATIAL_SUBFRAMES )
     924             :     {
     925          90 :         hReverb->fft_size = IVAS_REVERB_FFT_SIZE_32K;
     926          90 :         hReverb->num_fft_subblocks = IVAS_REVERB_FFT_N_SUBBLOCKS_32K;
     927             :     }
     928         183 :     else if ( subframe_len == L_FRAME16k / MAX_PARAM_SPATIAL_SUBFRAMES )
     929             :     {
     930         183 :         hReverb->fft_size = IVAS_REVERB_FFT_SIZE_16K;
     931         183 :         hReverb->num_fft_subblocks = IVAS_REVERB_FFT_N_SUBBLOCKS_16K;
     932             :     }
     933             :     else
     934             :     {
     935           0 :         assert( 0 ); /* unsupported block size */
     936             :     }
     937             : 
     938         570 :     hReverb->fft_subblock_size = subframe_len / hReverb->num_fft_subblocks;
     939             : 
     940         570 :     return;
     941             : }
     942             : 
     943             : 
     944             : /*-----------------------------------------------------------------------------------------*
     945             :  * Function set_reverb_acoustic_data()
     946             :  *
     947             :  * Sets reverb acoustic data (room acoustics and HRTF), interpolating it to the filter grid
     948             :  *-----------------------------------------------------------------------------------------*/
     949             : 
     950         570 : static void set_reverb_acoustic_data(
     951             :     ivas_reverb_params_t *pParams,
     952             :     IVAS_ROOM_ACOUSTICS_CONFIG_DATA *pRoomAcoustics,
     953             :     const int16_t nr_fc_input,
     954             :     const int16_t nr_fc_fft_filter )
     955             : {
     956             :     int16_t bin_idx;
     957             :     float ln_1e6_inverted, delay_diff, exp_argument;
     958             :     /* interpolate input table data for T60 and DSR to the FFT filter grid */
     959         570 :     ivas_reverb_interpolate_acoustic_data( nr_fc_input, pRoomAcoustics->pFc_input, pRoomAcoustics->pAcoustic_rt60, pRoomAcoustics->pAcoustic_dsr,
     960         570 :                                            nr_fc_fft_filter, pParams->pFc, pParams->pRt60, pParams->pDsr );
     961             : 
     962             :     /* adjust DSR for the delay difference */
     963         570 :     delay_diff = pRoomAcoustics->inputPreDelay - pRoomAcoustics->acousticPreDelay;
     964         570 :     ln_1e6_inverted = 1.0f / logf( 1e06f );
     965      123636 :     for ( bin_idx = 0; bin_idx < nr_fc_fft_filter; bin_idx++ )
     966             :     {
     967      123066 :         exp_argument = delay_diff / ( pParams->pRt60[bin_idx] * ln_1e6_inverted );
     968             :         /* Limit exponent to approx +/-100 dB in case of incoherent value of delay_diff, to prevent overflow */
     969      123066 :         exp_argument = min( exp_argument, 23.0f );
     970      123066 :         exp_argument = max( exp_argument, -23.0f );
     971      123066 :         pParams->pDsr[bin_idx] *= expf( exp_argument );
     972             :     }
     973             : 
     974         570 :     return;
     975             : }
     976             : 
     977             : 
     978             : /*-----------------------------------------------------------------------------------------*
     979             :  * Function setup_FDN_branches()
     980             :  *
     981             :  * Sets up feedback delay network system
     982             :  *-----------------------------------------------------------------------------------------*/
     983             : 
     984         405 : static ivas_error setup_FDN_branches(
     985             :     REVERB_HANDLE hReverb,
     986             :     ivas_reverb_params_t *pParams )
     987             : {
     988             :     int16_t nr_coefs, branch_idx, channel_idx;
     989             :     ivas_error error;
     990         405 :     error = IVAS_ERR_OK;
     991             : 
     992             :     /* initialize feedback branches */
     993        3645 :     for ( branch_idx = 0; branch_idx < IVAS_REV_MAX_NR_BRANCHES; branch_idx++ )
     994             :     {
     995        3240 :         ivas_rev_delay_line_init( &( hReverb->delay_line[branch_idx] ), hReverb->loop_delay_buffer[branch_idx], init_loop_delay[branch_idx], pParams->pLoop_delays[branch_idx] );
     996        3240 :         ivas_reverb_iir_filt_init( &( hReverb->t60[branch_idx] ), IVAS_REV_MAX_IIR_FILTER_LENGTH );
     997        3240 :         hReverb->mixer[0][branch_idx] = 0.0f;
     998        3240 :         hReverb->mixer[1][branch_idx] = 0.0f;
     999             :     }
    1000         405 :     clear_buffers( hReverb );
    1001         405 :     nr_coefs = pParams->t60_filter_order + 1;
    1002             : 
    1003         405 :     if ( IVAS_REV_MAX_IIR_FILTER_LENGTH < nr_coefs )
    1004             :     {
    1005           0 :         return IVAS_ERR_INTERNAL;
    1006             :     }
    1007             :     else
    1008             :     {
    1009        3645 :         for ( branch_idx = 0; branch_idx < pParams->nr_loops; branch_idx++ )
    1010             :         {
    1011        3240 :             if ( ( error = set_feedback_delay( hReverb, branch_idx, pParams->pLoop_delays[branch_idx] ) ) != IVAS_ERR_OK )
    1012             :             {
    1013           0 :                 return error;
    1014             :             }
    1015             : 
    1016        3240 :             if ( ( error = set_feedback_gain( hReverb, branch_idx, &( pParams->pLoop_feedback_matrix[branch_idx * pParams->nr_loops] ) ) ) != IVAS_ERR_OK )
    1017             :             {
    1018           0 :                 return error;
    1019             :             }
    1020             :         }
    1021             :     }
    1022             : 
    1023        1215 :     for ( channel_idx = 0; channel_idx < pParams->nr_outputs; channel_idx++ )
    1024             :     {
    1025         810 :         if ( ( error = set_mixer_level( hReverb, channel_idx, &( pParams->pLoop_extract_matrix[channel_idx * pParams->nr_loops] ) ) ) != IVAS_ERR_OK )
    1026             :         {
    1027           0 :             return error;
    1028             :         }
    1029             :     }
    1030             : 
    1031         405 :     return error;
    1032             : }
    1033             : 
    1034             : 
    1035             : /*-------------------------------------------------------------------------
    1036             :  * ivas_reverb_open()
    1037             :  *
    1038             :  * Allocate and initialize FDN reverberation handle
    1039             :  *------------------------------------------------------------------------*/
    1040             : 
    1041         570 : ivas_error ivas_reverb_open(
    1042             :     REVERB_HANDLE *hReverb,                        /* i/o: Reverberator handle               */
    1043             :     const HRTFS_STATISTICS_HANDLE hHrtfStatistics, /* i  : HRTF statistics handle            */
    1044             :     RENDER_CONFIG_HANDLE hRenderConfig,            /* i  : Renderer configuration handle     */
    1045             :     const int32_t output_Fs                        /* i  : output sampling rate              */
    1046             : )
    1047             : {
    1048             :     ivas_error error;
    1049         570 :     REVERB_HANDLE pState = *hReverb;
    1050             :     int16_t nr_coefs, branch_idx;
    1051             :     float *pCoef_a, *pCoef_b;
    1052             :     int16_t bin_idx, subframe_len, output_frame, predelay_bf_len, loop_idx;
    1053             :     ivas_reverb_params_t params;
    1054             :     rv_fftwf_type_complex pFft_wf_filter_ch0[RV_LENGTH_NR_FC];
    1055             :     rv_fftwf_type_complex pFft_wf_filter_ch1[RV_LENGTH_NR_FC];
