LCOV - code coverage report
Current view: top level - lib_enc - ivas_mcmasa_enc.c (source / functions) Hit Total Coverage
Test: Coverage on main -- merged total coverage @ efe53129c9ed87a5067dd0a8fb9dca41db9c4add Lines: 619 658 94.1 %
Date: 2026-02-12 08:06:51 Functions: 12 12 100.0 %

          Line data    Source code
       1             : /******************************************************************************************************
       2             : 
       3             :    (C) 2022-2026 IVAS codec Public Collaboration with portions copyright Dolby International AB, Ericsson AB,
       4             :    Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
       5             :    Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
       6             :    Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
       7             :    contributors to this repository. All Rights Reserved.
       8             : 
       9             :    This software is protected by copyright law and by international treaties.
      10             :    The IVAS codec Public Collaboration consisting of Dolby International AB, Ericsson AB,
      11             :    Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V., Huawei Technologies Co. LTD.,
      12             :    Koninklijke Philips N.V., Nippon Telegraph and Telephone Corporation, Nokia Technologies Oy, Orange,
      13             :    Panasonic Holdings Corporation, Qualcomm Technologies, Inc., VoiceAge Corporation, and other
      14             :    contributors to this repository retain full ownership rights in their respective contributions in
      15             :    the software. This notice grants no license of any kind, including but not limited to patent
      16             :    license, nor is any license granted by implication, estoppel or otherwise.
      17             : 
      18             :    Contributors are required to enter into the IVAS codec Public Collaboration agreement before making
      19             :    contributions.
      20             : 
      21             :    This software is provided "AS IS", without any express or implied warranties. The software is in the
      22             :    development stage. It is intended exclusively for experts who have experience with such software and
      23             :    solely for the purpose of inspection. All implied warranties of non-infringement, merchantability
      24             :    and fitness for a particular purpose are hereby disclaimed and excluded.
      25             : 
      26             :    Any dispute, controversy or claim arising under or in relation to providing this software shall be
      27             :    submitted to and settled by the final, binding jurisdiction of the courts of Munich, Germany in
      28             :    accordance with the laws of the Federal Republic of Germany excluding its conflict of law rules and
      29             :    the United Nations Convention on Contracts on the International Sales of Goods.
      30             : 
      31             : *******************************************************************************************************/
      32             : 
      33             : #include <assert.h>
      34             : #include <math.h>
      35             : #include <stdlib.h>
      36             : #include <stdio.h>
      37             : #include "ivas_cnst.h"
      38             : #include "ivas_prot.h"
      39             : #include "options.h"
      40             : #include "prot.h"
      41             : #include "ivas_rom_com.h"
      42             : #include "ivas_rom_enc.h"
      43             : #ifdef DEBUGGING
      44             : #include "debug.h"
      45             : #endif
      46             : #include "wmc_auto.h"
      47             : 
      48             : 
      49             : /*-------------------------------------------------------------------------