    1056             :     float pColor_target_l[RV_LENGTH_NR_FC];
    1057             :     float pColor_target_r[RV_LENGTH_NR_FC];
    1058             :     float pTime_window[RV_FILTER_MAX_FFT_SIZE];
    1059             :     float freq_step;
    1060             :     int16_t fft_hist_size, transition_start, transition_length;
    1061             :     int16_t nr_fc_input, nr_fc_fft_filter;
    1062             : 
    1063         570 :     error = IVAS_ERR_OK;
    1064         570 :     output_frame = (int16_t) ( output_Fs / FRAMES_PER_SEC );
    1065         570 :     subframe_len = output_frame / MAX_PARAM_SPATIAL_SUBFRAMES;
    1066         570 :     predelay_bf_len = output_frame;
    1067         570 :     nr_fc_input = hRenderConfig->roomAcoustics.nBands;
    1068             : 
    1069         570 :     if ( *hReverb == NULL )
    1070             :     {
    1071             :         /* Allocate main reverb. handle */
    1072         405 :         if ( ( pState = (REVERB_HANDLE) malloc( sizeof( REVERB_DATA ) ) ) == NULL )
    1073             :         {
    1074           0 :             return IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Cannot allocate memory for FDN Reverberator " );
    1075             :         }
    1076             :     }
    1077             : 
    1078         570 :     if ( ( error = set_base_config( &params, output_Fs ) ) != IVAS_ERR_OK )
    1079             :     {
    1080           0 :         return error;
    1081             :     }
    1082             : 
    1083         570 :     if ( *hReverb == NULL )
    1084             :     {
    1085             :         /* Allocate memory for feedback delay lines */
    1086        3645 :         for ( loop_idx = 0; loop_idx < IVAS_REV_MAX_NR_BRANCHES; loop_idx++ )
    1087             :         {
    1088        3240 :             if ( ( pState->loop_delay_buffer[loop_idx] = (float *) malloc( params.pLoop_delays[loop_idx] * sizeof( float ) ) ) == NULL )
    1089             :             {
    1090           0 :                 return IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Cannot allocate memory for FDN Reverberator" );
    1091             :             }
    1092             :         }
    1093             : 
    1094             :         /* Allocate memory for the pre-delay delay line */
    1095         405 :         if ( ( pState->pPredelay_buffer = (float *) malloc( output_frame * sizeof( float ) ) ) == NULL )
    1096             :         {
    1097           0 :             return IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Cannot allocate memory for FDN Reverberator" );
    1098             :         }
    1099             :     }
    1100             : 
    1101         570 :     pState->nr_of_branches = IVAS_REV_MAX_NR_BRANCHES;
    1102         570 :     set_fft_and_datablock_sizes( pState, subframe_len );
    1103             : 
    1104         570 :     nr_fc_fft_filter = ( pState->fft_size >> 1 ) + 1;
    1105             : 
    1106             :     /* === 'Control logic': compute the reverb processing parameters from the              === */
    1107             :     /* === room, source and listener acoustic information provided in the reverb config    === */
    1108             :     /* Setting up shared temporary buffers for fc, RT60, DSR, etc.                             */
    1109         570 :     params.pRt60 = &pFft_wf_filter_ch1[0][0];
    1110         570 :     params.pDsr = params.pRt60 + nr_fc_fft_filter;
    1111         570 :     params.pFc = &pState->fft_filter_color_0.fft_spectrum[0];
    1112             : 
    1113             :     /* Note: these temp buffers can only be used before the final step of the FFT filter design :     */
    1114             :     /* before calls to ivas_reverb_calc_correl_filters(...) or to ivas_reverb_calc_color_filters(...) */
    1115             : 
    1116             :     /* set the uniform frequency grid for FFT filtering                                               */
    1117         570 :     freq_step = 0.5f * output_Fs / ( nr_fc_fft_filter - 1 );
    1118      123636 :     for ( bin_idx = 0; bin_idx < nr_fc_fft_filter; bin_idx++ )
    1119             :     {
    1120      123066 :         params.pFc[bin_idx] = freq_step * bin_idx;
    1121             :     }
    1122             : 
    1123         570 :     set_reverb_acoustic_data( &params, &hRenderConfig->roomAcoustics, nr_fc_input, nr_fc_fft_filter );
    1124         570 :     params.pHrtf_avg_pwr_response_l_const = hHrtfStatistics->average_energy_l;
    1125         570 :     params.pHrtf_avg_pwr_response_r_const = hHrtfStatistics->average_energy_r;
    1126         570 :     params.pHrtf_inter_aural_coherence_const = hHrtfStatistics->inter_aural_coherence;
    1127             : 
    1128             :     /* set reverb acoustic configuration based on renderer config  */
    1129             : #ifdef DEBUGGING
    1130             :     pState->pConfig.renderer_type_override = hRenderConfig->renderer_type_override;
    1131             : #endif
    1132         570 :     pState->pConfig.roomAcoustics.nBands = hRenderConfig->roomAcoustics.nBands;
    1133             : 
    1134         570 :     if ( hRenderConfig->roomAcoustics.use_er == 1 )
    1135             :     {
    1136          21 :         pState->pConfig.roomAcoustics.use_er = hRenderConfig->roomAcoustics.use_er;
    1137          21 :         pState->pConfig.roomAcoustics.lowComplexity = hRenderConfig->roomAcoustics.lowComplexity;
    1138             :     }
    1139             : 
    1140             :     /*  set up input downmix  */
    1141         570 :     if ( *hReverb == NULL )
    1142             :     {
    1143         405 :         pState->dmx_gain = calc_dmx_gain();
    1144             :     }
    1145             : 
    1146             :     /*  set up predelay - must be after set_base_config() and before compute_t60_coeffs() */
    1147         570 :     calc_predelay( &params, hRenderConfig->roomAcoustics.acousticPreDelay, output_Fs );
    1148             : 
    1149             :     /*  set up jot reverb 60 filters - must be set up after set_reverb_acoustic_data() */
    1150         570 :     if ( ( error = compute_t60_coeffs( &params, nr_fc_fft_filter, output_Fs ) ) != IVAS_ERR_OK )
    1151             :     {
    1152           0 :         return error;
    1153             :     }
    1154             : 
    1155             :     /* Compute target levels (gains) for the coloration filters */
    1156         570 :     ivas_reverb_calc_color_levels( output_Fs, nr_fc_fft_filter, params.nr_loops, params.pFc, params.pDsr, params.pHrtf_avg_pwr_response_l_const, params.pHrtf_avg_pwr_response_r_const,
    1157             :                                    params.pLoop_delays, params.pT60_filter_coeff, pColor_target_l, pColor_target_r );
    1158             : 
    1159             :     /* Defining appropriate windowing parameters for FFT filters to prevent aliasing */
    1160         570 :     fft_hist_size = pState->fft_size - pState->fft_subblock_size;
    1161             : 
    1162         570 :     transition_start = (int16_t) roundf( FFT_FILTER_WND_FLAT_REGION * fft_hist_size );
    1163         570 :     transition_length = (int16_t) roundf( FFT_FILTER_WND_TRANS_REGION * fft_hist_size );
    1164             : 
    1165             :     /* Compute the window used for FFT filters */
    1166         570 :     ivas_reverb_define_window_fft( pTime_window, transition_start, transition_length, nr_fc_fft_filter );
    1167             : 
    1168             :     /* === Copy parameters from ivas_reverb_params_t into DSP blocks   === */
    1169             :     /* === to be used for subsequent audio signal processing           === */
    1170         570 :     if ( *hReverb == NULL )
    1171             :     {
    1172         405 :         pState->do_corr_filter = params.do_corr_filter;
    1173             : 
    1174             :         /* clear & init jot reverb fft filters */
    1175         405 :         if ( ( error = initialize_reverb_filters( pState ) ) != IVAS_ERR_OK )
    1176             :         {
    1177           0 :             return error;
    1178             :         }
    1179             :     }
    1180             : 
    1181         570 :     if ( pState->do_corr_filter )
    1182             :     {
    1183             :         /* Computing correlation filters on the basis of target IA coherence */
    1184         570 :         ivas_reverb_calc_correl_filters( params.pHrtf_inter_aural_coherence_const, pTime_window, pState->fft_size, 0.0f, pFft_wf_filter_ch0, pFft_wf_filter_ch1 );
    1185             : 
    1186             :         /* Copying the computed FFT correlation filters to the fft_filter components */
    1187         570 :         if ( ( error = set_correl_fft_filter( pState, 0, pFft_wf_filter_ch0 ) ) != IVAS_ERR_OK )
    1188             :         {
    1189           0 :             return error;
    1190             :         }
    1191             : 
    1192         570 :         if ( ( error = set_correl_fft_filter( pState, 1, pFft_wf_filter_ch1 ) ) != IVAS_ERR_OK )
    1193             :         {
    1194           0 :             return error;
    1195             :         }
    1196             :     }
    1197             : 
    1198             :     /* Computing coloration filters on the basis of target responses */
    1199         570 :     ivas_reverb_calc_color_filters( pColor_target_l, pColor_target_r, pTime_window, pState->fft_size, 0.0f, pFft_wf_filter_ch0, pFft_wf_filter_ch1 );
    1200             : 
    1201             :     /* Copying the computed FFT colorations filters to the fft_filter components */
    1202         570 :     if ( ( error = set_color_fft_filter( pState, 0, pFft_wf_filter_ch0 ) ) != IVAS_ERR_OK )
    1203             :     {
    1204           0 :         return error;
    1205             :     }
    1206             : 
    1207         570 :     if ( ( error = set_color_fft_filter( pState, 1, pFft_wf_filter_ch1 ) ) != IVAS_ERR_OK )
    1208             :     {
    1209           0 :         return error;
    1210             :     }
    1211             : 
    1212         570 :     if ( *hReverb == NULL )
    1213             :     {
    1214             :         /* init predelay */
    1215         405 :         ivas_rev_delay_line_init( &( pState->predelay_line ), pState->pPredelay_buffer, params.pre_delay, predelay_bf_len );
    1216             : 
    1217             :         /* set up feedback delay network */
    1218         405 :         if ( ( error = setup_FDN_branches( pState, &params ) ) != IVAS_ERR_OK )
    1219             :         {
    1220           0 :             return error;
    1221             :         }
    1222             :     }
    1223             :     else
    1224             :     {
    1225         165 :         pState->predelay_line.Delay = params.pre_delay;
    1226             :     }
    1227             : 
    1228         570 :     nr_coefs = params.t60_filter_order + 1;
    1229             : 
    1230        5130 :     for ( branch_idx = 0; branch_idx < params.nr_loops; branch_idx++ )
    1231             :     {
    1232        4560 :         pCoef_a = &params.pT60_filter_coeff[2 * nr_coefs * branch_idx + nr_coefs];
    1233        4560 :         pCoef_b = &params.pT60_filter_coeff[2 * nr_coefs * branch_idx];
    1234             : 
    1235        4560 :         if ( ( error = set_t60_filter( pState, branch_idx, nr_coefs, pCoef_a, pCoef_b ) ) != IVAS_ERR_OK )
    1236             :         {
    1237           0 :             return error;
    1238             :         }
    1239             :     }
    1240             : 
    1241         570 :     *hReverb = pState;
    1242             : 
    1243         570 :     return error;
    1244             : }
    1245             : 
    1246             : 
    1247             : /*-------------------------------------------------------------------------
    1248             :  * ivas_reverb_close()
    1249             :  *
    1250             :  * Deallocate Crend reverberation handle
    1251             :  *------------------------------------------------------------------------*/
    1252             : 
    1253       10098 : void ivas_reverb_close(
    1254             :     REVERB_HANDLE *hReverb_in /* i/o: Reverberator handle       */
    1255             : )
    1256             : {
    1257             :     REVERB_HANDLE hReverb;
    1258             :     int16_t loop_idx;
    1259             : 
    1260       10098 :     hReverb = *hReverb_in;
    1261             : 
    1262       10098 :     if ( hReverb_in == NULL || *hReverb_in == NULL )
    1263             :     {
    1264        9693 :         return;
    1265             :     }
    1266             : 
    1267        3645 :     for ( loop_idx = 0; loop_idx < IVAS_REV_MAX_NR_BRANCHES; loop_idx++ )
    1268             :     {
    1269        3240 :         if ( hReverb->loop_delay_buffer[loop_idx] != NULL )
    1270             :         {
    1271        3240 :             free( hReverb->loop_delay_buffer[loop_idx] );
    1272        3240 :             hReverb->loop_delay_buffer[loop_idx] = NULL;
    1273             :         }
    1274             :     }
    1275             : 
    1276         405 :     free( hReverb->pPredelay_buffer );
    1277         405 :     hReverb->pPredelay_buffer = NULL;
    1278             : 
    1279         405 :     free( *hReverb_in );
    1280         405 :     *hReverb_in = NULL;
    1281             : 
    1282         405 :     return;
    1283             : }
    1284             : 
    1285             : 
    1286             : /*-----------------------------------------------------------------------------------------*
    1287             :  * Function post_fft_filter()
    1288             :  *
    1289             :  *
    1290             :  *-----------------------------------------------------------------------------------------*/
    1291             : 
    1292      794988 : static void post_fft_filter(
    1293             :     REVERB_HANDLE hReverb,
    1294             :     float *p0,
    1295             :     float *p1,
    1296             :     float *pBuffer_0,
    1297             :     float *pBuffer_1 )
    1298             : {
    1299      794988 :     if ( hReverb->do_corr_filter )
    1300             :     {
    1301      794988 :         ivas_reverb_t2f_f2t_in( &hReverb->fft_filter_ols, p0, p1, pBuffer_0, pBuffer_1 );
    1302      794988 :         ivas_reverb_fft_filter_ComplexMul( &hReverb->fft_filter_correl_0, pBuffer_0 );
    1303      794988 :         ivas_reverb_fft_filter_ComplexMul( &hReverb->fft_filter_correl_1, pBuffer_1 );
    1304      794988 :         ivas_reverb_fft_filter_CrossMix( pBuffer_0, pBuffer_1, hReverb->fft_filter_correl_0.fft_size );
    1305             :     }
    1306             :     else
    1307             :     {
    1308           0 :         ivas_reverb_t2f_f2t_in( &hReverb->fft_filter_ols, p0, p1, pBuffer_0, pBuffer_1 );
    1309             :     }
    1310             : 
    1311      794988 :     ivas_reverb_fft_filter_ComplexMul( &hReverb->fft_filter_color_0, pBuffer_0 );
    1312      794988 :     ivas_reverb_fft_filter_ComplexMul( &hReverb->fft_filter_color_1, pBuffer_1 );
    1313      794988 :     ivas_reverb_t2f_f2t_out( &hReverb->fft_filter_ols, pBuffer_0, pBuffer_1, p0, p1 );
    1314             : 
    1315      794988 :     return;
    1316             : }
    1317             : 
    1318             : 
    1319             : /*-----------------------------------------------------------------------------------------*
    1320             :  * Function reverb_block()
    1321             :  *
    1322             :  * Input a block (mono) and calculate the 2 output blocks.