      50             :  * Local constants
      51             :  *------------------------------------------------------------------------*/
      52             : 
      53             : #define NEAR_HORIZONTAL_PLANE_ELEVATION 17.5f
      54             : #define VERTICAL_ENERGY_RATIO_OFFSET    0.15f
      55             : 
      56             : 
      57             : /*-------------------------------------------------------------------------
      58             :  * Local function prototypes
      59             :  *------------------------------------------------------------------------*/
      60             : 
      61             : /* Structure for covariance matrix */
      62             : typedef struct
      63             : {
      64             :     float xr[MCMASA_MAX_ANA_CHANS][MCMASA_MAX_ANA_CHANS];
      65             :     float xi[MCMASA_MAX_ANA_CHANS][MCMASA_MAX_ANA_CHANS];
      66             : } CovarianceMatrix;
      67             : 
      68             : static void ivas_mcmasa_dmx( MCMASA_ENC_HANDLE hMcMasa, float *data_f[], const int16_t input_frame, const int16_t nchan_transport, const int16_t nchan_inp );
      69             : 
      70             : static void compute_cov_mtx( float sr[MCMASA_MAX_ANA_CHANS][DIRAC_NO_FB_BANDS_MAX], float si[MCMASA_MAX_ANA_CHANS][DIRAC_NO_FB_BANDS_MAX], const int16_t freq, const int16_t N, CovarianceMatrix *COVls );
      71             : 
      72             : static void computeIntensityVector_enc( const int16_t *band_grouping, float Cldfb_RealBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX], float Cldfb_ImagBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX], const int16_t enc_param_start_band, const int16_t num_frequency_bands, float intensity_real[DIRAC_NUM_DIMS][MASA_FREQUENCY_BANDS] );
      73             : 
      74             : static void computeVerticalDiffuseness( float **buffer_intensity, const float *buffer_energy, const int16_t averaging_length, const int16_t num_freq_bands, float *diffuseness );
      75             : 
      76             : static void computeEvenLayout( const float *ls_azimuth, float *ls_azimuth_even, const int16_t numChannels );
      77             : 
      78             : static void computeLfeEnergy( MCMASA_ENC_HANDLE hMcMasa, float *data_f[], const int16_t input_frame );
      79             : 
      80             : 
      81             : /*--------------------------------------------------------------------------*
      82             :  * ivas_mcmasa_enc_open()
      83             :  *
      84             :  *
      85             :  *--------------------------------------------------------------------------*/
      86             : 
      87        7110 : ivas_error ivas_mcmasa_enc_open(
      88             :     Encoder_Struct *st_ivas /* i/o: IVAS encoder handle          */
      89             : )
      90             : {
      91             :     int16_t i, j;
      92             :     float tmp_f;
      93             :     MCMASA_ENC_HANDLE hMcMasa;
      94             :     MASA_ENCODER_HANDLE hMasa;
      95             :     float ls_azimuth[MCMASA_MAX_ANA_CHANS];
      96             :     float ls_elevation[MCMASA_MAX_ANA_CHANS];
      97             :     float ls_azimuth_even[MCMASA_MAX_ANA_CHANS];
      98             :     int16_t numAnalysisChannels;
      99             :     float left_min, right_min, azi_diff;
     100             :     const int16_t *band_mapping;
     101             :     int16_t maxBin, input_frame;
     102             :     int16_t nchan_inp;
     103             :     int32_t input_Fs;
     104             :     int32_t dirac_slot_ns;
     105             :     IVAS_FB_CFG *fb_cfg, *fb_cfgLfe;
     106             :     ivas_error error;
     107             : 
     108        7110 :     error = IVAS_ERR_OK;
     109             : 
     110        7110 :     assert( st_ivas->hMasa != NULL && "MASA encoder handle is not present" );