    1323             :  *-----------------------------------------------------------------------------------------*/
    1324             : 
    1325      794988 : static void reverb_block(
    1326             :     REVERB_HANDLE hReverb,
    1327             :     float *pInput,
    1328             :     float *pOut0,
    1329             :     float *pOut1 )
    1330             : 
    1331             : {
    1332      794988 :     uint16_t nr_branches = hReverb->nr_of_branches;
    1333      794988 :     uint16_t bsize = hReverb->full_block_size;
    1334      794988 :     uint16_t inner_bsize = INNER_BLK_SIZE;
    1335             :     uint16_t i, j, k, ns, branch_idx, blk_idx, start_sample_idx;
    1336             : 
    1337             :     float *pFFT_buf[2], FFT_buf_1[RV_FILTER_MAX_FFT_SIZE], FFT_buf_2[RV_FILTER_MAX_FFT_SIZE];
    1338             :     float pFeedback_input[INNER_BLK_SIZE];
    1339             :     float pTemp[INNER_BLK_SIZE];
    1340             :     float *ppOutput[IVAS_REV_MAX_NR_BRANCHES];
    1341             :     float Output[IVAS_REV_MAX_NR_BRANCHES][INNER_BLK_SIZE];
    1342             : 
    1343      794988 :     pFFT_buf[0] = &FFT_buf_1[0];
    1344      794988 :     pFFT_buf[1] = &FFT_buf_2[0];
    1345             : 
    1346     7154892 :     for ( branch_idx = 0; branch_idx < nr_branches; branch_idx++ )
    1347             :     {
    1348     6359904 :         ppOutput[branch_idx] = (float *) Output + branch_idx * inner_bsize;
    1349             :     }
    1350             : 
    1351     3139353 :     for ( k = 0; k < bsize; k += inner_bsize )
    1352             :     {
    1353     2344365 :         float *pO0 = &pOut0[k];
    1354     2344365 :         float *pO1 = &pOut1[k];
    1355   189893565 :         for ( i = 0; i < inner_bsize; i++ )
    1356             :         {
    1357   187549200 :             pO0[i] = 0.0f;
    1358   187549200 :             pO1[i] = 0.0f;
    1359             :         }
    1360             : 
    1361             :         /* feedback network: */
    1362    21099285 :         for ( i = 0; i < nr_branches; i++ )
    1363             :         {
    1364    18754920 :             float *pOutput_i = &ppOutput[i][0];
    1365    18754920 :             float mixer_0_i = hReverb->mixer[0][i];
    1366    18754920 :             float mixer_1_i = hReverb->mixer[1][i];
    1367             : 
    1368             :             /* output and feedback are same, get sample from delay line ... */
    1369    18754920 :             ivas_rev_delay_line_get_sample_blk( &( hReverb->delay_line[i] ), inner_bsize, pTemp );
    1370    18754920 :             ivas_reverb_iir_filt_2taps_feed_blk( &( hReverb->t60[i] ), inner_bsize, pTemp, ppOutput[i] );
    1371  1519148520 :             for ( ns = 0; ns < inner_bsize; ns++ )
    1372             :             {
    1373  1500393600 :                 pO0[ns] += pOutput_i[ns] * mixer_0_i; /* mixer ch 0 */
    1374  1500393600 :                 pO1[ns] += pOutput_i[ns] * mixer_1_i; /* mixer ch 1 */
    1375             :             }
    1376             :         }
    1377             : 
    1378    21099285 :         for ( i = 0; i < nr_branches; i++ )
    1379             :         {
    1380    18754920 :             float *pIn = &pInput[k];
    1381             : 
    1382  1519148520 :             for ( ns = 0; ns < inner_bsize; ns++ )
    1383             :             {
    1384  1500393600 :                 pFeedback_input[ns] = pIn[ns];
    1385             :             }
    1386             : 
    1387   168794280 :             for ( j = 0; j < nr_branches; j++ )
    1388             :             {
    1389   150039360 :                 float gain_matrix_j_i = hReverb->gain_matrix[j][i];
    1390   150039360 :                 float *pOutput = &ppOutput[j][0];
    1391 12153188160 :                 for ( ns = 0; ns < inner_bsize; ns++ )
    1392             :                 {
    1393 12003148800 :                     pFeedback_input[ns] += gain_matrix_j_i * pOutput[ns];
    1394             :                 }
    1395             :             }
    1396             : 
    1397    18754920 :             ivas_rev_delay_line_feed_sample_blk( &( hReverb->delay_line[i] ), inner_bsize, pFeedback_input );
    1398             :         }
    1399             :     }
    1400             : 
    1401             :     /* Applying FFT filter to each sub-frame */
    1402     1589976 :     for ( blk_idx = 0; blk_idx < hReverb->num_fft_subblocks; blk_idx++ )
    1403             :     {
    1404      794988 :         start_sample_idx = blk_idx * hReverb->fft_subblock_size;
    1405      794988 :         post_fft_filter( hReverb, pOut0 + start_sample_idx, pOut1 + start_sample_idx, pFFT_buf[0], pFFT_buf[1] );
    1406             :     }
    1407             : 
    1408      794988 :     return;
    1409             : }
    1410             : 
    1411             : 
    1412             : /*-----------------------------------------------------------------------------------------*
    1413             :  * Function downmix_input_block()
    1414             :  *
    1415             :  * Downmix input to mono, taking also DSR gain into account
    1416             :  *-----------------------------------------------------------------------------------------*/
    1417             : 
    1418      794988 : static ivas_error downmix_input_block(
    1419             :     const REVERB_HANDLE hReverb,
    1420             :     float *pcm_in[],
    1421             :     const AUDIO_CONFIG input_audio_config,
    1422             :     float *pPcm_out,
    1423             :     const int16_t input_offset )
    1424             : {
    1425             :     int16_t i, s, nchan_transport;
    1426      794988 :     float dmx_gain = hReverb->dmx_gain;
    1427             : 
    1428      794988 :     switch ( input_audio_config )
    1429             :     {
    1430      665499 :         case IVAS_AUDIO_CONFIG_STEREO:
    1431             :         case IVAS_AUDIO_CONFIG_5_1:
    1432             :         case IVAS_AUDIO_CONFIG_7_1:
    1433             :         case IVAS_AUDIO_CONFIG_5_1_2:
    1434             :         case IVAS_AUDIO_CONFIG_5_1_4:
    1435             :         case IVAS_AUDIO_CONFIG_7_1_4:
    1436             :         case IVAS_AUDIO_CONFIG_ISM1:
    1437             :         case IVAS_AUDIO_CONFIG_ISM2:
    1438             :         case IVAS_AUDIO_CONFIG_ISM3:
    1439             :         case IVAS_AUDIO_CONFIG_ISM4:
    1440             :         {
    1441      665499 :             nchan_transport = audioCfg2channels( input_audio_config );
    1442   157521339 :             for ( s = 0; s < hReverb->full_block_size; s++ )
    1443             :             {
    1444   156855840 :                 float temp = pcm_in[0][input_offset + s];
    1445   447198720 :                 for ( i = 1; i < nchan_transport; i++ )
    1446             :                 {
    1447   290342880 :                     temp += pcm_in[i][input_offset + s];
    1448             :                 }
    1449   156855840 :                 pPcm_out[s] = dmx_gain * temp;
    1450             :             }
    1451      665499 :             break;
    1452             :         }
    1453      129489 :         case IVAS_AUDIO_CONFIG_MONO: /* ~'ZOA_1' */
    1454             :         case IVAS_AUDIO_CONFIG_FOA:
    1455             :         case IVAS_AUDIO_CONFIG_HOA2:
    1456             :         case IVAS_AUDIO_CONFIG_HOA3:
    1457             :         {
    1458    30822849 :             for ( s = 0; s < hReverb->full_block_size; s++ )
    1459             :             {
    1460    30693360 :                 pPcm_out[s] = dmx_gain * pcm_in[0][input_offset + s];
    1461             :             }
    1462      129489 :             break;
    1463             :         }
    1464           0 :         default:
    1465           0 :             return IVAS_ERROR( IVAS_ERR_INTERNAL_FATAL, "Unsupported input format for reverb" );
    1466             :             break;
    1467             :     }
    1468             : 
    1469      794988 :     return IVAS_ERR_OK;
    1470             : }
    1471             : 
    1472             : 
    1473             : /*-----------------------------------------------------------------------------------------*
    1474             :  * Function predelay_block()
    1475             :  *
    1476             :  * Perform a predelay
    1477             :  *-----------------------------------------------------------------------------------------*/
    1478             : 
    1479      794988 : static void predelay_block(
    1480             :     const REVERB_HANDLE hReverb,
    1481             :     float *pInput,
    1482             :     float *pOutput )
    1483             : {
    1484             :     uint16_t i, idx, n_samples, blk_size;
    1485      794988 :     uint16_t max_blk_size = (uint16_t) hReverb->predelay_line.Delay;
    1486             : 
    1487      794988 :     if ( max_blk_size < 2 )
    1488             :     {
    1489           0 :         if ( max_blk_size == 0 ) /* zero-length delay line: just copy the data from input to output */
    1490             :         {
    1491           0 :             for ( i = 0; i < hReverb->full_block_size; i++ )
    1492             :             {
    1493           0 :                 pOutput[i] = pInput[i];
    1494             :             }
    1495             :         }
    1496             :         else /* 1-sample length delay line: feed the data sample-by-sample */
    1497             :         {
    1498           0 :             for ( i = 0; i < hReverb->full_block_size; i++ )
    1499             :             {
    1500           0 :                 pOutput[i] = ivas_rev_delay_line_get_sample( &( hReverb->predelay_line ) );
    1501           0 :                 ivas_rev_delay_line_feed_sample( &( hReverb->predelay_line ), pInput[i] );
    1502             :             }
    1503             :         }
    1504             :     }
    1505             :     else /* multiple-sample length delay line: use block processing */
    1506             :     {
    1507      794988 :         idx = 0;
    1508      794988 :         n_samples = hReverb->full_block_size;
    1509     4769928 :         while ( n_samples > 0 )
    1510             :         {
    1511     3974940 :             blk_size = n_samples;
    1512     3974940 :             if ( blk_size > max_blk_size )
    1513             :             {
    1514     3179952 :                 blk_size = max_blk_size;
    1515             :             }
    1516     3974940 :             ivas_rev_delay_line_get_sample_blk( &( hReverb->predelay_line ), blk_size, &pOutput[idx] );
    1517     3974940 :             ivas_rev_delay_line_feed_sample_blk( &( hReverb->predelay_line ), blk_size, &pInput[idx] );
    1518     3974940 :             idx += blk_size;
    1519     3974940 :             n_samples -= blk_size;
    1520             :         }
    1521             :     }
    1522             : 
    1523      794988 :     return;
    1524             : }
    1525             : 
    1526             : 
    1527             : /*-----------------------------------------------------------------------------------------*
    1528             :  * Function mix_output_block()
    1529             :  *
    1530             :  * mix one block of *pInL and *pInR samples into *pOutL and *pOutL respectively
    1531             :  *-----------------------------------------------------------------------------------------*/
    1532             : 
    1533      226400 : static void mix_output_block(
    1534             :     const REVERB_HANDLE hReverb,
    1535             :     const float *pInL,
    1536             :     const float *pInR,
    1537             :     float *pOutL,
    1538             :     float *pOutR )
    1539             : {
    1540             :     uint16_t i;
    1541             : 
    1542    51759200 :     for ( i = 0; i < hReverb->full_block_size; i++ )
    1543             :     {
    1544    51532800 :         pOutL[i] += pInL[i];
    1545    51532800 :         pOutR[i] += pInR[i];
    1546             :     }
    1547             : 
    1548      226400 :     return;
    1549             : }
    1550             : 
    1551             : 
    1552             : /*-----------------------------------------------------------------------------------------*
    1553             :  * ivas_reverb_process()
    1554             :  *
    1555             :  * Process the input PCM audio into output PCM audio, applying reverb
    1556             :  *-----------------------------------------------------------------------------------------*/
    1557             : 
    1558      794988 : ivas_error ivas_reverb_process(
    1559             :     const REVERB_HANDLE hReverb,           /* i  : Reverberator handle                */
    1560             :     const AUDIO_CONFIG input_audio_config, /* i  : reverb. input audio configuration  */
    1561             :     const int16_t mix_signals,             /* i  : add reverb to output signal        */
    1562             :     float *pcm_in[],                       /* i  : the PCM audio to apply reverb on   */
    1563             :     float *pcm_out[],                      /* o  : the PCM audio with reverb applied  */
    1564             :     const int16_t i_ts                     /* i  : subframe index                     */
    1565             : )
    1566             : {
    1567             :     float tmp0[L_FRAME48k / MAX_PARAM_SPATIAL_SUBFRAMES], tmp1[L_FRAME48k / MAX_PARAM_SPATIAL_SUBFRAMES], tmp2[L_FRAME48k / MAX_PARAM_SPATIAL_SUBFRAMES];
    1568             :     ivas_error error;
    1569             : 
    1570      794988 :     if ( ( error = downmix_input_block( hReverb, pcm_in, input_audio_config, tmp1, i_ts * hReverb->full_block_size ) ) != IVAS_ERR_OK )
    1571             :     {
    1572           0 :         return error;
    1573             :     }
    1574             : 
    1575      794988 :     predelay_block( hReverb, tmp1, tmp0 );
    1576             : 
    1577      794988 :     reverb_block( hReverb, tmp0, tmp1, tmp2 );
    1578             : 
    1579      794988 :     if ( mix_signals )
    1580             :     {
    1581      226400 :         mix_output_block( hReverb, tmp1, tmp2, &pcm_out[0][i_ts * hReverb->full_block_size], &pcm_out[1][i_ts * hReverb->full_block_size] );
    1582             :     }
    1583             :     else
    1584             :     {
    1585      568588 :         mvr2r( tmp1, &pcm_out[0][i_ts * hReverb->full_block_size], hReverb->full_block_size );
    1586      568588 :         mvr2r( tmp2, &pcm_out[1][i_ts * hReverb->full_block_size], hReverb->full_block_size );
    1587             :     }
    1588             : 
    1589      794988 :     return IVAS_ERR_OK;
    1590             : }
    1591             : 
    1592             : 
    1593             : /*-------------------------------------------------------------------------
    1594             :  * ivas_binaural_reverb_processSubFrame()
    1595             :  *
    1596             :  * Compute the reverberation - room effect
    1597             :  *------------------------------------------------------------------------*/
    1598             : 
    1599      666762 : void ivas_binaural_reverb_processSubframe(
    1600             :     REVERB_STRUCT_HANDLE hReverb,                                     /* i/o: binaural reverb handle      */
    1601             :     const int16_t numInChannels,                                      /* i  : num inputs to be processed  */
    1602             :     const int16_t numSlots,                                           /* i  : number of slots to be processed    */
    1603             :     float inReal[][CLDFB_SLOTS_PER_SUBFRAME][CLDFB_NO_CHANNELS_MAX],  /* i  : input CLDFB data real, Comment: This change swaps two first dimensions as first dimension is not constant. */
    1604             :     float inImag[][CLDFB_SLOTS_PER_SUBFRAME][CLDFB_NO_CHANNELS_MAX],  /* i  : input CLDFB data imag       */
    1605             :     float outReal[][CLDFB_SLOTS_PER_SUBFRAME][CLDFB_NO_CHANNELS_MAX], /* o  : output CLDFB data real      */
    1606             :     float outImag[][CLDFB_SLOTS_PER_SUBFRAME][CLDFB_NO_CHANNELS_MAX]  /* o  : output CLDFB data imag      */
    1607             : )
    1608             : {
    1609             :     /* Declare the required variables */
    1610             :     int16_t idx, bin, ch, sample, invertSampleIndex, tapIdx, *phaseShiftTypePr;
    1611             :     float **tapRealPr, **tapImagPr;
    1612      666762 :     push_wmops( "binaural_reverb" );
    1613             : 
    1614             :     /* 1) Rotate the data in the loop buffer of the reverberator.