     111        7110 :     hMasa = st_ivas->hMasa;
     112             : 
     113        7110 :     if ( ( hMcMasa = (MCMASA_ENC_HANDLE) malloc( sizeof( MCMASA_ENC_DATA ) ) ) == NULL )
     114             :     {
     115           0 :         return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     116             :     }
     117             : 
     118        7110 :     nchan_inp = st_ivas->hEncoderConfig->nchan_inp;
     119        7110 :     input_Fs = st_ivas->hEncoderConfig->input_Fs;
     120             : 
     121             :     /* Determine if to separate some channels from the analysis */
     122        7110 :     ivas_mcmasa_set_separate_channel_mode( &( hMcMasa->separateChannelEnabled ), &( hMcMasa->separateChannelIndex ), st_ivas->hEncoderConfig->ivas_total_brate );
     123             : 
     124        7110 :     numAnalysisChannels = nchan_inp - 1;
     125        7110 :     if ( hMcMasa->separateChannelEnabled )
     126             :     {
     127        1535 :         numAnalysisChannels = nchan_inp - 2;
     128             :     }
     129             : 
     130             :     /* With McMASA, we config MASA encoder only in init as we know the input and there are no frame-by-frame changes currently. */
     131        7110 :     if ( ( error = ivas_masa_enc_config( st_ivas ) ) != IVAS_ERR_OK )
     132             :     {
     133           0 :         return error;
     134             :     }
     135             : 
     136             : 
     137             :     /* Determine the number of bands */
     138        7110 :     hMcMasa->nbands = st_ivas->hMasa->config.numCodingBands;
     139        7110 :     hMcMasa->nCodingBands = st_ivas->hMasa->config.numCodingBands;
     140             : 
     141             :     /* Determine band grouping */
     142        7110 :     if ( hMcMasa->nbands == 24 )
     143             :     {
     144           0 :         for ( i = 0; i < hMcMasa->nbands + 1; i++ )
     145             :         {
     146           0 :             hMcMasa->band_grouping[i] = MASA_band_grouping_24[i] * CLDFB_TO_MDFT_FAC;
     147             :         }
     148             :     }
     149             :     else
     150             :     {
     151        7110 :         band_mapping = hMasa->data.band_mapping;
     152       49770 :         for ( i = 0; i < hMcMasa->nbands + 1; i++ )
     153             :         {
     154       42660 :             hMcMasa->band_grouping[i] = MASA_band_grouping_24[band_mapping[i]] * CLDFB_TO_MDFT_FAC;
     155             :         }
     156             :     }
     157             : 
     158        7110 :     maxBin = (int16_t) ( input_Fs * INV_CLDFB_BANDWIDTH * CLDFB_TO_MDFT_FAC + 0.5f );
     159             : 
     160       35550 :     for ( i = 1; i < hMcMasa->nbands + 1; i++ )
     161             :     {
     162       35550 :         if ( hMcMasa->band_grouping[i] >= maxBin )
     163             :         {
     164        7110 :             hMcMasa->band_grouping[i] = maxBin;
     165        7110 :             hMcMasa->nbands = i;
     166        7110 :             break;
     167             :         }
     168             :     }
     169             : 
     170             :     /* initialize delay compensation */
     171        7110 :     hMcMasa->num_samples_delay_comp = NS2SA( input_Fs, DELAY_DIRAC_ENC_CMP_NS );
     172        7110 :     tmp_f = (float) hMcMasa->num_samples_delay_comp / (float) ( NS2SA( input_Fs, DIRAC_SLOT_ENC_NS ) );
     173        7110 :     hMcMasa->num_slots_delay_comp = (int16_t) ( tmp_f );
     174             : 
     175        7110 :     if ( tmp_f > (float) hMcMasa->num_slots_delay_comp )
     176             :     {
     177        7110 :         hMcMasa->num_slots_delay_comp++;
     178        7110 :         hMcMasa->offset_comp = -hMcMasa->num_samples_delay_comp;
     179        7110 :         hMcMasa->num_samples_delay_comp = hMcMasa->num_slots_delay_comp * NS2SA( input_Fs, DIRAC_SLOT_ENC_NS );