    1615             :      * Notice that the audio at the loop buffers is at time-inverted order
    1616             :      * for convolution purposes later on. */
    1617    31169112 :     for ( bin = 0; bin < hReverb->numBins; bin++ )
    1618             :     {
    1619             :         /* Move the data forwards by blockSize (i.e. by the frame size of 16 CLDFB slots) */
    1620    30502350 :         mvr2r( hReverb->loopBufReal[bin], hReverb->loopBufReal[bin] + numSlots, hReverb->loopBufLength[bin] );
    1621    30502350 :         mvr2r( hReverb->loopBufImag[bin], hReverb->loopBufImag[bin] + numSlots, hReverb->loopBufLength[bin] );
    1622             : 
    1623             :         /* Add the data from the end of the loop to the beginning, with an attenuation factor
    1624             :          * according to RT60. This procedure generates an IIR decaying response. The response
    1625             :          * is decorrelated later on. */
    1626    30502350 :         v_multc( hReverb->loopBufReal[bin] + hReverb->loopBufLength[bin], hReverb->loopAttenuationFactor[bin], hReverb->loopBufReal[bin], numSlots );
    1627    30502350 :         v_multc( hReverb->loopBufImag[bin] + hReverb->loopBufLength[bin], hReverb->loopAttenuationFactor[bin], hReverb->loopBufImag[bin], numSlots );
    1628             :     }
    1629             : 
    1630             :     /* 2) Apply the determined pre-delay to the input audio, and add the delayed audio to the loop. */
    1631      666762 :     idx = hReverb->preDelayBufferIndex;
    1632     3324825 :     for ( sample = 0; sample < numSlots; sample++ )
    1633             :     {
    1634     2658063 :         invertSampleIndex = numSlots - sample - 1;
    1635             : 
    1636   124175223 :         for ( bin = 0; bin < hReverb->numBins; bin++ )
    1637             :         {
    1638             :             /* Add from pre-delay buffer a sample to the loop buffer, in a time-inverted order.
    1639             :              * Also apply the spectral gains determined for the reverberation */
    1640   121517160 :             hReverb->loopBufReal[bin][invertSampleIndex] += hReverb->preDelayBufferReal[idx][bin] * hReverb->reverbEqGains[bin];
    1641   121517160 :             hReverb->loopBufImag[bin][invertSampleIndex] += hReverb->preDelayBufferImag[idx][bin] * hReverb->reverbEqGains[bin];
    1642   121517160 :             hReverb->preDelayBufferReal[idx][bin] = 0.0f;
    1643   121517160 :             hReverb->preDelayBufferImag[idx][bin] = 0.0f;
    1644             :         }
    1645             : 
    1646             :         /* Add every second input channel as is to the pre-delay buffer, and every second input channel with
    1647             :          * 90 degrees phase shift to reduce energy imbalances between coherent and incoherent sounds */
    1648     8039613 :         for ( ch = 0; ch < numInChannels; ch++ )
    1649             :         {
    1650     5381550 :             if ( ch % 2 )
    1651             :             {
    1652     2676303 :                 v_add( hReverb->preDelayBufferReal[idx], inReal[ch][sample], hReverb->preDelayBufferReal[idx], hReverb->numBins );
    1653     2676303 :                 v_add( hReverb->preDelayBufferImag[idx], inImag[ch][sample], hReverb->preDelayBufferImag[idx], hReverb->numBins );
    1654             :             }
    1655             :             else
    1656             :             {
    1657     2705247 :                 v_sub( hReverb->preDelayBufferReal[idx], inImag[ch][sample], hReverb->preDelayBufferReal[idx], hReverb->numBins );
    1658     2705247 :                 v_add( hReverb->preDelayBufferImag[idx], inReal[ch][sample], hReverb->preDelayBufferImag[idx], hReverb->numBins );
    1659             :             }
    1660             :         }
    1661     2658063 :         idx = ( idx + 1 ) % hReverb->preDelayBufferLength;
    1662             :     }
    1663      666762 :     hReverb->preDelayBufferIndex = idx;
    1664             : 
    1665             :     /* 3) Perform the filtering/decorrelating, using complex and sparse FIR filtering */
    1666    31169112 :     for ( bin = 0; bin < hReverb->numBins; bin++ )
    1667             :     {
    1668    91507050 :         for ( ch = 0; ch < BINAURAL_CHANNELS; ch++ )
    1669             :         {
    1670             :             /* These tap pointers have been determined to point to the loop buffer at sparse locations */
    1671    61004700 :             tapRealPr = hReverb->tapPointersReal[bin][ch];
    1672    61004700 :             tapImagPr = hReverb->tapPointersImag[bin][ch];
    1673             : 
    1674    61004700 :             phaseShiftTypePr = hReverb->tapPhaseShiftType[bin][ch];
    1675             : 
    1676             :             /* Flush output */
    1677    61004700 :             set_f( hReverb->outputBufferReal[bin][ch], 0.0f, numSlots );
    1678    61004700 :             set_f( hReverb->outputBufferImag[bin][ch], 0.0f, numSlots );
    1679             : 
    1680             :             /* Add from temporally decaying sparse tap locations the audio to the output. */
    1681  1480605522 :             for ( tapIdx = 0; tapIdx < hReverb->taps[bin][ch]; tapIdx++ )
    1682             :             {
    1683  1419600822 :                 switch ( phaseShiftTypePr[tapIdx] )
    1684             :                 {
    1685   347416476 :                     case 0: /* 0 degrees phase */
    1686   347416476 :                         v_add( hReverb->outputBufferReal[bin][ch], tapRealPr[tapIdx], hReverb->outputBufferReal[bin][ch], numSlots );
    1687   347416476 :                         v_add( hReverb->outputBufferImag[bin][ch], tapImagPr[tapIdx], hReverb->outputBufferImag[bin][ch], numSlots );
    1688   347416476 :                         break;
    1689   372232950 :                     case 1: /* 90 degrees phase */
    1690   372232950 :                         v_sub( hReverb->outputBufferReal[bin][ch], tapImagPr[tapIdx], hReverb->outputBufferReal[bin][ch], numSlots );
    1691   372232950 :                         v_add( hReverb->outputBufferImag[bin][ch], tapRealPr[tapIdx], hReverb->outputBufferImag[bin][ch], numSlots );
    1692   372232950 :                         break;
    1693   355166763 :                     case 2: /* 180 degrees phase */
    1694   355166763 :                         v_sub( hReverb->outputBufferReal[bin][ch], tapRealPr[tapIdx], hReverb->outputBufferReal[bin][ch], numSlots );
    1695   355166763 :                         v_sub( hReverb->outputBufferImag[bin][ch], tapImagPr[tapIdx], hReverb->outputBufferImag[bin][ch], numSlots );
    1696   355166763 :                         break;
    1697   344784633 :                     default: /* 270 degrees phase */
    1698   344784633 :                         v_add( hReverb->outputBufferReal[bin][ch], tapImagPr[tapIdx], hReverb->outputBufferReal[bin][ch], numSlots );
    1699   344784633 :                         v_sub( hReverb->outputBufferImag[bin][ch], tapRealPr[tapIdx], hReverb->outputBufferImag[bin][ch], numSlots );
    1700   344784633 :                         break;
    1701             :                 }
    1702             :             }
    1703             :         }
    1704             : 
    1705             :         /* Generate diffuse field binaural coherence by mixing the incoherent reverberated channels with pre-defined gains */
    1706    30502350 :         if ( bin <= hReverb->highestBinauralCoherenceBin )
    1707             :         {
    1708     4519437 :             if ( hReverb->useBinauralCoherence )
    1709             :             {
    1710    22535730 :                 for ( sample = 0; sample < numSlots; sample++ )
    1711             :                 {
    1712             :                     float leftRe, rightRe, leftIm, rightIm;
    1713             : 
    1714    18016293 :                     leftRe = hReverb->binauralCoherenceDirectGains[bin] * hReverb->outputBufferReal[bin][0][sample] + hReverb->binauralCoherenceCrossmixGains[bin] * hReverb->outputBufferReal[bin][1][sample];
    1715    18016293 :                     rightRe = hReverb->binauralCoherenceDirectGains[bin] * hReverb->outputBufferReal[bin][1][sample] + hReverb->binauralCoherenceCrossmixGains[bin] * hReverb->outputBufferReal[bin][0][sample];