     180        7110 :         hMcMasa->offset_comp += hMcMasa->num_samples_delay_comp;
     181             :     }
     182             :     else
     183             :     {
     184           0 :         hMcMasa->offset_comp = 0;
     185             :     }
     186             : 
     187             :     /* set FB config. */
     188        7110 :     if ( ( error = ivas_fb_set_cfg( &fb_cfg, MASA_FORMAT, numAnalysisChannels, 0, 0, input_Fs, 0 ) ) != IVAS_ERR_OK )
     189             :     {
     190           0 :         return error;
     191             :     }
     192             : 
     193             :     /* Allocate and initialize FB mixer handle */
     194        7110 :     if ( ( error = ivas_FB_mixer_open( &( hMcMasa->hFbMixer ), input_Fs, fb_cfg, 0 ) ) != IVAS_ERR_OK )
     195             :     {
     196           0 :         return error;
     197             :     }
     198             : 
     199             : 
     200        7110 :     if ( hMcMasa->separateChannelEnabled )
     201             :     {
     202             :         /* TD Energy calculation with LP */
     203        1535 :         if ( ( hMcMasa->delay_buffer_lfe[0] = (float *) malloc( NS2SA( input_Fs, DELAY_DIRAC_ENC_CMP_NS + DIRAC_SLOT_ENC_NS ) * sizeof( float ) ) ) == NULL )
     204             :         {
     205           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     206             :         }
     207        1535 :         set_zero( hMcMasa->delay_buffer_lfe[0], NS2SA( input_Fs, DELAY_DIRAC_ENC_CMP_NS + DIRAC_SLOT_ENC_NS ) );
     208             : 
     209        1535 :         if ( ( hMcMasa->delay_buffer_lfe[1] = (float *) malloc( NS2SA( input_Fs, DELAY_DIRAC_ENC_CMP_NS + DIRAC_SLOT_ENC_NS ) * sizeof( float ) ) ) == NULL )
     210             :         {
     211           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     212             :         }
     213        1535 :         set_zero( hMcMasa->delay_buffer_lfe[1], NS2SA( input_Fs, DELAY_DIRAC_ENC_CMP_NS + DIRAC_SLOT_ENC_NS ) );
     214        1535 :         hMcMasa->hFbMixerLfe = NULL;
     215             :     }
     216             :     else
     217             :     {
     218             :         /* Allocate and initialize FB mixer handle for LFE channel */
     219        5575 :         if ( ( error = ivas_fb_set_cfg( &fb_cfgLfe, MASA_FORMAT, 1, 0, 0, input_Fs, 0 ) ) != IVAS_ERR_OK )
     220             :         {
     221           0 :             return error;
     222             :         }
     223             : 
     224        5575 :         if ( ( error = ivas_FB_mixer_open( &( hMcMasa->hFbMixerLfe ), input_Fs, fb_cfgLfe, 0 ) ) != IVAS_ERR_OK )
     225             :         {
     226           0 :             return error;
     227             :         }
     228             : 
     229        5575 :         hMcMasa->delay_buffer_lfe[0] = NULL;
     230        5575 :         hMcMasa->delay_buffer_lfe[1] = NULL;
     231             :     }
     232             : 
     233        7110 :     if ( hMcMasa->separateChannelEnabled )
     234             :     {
     235             :         int16_t bufferSize;
     236             : 
     237             :         /* Ring buffer for the filterbank of the LFE analysis.
     238             :          * The filterbank is using moving average lowpass filter with the crossover of 120 Hz. */
     239        1535 :         bufferSize = (int16_t) ( ( input_Fs / FRAMES_PER_SEC ) / MAX_PARAM_SPATIAL_SUBFRAMES );
     240        4605 :         for ( i = 0; i < 2; i++ )
     241             :         {
     242        3070 :             if ( ( hMcMasa->lfeAnaRingBuffer[i] = (float *) malloc( bufferSize * sizeof( float ) ) ) == NULL )
     243             :             {
     244           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     245             :             }
     246        3070 :             set_zero( hMcMasa->lfeAnaRingBuffer[i], bufferSize );
     247        3070 :             hMcMasa->lowpassSum[i] = 0.0f;
     248             :         }
     249        1535 :         hMcMasa->ringBufferPointer = 0;
     250        1535 :         hMcMasa->ringBufferSize = bufferSize;
     251             :     }
     252             : 
     253             : 
     254        7110 :     dirac_slot_ns = DIRAC_SLOT_ENC_NS;
     255             : 
     256             :     /* intensity 3-dim */
     257       28440 :     for ( i = 0; i < DIRAC_NUM_DIMS; i++ )
     258             :     {
     259       21330 :         if ( ( hMcMasa->direction_vector_m[i] = (float **) malloc( MAX_PARAM_SPATIAL_SUBFRAMES * sizeof( float * ) ) ) == NULL )
     260             :         {
     261           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     262             :         }
     263             : 
     264      106650 :         for ( j = 0; j < MAX_PARAM_SPATIAL_SUBFRAMES; j++ )
     265             :         {
     266       85320 :             if ( ( hMcMasa->direction_vector_m[i][j] = (float *) malloc( hMcMasa->nbands * sizeof( float ) ) ) == NULL )
     267             :             {
     268           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     269             :             }
     270             :         }
     271             :     }
     272             : 
     273        7110 :     hMcMasa->no_col_avg_diff = (int8_t) ( DIRAC_NO_COL_AVG_DIFF_NS / dirac_slot_ns );
     274       28440 :     for ( i = 0; i < DIRAC_NUM_DIMS; i++ )
     275             :     {
     276       21330 :         if ( ( hMcMasa->buffer_intensity_real[i] = (float **) malloc( hMcMasa->no_col_avg_diff * sizeof( float * ) ) ) == NULL )
     277             :         {
     278           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     279             :         }
     280             : 
     281      191970 :         for ( j = 0; j < hMcMasa->no_col_avg_diff; j++ )
     282             :         {
     283      170640 :             if ( ( hMcMasa->buffer_intensity_real[i][j] = (float *) malloc( hMcMasa->nbands * sizeof( float ) ) ) == NULL )
     284             :             {
     285           0 :                 return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     286             :             }
     287      170640 :             set_zero( hMcMasa->buffer_intensity_real[i][j], hMcMasa->nbands );
     288             :         }
     289             :     }
     290             : 
     291        7110 :     if ( ( hMcMasa->buffer_intensity_real_vert = (float **) malloc( hMcMasa->no_col_avg_diff * sizeof( float * ) ) ) == NULL )
     292             :     {
     293           0 :         return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     294             :     }
     295             : 
     296       63990 :     for ( j = 0; j < hMcMasa->no_col_avg_diff; j++ )
     297             :     {
     298       56880 :         if ( ( hMcMasa->buffer_intensity_real_vert[j] = (float *) malloc( hMcMasa->nbands * sizeof( float ) ) ) == NULL )
     299             :         {
     300           0 :             return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     301             :         }
     302       56880 :         set_zero( hMcMasa->buffer_intensity_real_vert[j], hMcMasa->nbands );
     303             :     }
     304             : 
     305        7110 :     if ( ( hMcMasa->buffer_energy = (float *) malloc( hMcMasa->nbands * hMcMasa->no_col_avg_diff * sizeof( float ) ) ) == NULL )
     306             :     {
     307           0 :         return ( IVAS_ERROR( IVAS_ERR_FAILED_ALLOC, "Can not allocate memory for McMasa\n" ) );
     308             :     }
     309        7110 :     set_zero( hMcMasa->buffer_energy, hMcMasa->nbands * hMcMasa->no_col_avg_diff );
     310             : 
     311        7110 :     if ( st_ivas->hEncoderConfig->mc_input_setup == MC_LS_SETUP_5_1 )
     312             :     {