    1716    18016293 :                     leftIm = hReverb->binauralCoherenceDirectGains[bin] * hReverb->outputBufferImag[bin][0][sample] + hReverb->binauralCoherenceCrossmixGains[bin] * hReverb->outputBufferImag[bin][1][sample];
    1717    18016293 :                     rightIm = hReverb->binauralCoherenceDirectGains[bin] * hReverb->outputBufferImag[bin][1][sample] + hReverb->binauralCoherenceCrossmixGains[bin] * hReverb->outputBufferImag[bin][0][sample];
    1718             : 
    1719    18016293 :                     hReverb->outputBufferReal[bin][0][sample] = leftRe;
    1720    18016293 :                     hReverb->outputBufferReal[bin][1][sample] = rightRe;
    1721    18016293 :                     hReverb->outputBufferImag[bin][0][sample] = leftIm;
    1722    18016293 :                     hReverb->outputBufferImag[bin][1][sample] = rightIm;
    1723             :                 }
    1724             :             }
    1725             :         }
    1726             :     }
    1727             : 
    1728             :     /* 4) Write data to output */
    1729     2000286 :     for ( ch = 0; ch < BINAURAL_CHANNELS; ch++ )
    1730             :     {
    1731     6649650 :         for ( sample = 0; sample < numSlots; sample++ )
    1732             :         {
    1733             :             /* Audio was in the temporally inverted order for convolution, re-invert audio to output */
    1734     5316126 :             invertSampleIndex = numSlots - sample - 1;
    1735             : 
    1736   248350446 :             for ( bin = 0; bin < hReverb->numBins; bin++ )
    1737             :             {
    1738   243034320 :                 outReal[ch][sample][bin] = hReverb->outputBufferReal[bin][ch][invertSampleIndex];
    1739   243034320 :                 outImag[ch][sample][bin] = hReverb->outputBufferImag[bin][ch][invertSampleIndex];
    1740             :             }
    1741    81249366 :             for ( ; bin < CLDFB_NO_CHANNELS_MAX; bin++ )
    1742             :             {
    1743    75933240 :                 outReal[ch][sample][bin] = 0.0f;
    1744    75933240 :                 outImag[ch][sample][bin] = 0.0f;
    1745             :             }
    1746             :         }
    1747             :     }
    1748             : 
    1749      666762 :     pop_wmops();
    1750      666762 :     return;
    1751             : }
    1752             : 
    1753             : 
    1754             : /*-------------------------------------------------------------------------
    1755             :  * ivas_binaural_reverb_open()
    1756             :  *
    1757             :  * Allocate and initialize binaural room reverberator handle
    1758             :  *------------------------------------------------------------------------*/
    1759             : 
    1760        1656 : static ivas_error ivas_binaural_reverb_open(
    1761             :     REVERB_STRUCT_HANDLE *hReverbPr,     /* i/o: binaural reverb handle                                  */
    1762             :     const int16_t numBins,               /* i  : number of CLDFB bins                                    */
    1763             :     const int16_t numCldfbSlotsPerFrame, /* i  : number of CLDFB slots per frame                         */
    1764             :     const int32_t sampling_rate,         /* i  : sampling rate                                           */
    1765             :     const float *revTimes,               /* i  : reverberation times T60 for each CLDFB bin in seconds   */
    1766             :     const float *revEnes,                /* i  : spectrum for reverberated sound at each CLDFB bin       */
    1767             :     const int16_t preDelay               /* i  : reverb pre-delay in CLDFB slots                         */
    1768             : )
    1769             : {
    1770             :     int16_t bin, chIdx, k, len;
    1771             :     REVERB_STRUCT_HANDLE hReverb;
    1772             : 
    1773        1656 :     if ( ( *hReverbPr = (REVERB_STRUCT_HANDLE) malloc( sizeof( REVERB_STRUCT ) ) ) == NULL )
    1774             :     {
    1775           0 :         return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1776             :     }
    1777             : 
    1778        1656 :     hReverb = *hReverbPr;
    1779             : 
    1780        1656 :     hReverb->useBinauralCoherence = 1;
    1781        1656 :     hReverb->preDelayBufferLength = 1;
    1782        1656 :     hReverb->preDelayBufferIndex = 0;
    1783             : 
    1784        1656 :     hReverb->numBins = numBins;
    1785        1656 :     hReverb->blockSize = numCldfbSlotsPerFrame;
    1786             : 
    1787       36432 :     for ( k = 0; k < IVAS_REVERB_PREDELAY_MAX + 1; k++ )
    1788             :     {
    1789       34776 :         set_f( hReverb->preDelayBufferReal[k], 0.0f, hReverb->numBins );
    1790       34776 :         set_f( hReverb->preDelayBufferImag[k], 0.0f, hReverb->numBins );
    1791             :     }
    1792             : 
    1793       75966 :     for ( bin = 0; bin < hReverb->numBins; bin++ )
    1794             :     {
    1795             :         /* Loop Buffer */
    1796       74310 :         hReverb->loopBufLengthMax[bin] = (int16_t) ( 500 / ( 1 + bin ) + ( CLDFB_NO_CHANNELS_MAX - bin ) );
    1797             : 
    1798       74310 :         len = hReverb->loopBufLengthMax[bin] + hReverb->blockSize;
    1799       74310 :         if ( ( hReverb->loopBufReal[bin] = (float *) malloc( len * sizeof( float ) ) ) == NULL )
    1800             :         {
    1801           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1802             :         }
    1803             : 
    1804       74310 :         if ( ( hReverb->loopBufImag[bin] = (float *) malloc( len * sizeof( float ) ) ) == NULL )
    1805             :         {
    1806           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1807             :         }
    1808             : 
    1809       74310 :         set_f( hReverb->loopBufReal[bin], 0.0f, len );
    1810       74310 :         set_f( hReverb->loopBufImag[bin], 0.0f, len );
    1811             : 
    1812             :         /* Determine loop buffer length. The following formula is manually tuned to generate sufficiently long
    1813             :          * but not excessively long loops to generate reverberation. */
    1814             :         /* Note: the resulted length is very sensitive to the precision of the constants below (e.g. 1.45 vs. 1.45f) */
    1815       74310 :         hReverb->loopBufLength[bin] = (int16_t) ( 1.45 * (int16_t) ( revTimes[bin] * 150.0 ) + 1 );
    1816       74310 :         hReverb->loopBufLength[bin] = min( hReverb->loopBufLength[bin], hReverb->loopBufLengthMax[bin] );
    1817             : 
    1818             :         /* Sparse Filter Tap Locations */
    1819      222930 :         for ( chIdx = 0; chIdx < BINAURAL_CHANNELS; chIdx++ )
    1820             :         {
    1821      148620 :             len = hReverb->loopBufLength[bin];
    1822             : 
    1823      148620 :             if ( ( hReverb->tapPhaseShiftType[bin][chIdx] = (int16_t *) malloc( len * sizeof( int16_t ) ) ) == NULL )
    1824             :             {
    1825           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1826             :             }
    1827      148620 :             set_s( hReverb->tapPhaseShiftType[bin][chIdx], 0, len );
    1828             : 
    1829      148620 :             if ( ( hReverb->tapPointersReal[bin][chIdx] = (float **) malloc( len * sizeof( float * ) ) ) == NULL )
    1830             :             {
    1831           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1832             :             }
    1833             : 
    1834      148620 :             if ( ( hReverb->tapPointersImag[bin][chIdx] = (float **) malloc( len * sizeof( float * ) ) ) == NULL )
    1835             :             {
    1836           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1837             :             }
    1838             : 
    1839      148620 :             len = hReverb->blockSize;
    1840      148620 :             if ( ( hReverb->outputBufferReal[bin][chIdx] = (float *) malloc( len * sizeof( float ) ) ) == NULL )
    1841             :             {
    1842           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1843             :             }