     313        1847 :         mvr2r( ls_azimuth_CICP6, ls_azimuth, nchan_inp - 1 );
     314        1847 :         mvr2r( ls_elevation_CICP6, ls_elevation, nchan_inp - 1 );
     315        1847 :         hMcMasa->numHorizontalChannels = 5;
     316        1847 :         hMcMasa->isHorizontalSetup = 1;
     317             :     }
     318        5263 :     else if ( st_ivas->hEncoderConfig->mc_input_setup == MC_LS_SETUP_7_1 )
     319             :     {
     320         549 :         mvr2r( ls_azimuth_CICP12, ls_azimuth, nchan_inp - 1 );
     321         549 :         mvr2r( ls_elevation_CICP12, ls_elevation, nchan_inp - 1 );
     322         549 :         hMcMasa->numHorizontalChannels = 7;
     323         549 :         hMcMasa->isHorizontalSetup = 1;
     324             :     }
     325        4714 :     else if ( st_ivas->hEncoderConfig->mc_input_setup == MC_LS_SETUP_5_1_2 )
     326             :     {
     327         392 :         mvr2r( ls_azimuth_CICP14, ls_azimuth, nchan_inp - 1 );
     328         392 :         mvr2r( ls_elevation_CICP14, ls_elevation, nchan_inp - 1 );
     329         392 :         hMcMasa->numHorizontalChannels = 5;
     330         392 :         hMcMasa->isHorizontalSetup = 0;
     331             :     }
     332        4322 :     else if ( st_ivas->hEncoderConfig->mc_input_setup == MC_LS_SETUP_5_1_4 )
     333             :     {
     334         408 :         mvr2r( ls_azimuth_CICP16, ls_azimuth, nchan_inp - 1 );
     335         408 :         mvr2r( ls_elevation_CICP16, ls_elevation, nchan_inp - 1 );
     336         408 :         hMcMasa->numHorizontalChannels = 5;
     337         408 :         hMcMasa->isHorizontalSetup = 0;
     338             :     }
     339             :     else
     340             :     {
     341        3914 :         mvr2r( ls_azimuth_CICP19, ls_azimuth, nchan_inp - 1 );
     342        3914 :         mvr2r( ls_elevation_CICP19, ls_elevation, nchan_inp - 1 );
     343        3914 :         hMcMasa->numHorizontalChannels = 7;
     344        3914 :         hMcMasa->isHorizontalSetup = 0;
     345             :     }
     346             : 
     347        7110 :     if ( hMcMasa->separateChannelEnabled )
     348             :     {
     349        1535 :         mvr2r( &ls_azimuth[hMcMasa->separateChannelIndex + 1], &ls_azimuth[hMcMasa->separateChannelIndex], numAnalysisChannels - hMcMasa->separateChannelIndex );
     350        1535 :         mvr2r( &ls_elevation[hMcMasa->separateChannelIndex + 1], &ls_elevation[hMcMasa->separateChannelIndex], numAnalysisChannels - hMcMasa->separateChannelIndex );
     351        1535 :         hMcMasa->numHorizontalChannels--;
     352             :     }
     353             : 
     354        7110 :     computeEvenLayout( ls_azimuth, ls_azimuth_even, hMcMasa->numHorizontalChannels );
     355        7110 :     if ( !hMcMasa->isHorizontalSetup )
     356             :     {
     357        4714 :         computeEvenLayout( &ls_azimuth[hMcMasa->numHorizontalChannels], &ls_azimuth_even[hMcMasa->numHorizontalChannels], numAnalysisChannels - hMcMasa->numHorizontalChannels );
     358             :     }
     359             : 
     360       68123 :     for ( i = 0; i < numAnalysisChannels; i++ )
     361             :     {
     362       61013 :         hMcMasa->chnlToFoaMtx[0][i] = 1.0f;
     363       61013 :         hMcMasa->chnlToFoaMtx[1][i] = sinf( ls_azimuth[i] * PI_OVER_180 ) * cosf( ls_elevation[i] * PI_OVER_180 );
     364       61013 :         hMcMasa->chnlToFoaMtx[2][i] = sinf( ls_elevation[i] * PI_OVER_180 );
     365       61013 :         hMcMasa->chnlToFoaMtx[3][i] = cosf( ls_azimuth[i] * PI_OVER_180 ) * cosf( ls_elevation[i] * PI_OVER_180 );
     366             : 
     367       61013 :         hMcMasa->chnlToFoaEvenMtx[0][i] = 1.0f;
     368       61013 :         hMcMasa->chnlToFoaEvenMtx[1][i] = sinf( ls_azimuth_even[i] * PI_OVER_180 );
     369       61013 :         hMcMasa->chnlToFoaEvenMtx[2][i] = 0.0f;
     370       61013 :         hMcMasa->chnlToFoaEvenMtx[3][i] = cosf( ls_azimuth_even[i] * PI_OVER_180 );
     371             :     }
     372             : 
     373        7110 :     hMcMasa->combineRatios = hMasa->config.mergeRatiosOverSubframes;
     374             : 
     375        7110 :     mvr2r( ls_azimuth, hMcMasa->ls_azimuth, numAnalysisChannels );
     376             : 
     377       50051 :     for ( i = 0; i < hMcMasa->numHorizontalChannels; i++ )
     378             :     {
     379       42941 :         left_min = 360.0f;
     380       42941 :         right_min = -360.0f;
     381             : 
     382      308248 :         for ( j = 0; j < hMcMasa->numHorizontalChannels; j++ )
     383             :         {
     384      265307 :             azi_diff = ls_azimuth[j] - ls_azimuth[i];
     385             : 
     386      265307 :             if ( azi_diff > 180.0f )
     387             :             {
     388       16585 :                 azi_diff -= 360.0f;
     389             :             }
     390      248722 :             else if ( azi_diff < -180.0f )
     391             :             {
     392       16585 :                 azi_diff += 360.0f;
     393             :             }
     394             : 
     395      265307 :             if ( azi_diff < left_min && azi_diff > 0.0f )
     396             :             {
     397       69564 :                 hMcMasa->leftNearest[i] = j;
     398       69564 :                 left_min = azi_diff;
     399             :             }
     400             : 
     401      265307 :             if ( azi_diff > right_min && azi_diff < 0.0f )
     402             :             {
     403       62454 :                 hMcMasa->rightNearest[i] = j;
     404       62454 :                 right_min = azi_diff;
     405             :             }
     406             :         }
     407             :     }
     408             : 
     409        7110 :     hMcMasa->prevMultiChEne = 0.0f;
     410        7110 :     hMcMasa->prevDownmixEne = 0.0f;
     411        7110 :     hMcMasa->prevEQ = 1.0f;
     412        7110 :     input_frame = (int16_t) ( input_Fs / FRAMES_PER_SEC );
     413     6667270 :     for ( i = 0; i < input_frame; i++ )
     414             :     {
     415     6660160 :         hMcMasa->interpolator[i] = ( (float) i ) / ( (float) input_frame );
     416             :     }
     417             : 
     418        7110 :     mvs2s( DirAC_block_grouping_5ms_MDFT, hMcMasa->block_grouping, MAX_PARAM_SPATIAL_SUBFRAMES + 1 );
     419             : 
     420        7110 :     hMcMasa->index_buffer_intensity = 0;
     421             : 
     422        7110 :     st_ivas->hMcMasa = hMcMasa;
     423             : 
     424        7110 :     return error;
     425             : }
     426             : 
     427             : 
     428             : /*-------------------------------------------------------------------------
     429             :  * ivas_mcmasa_enc_reconfig()
     430             :  *
     431             :  * Reconfigure McMASA encoder
     432             :  *------------------------------------------------------------------------*/
     433             : 
     434        2234 : ivas_error ivas_mcmasa_enc_reconfig(
     435             :     Encoder_Struct *st_ivas /* i/o: IVAS encoder structure */
     436             : )
     437             : {
     438             :     int32_t ivas_total_brate;
     439             :     ivas_error error;
     440             : 
     441        2234 :     error = IVAS_ERR_OK;
     442             : 
     443        2234 :     ivas_total_brate = st_ivas->hEncoderConfig->ivas_total_brate;
     444             : 
     445        2234 :     if ( ivas_total_brate != st_ivas->hEncoderConfig->last_ivas_total_brate )
     446             :     {
     447             :         /* bitrate changed, may need to do something */
     448             : 