    1844             : 
    1845      148620 :             if ( ( hReverb->outputBufferImag[bin][chIdx] = (float *) malloc( len * sizeof( float ) ) ) == NULL )
    1846             :             {
    1847           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for Binaural Reverberator\n" ) );
    1848             :             }
    1849             : 
    1850      148620 :             set_f( hReverb->outputBufferReal[bin][chIdx], 0.0f, len );
    1851      148620 :             set_f( hReverb->outputBufferImag[bin][chIdx], 0.0f, len );
    1852             :         }
    1853             :     }
    1854             : 
    1855        1656 :     ivas_binaural_reverb_setReverbTimes( hReverb, sampling_rate, revTimes, revEnes );
    1856             : 
    1857        1656 :     ivas_binaural_reverb_setPreDelay( hReverb, preDelay );
    1858             : 
    1859        1656 :     return IVAS_ERR_OK;
    1860             : }
    1861             : 
    1862             : /*-------------------------------------------------------------------------
    1863             :  * ivas_binaural_reverb_init()
    1864             :  *
    1865             :  * Allocate and initialize binaural room reverberator handle
    1866             :  * for CLDFB renderers
    1867             :  *------------------------------------------------------------------------*/
    1868        1656 : ivas_error ivas_binaural_reverb_init(
    1869             :     REVERB_STRUCT_HANDLE *hReverbPr,                      /* i/o: binaural reverb handle               */
    1870             :     const HRTFS_STATISTICS_HANDLE hHrtfStatistics,        /* i  : HRTF statistics handle               */
    1871             :     const int16_t numBins,                                /* i  : number of CLDFB bins                 */
    1872             :     const int16_t numCldfbSlotsPerFrame,                  /* i  : number of CLDFB slots per frame      */
    1873             :     const IVAS_ROOM_ACOUSTICS_CONFIG_DATA *roomAcoustics, /* i/o: room acoustics parameters            */
    1874             :     const int32_t sampling_rate,                          /* i  : sampling rate                        */
    1875             :     const float *defaultTimes,                            /* i  : default reverberation times          */
    1876             :     const float *defaultEne                               /* i  : default reverberation energies       */
    1877             :     ,
    1878             :     float *earlyEne /* i/o: Early part energies to be modified   */
    1879             : )
    1880             : {
    1881             :     ivas_error error;
    1882             :     int16_t preDelay, bin;
    1883             :     float revTimes[CLDFB_NO_CHANNELS_MAX];
    1884             :     float revEne[CLDFB_NO_CHANNELS_MAX];
    1885             : 
    1886        1656 :     error = IVAS_ERR_OK;
    1887             : 
    1888        1656 :     if ( roomAcoustics != NULL )
    1889             :     {
    1890             : 
    1891         735 :         if ( ( error = ivas_reverb_prepare_cldfb_params( roomAcoustics,
    1892             :                                                          hHrtfStatistics,
    1893             :                                                          sampling_rate,
    1894             :                                                          revTimes,
    1895             :                                                          revEne ) ) != IVAS_ERR_OK )
    1896             :         {
    1897           0 :             return error;
    1898             :         }
    1899         735 :         preDelay = (int16_t) roundf( 48000.0f * roomAcoustics->acousticPreDelay / CLDFB_NO_CHANNELS_MAX );
    1900             :     }
    1901             :     else
    1902             :     {
    1903       56181 :         for ( bin = 0; bin < CLDFB_NO_CHANNELS_MAX; bin++ )
    1904             :         {
    1905       55260 :             revTimes[bin] = defaultTimes[bin];
    1906       55260 :             revEne[bin] = defaultEne[bin];
    1907             :         }
    1908         921 :         preDelay = 10;
    1909             :     }
    1910             : 
    1911      101016 :     for ( bin = 0; bin < CLDFB_NO_CHANNELS_MAX; bin++ )
    1912             :     {
    1913             :         /* Adjust the room effect parameters when the reverberation time is less than a threshold value, to avoid
    1914             :            spectral artefacts with the synthetic reverberator. */
    1915       99360 :         if ( revTimes[bin] < REV_TIME_THRESHOLD )
    1916             :         {
    1917             :             float adjustedEarlyEne, adjustedLateEne, adjustedRevTime;
    1918             :             float revTimeModifier, energyModifier;
    1919             : 
    1920             :             /* Adjust reverberation times, higher towards a threshold */
    1921       25839 :             revTimeModifier = fmaxf( 0.0f, 1.0f - ( revTimes[bin] / REV_TIME_THRESHOLD ) );
    1922       25839 :             adjustedRevTime = ( 1.0f - revTimeModifier ) * revTimes[bin];
    1923       25839 :             adjustedRevTime += revTimeModifier * ( revTimes[bin] + REV_TIME_THRESHOLD ) * 0.5f;
    1924       25839 :             energyModifier = ( adjustedRevTime - revTimes[bin] ) / adjustedRevTime;
    1925             : 
    1926             :             /* Adjust early and late energies, by moving late energy to early energy */
    1927       25839 :             adjustedEarlyEne = earlyEne[bin] + revEne[bin] * energyModifier;
    1928       25839 :             adjustedLateEne = revEne[bin] * ( 1.0f - energyModifier );
    1929             : 
    1930             :             /* Store adjusted room effect parameters to be used in reverb processing */
    1931       25839 :             revTimes[bin] = adjustedRevTime;
    1932       25839 :             revEne[bin] = adjustedLateEne;
    1933       25839 :             earlyEne[bin] = adjustedEarlyEne;
    1934             :         }
    1935             :     }
    1936             : 
    1937        1656 :     error = ivas_binaural_reverb_open( hReverbPr, numBins, numCldfbSlotsPerFrame, sampling_rate, revTimes, revEne, preDelay );
    1938             : 
    1939        1656 :     return error;
    1940             : }
    1941             : 
    1942             : /*-------------------------------------------------------------------------
    1943             :  * ivas_binaural_reverb_close()
    1944             :  *
    1945             :  * Close binaural room reverberator handle
    1946             :  *------------------------------------------------------------------------*/
    1947             : 
    1948        1656 : void ivas_binaural_reverb_close(
    1949             :     REVERB_STRUCT_HANDLE *hReverb /* i/o: binaural reverb handle */
    1950             : )
    1951             : {
    1952             :     int16_t bin, chIdx;
    1953             : 
    1954        1656 :     if ( hReverb == NULL || *hReverb == NULL )
    1955             :     {
    1956           0 :         return;
    1957             :     }
    1958             : 
    1959       75966 :     for ( bin = 0; bin < ( *hReverb )->numBins; bin++ )
    1960             :     {
    1961      222930 :         for ( chIdx = 0; chIdx < BINAURAL_CHANNELS; chIdx++ )
    1962             :         {
    1963      148620 :             free( ( *hReverb )->tapPhaseShiftType[bin][chIdx] );
    1964      148620 :             free( ( *hReverb )->tapPointersReal[bin][chIdx] );
    1965      148620 :             free( ( *hReverb )->tapPointersImag[bin][chIdx] );
    1966      148620 :             free( ( *hReverb )->outputBufferReal[bin][chIdx] );
    1967      148620 :             free( ( *hReverb )->outputBufferImag[bin][chIdx] );
    1968             :         }
    1969       74310 :         free( ( *hReverb )->loopBufReal[bin] );
    1970       74310 :         free( ( *hReverb )->loopBufImag[bin] );
    1971             :     }
    1972             : 
    1973        1656 :     free( ( *hReverb ) );
    1974        1656 :     ( *hReverb ) = NULL;
    1975             : 
    1976        1656 :     return;
    1977             : }

Generated by: LCOV version 1.14