     449             :         /* brute-force solution: close McMASA and re-instantiate with new settings */
     450        2234 :         ivas_masa_enc_close( &( st_ivas->hMasa ) );
     451        2234 :         ivas_mcmasa_enc_close( &( st_ivas->hMcMasa ), st_ivas->hEncoderConfig->input_Fs );
     452             : 
     453             :         /* Determine if to separate some channels from the analysis */
     454        2234 :         ivas_mcmasa_setNumTransportChannels( &( st_ivas->nchan_transport ), &( st_ivas->hEncoderConfig->element_mode_init ), ivas_total_brate );
     455             : 
     456        2234 :         if ( ( error = ivas_masa_enc_open( st_ivas ) ) != IVAS_ERR_OK )
     457             :         {
     458           0 :             return error;
     459             :         }
     460             : 
     461        2234 :         if ( ( error = ivas_mcmasa_enc_open( st_ivas ) ) != IVAS_ERR_OK )
     462             :         {
     463           0 :             return error;
     464             :         }
     465             : 
     466             :         /* core SCE, CPE reconfiguration happens later */
     467             :     }
     468             : 
     469        2234 :     return error;
     470             : }
     471             : 
     472             : /*--------------------------------------------------------------------------*
     473             :  * ivas_mcmasa_enc_close()
     474             :  *
     475             :  *
     476             :  *--------------------------------------------------------------------------*/
     477             : 
     478       20096 : void ivas_mcmasa_enc_close(
     479             :     MCMASA_ENC_HANDLE *hMcMasa, /* i/o: encoder McMASA handle    */
     480             :     const int32_t input_Fs      /* i  : input sampling rate      */
     481             : )
     482             : {
     483             :     int16_t i, j;
     484             : 
     485       20096 :     if ( hMcMasa == NULL || *hMcMasa == NULL )
     486             :     {
     487       12986 :         return;
     488             :     }
     489             : 
     490        7110 :     if ( ( *hMcMasa )->separateChannelEnabled )
     491             :     {
     492        1535 :         free( ( *hMcMasa )->delay_buffer_lfe[0] );
     493        1535 :         free( ( *hMcMasa )->delay_buffer_lfe[1] );
     494             : 
     495        4605 :         for ( i = 0; i < 2; i++ )
     496             :         {
     497        3070 :             free( ( *hMcMasa )->lfeAnaRingBuffer[i] );
     498             :         }
     499             :     }
     500             : 
     501        7110 :     ivas_FB_mixer_close( &( *hMcMasa )->hFbMixer, input_Fs, 0 );
     502             : 
     503        7110 :     if ( !( *hMcMasa )->separateChannelEnabled )
     504             :     {
     505        5575 :         ivas_FB_mixer_close( &( *hMcMasa )->hFbMixerLfe, input_Fs, 0 );
     506             :     }
     507             : 
     508             :     /* intensity 3-dim */
     509       28440 :     for ( i = 0; i < DIRAC_NUM_DIMS; i++ )
     510             :     {
     511      106650 :         for ( j = 0; j < MAX_PARAM_SPATIAL_SUBFRAMES; j++ )
     512             :         {
     513       85320 :             free( ( *hMcMasa )->direction_vector_m[i][j] );
     514       85320 :             ( *hMcMasa )->direction_vector_m[i][j] = NULL;
     515             :         }
     516             : 
     517      191970 :         for ( j = 0; j < ( *hMcMasa )->no_col_avg_diff; j++ )
     518             :         {
     519      170640 :             free( ( *hMcMasa )->buffer_intensity_real[i][j] );
     520      170640 :             ( *hMcMasa )->buffer_intensity_real[i][j] = NULL;
     521             :         }
     522             : 
     523       21330 :         free( ( *hMcMasa )->buffer_intensity_real[i] );
     524       21330 :         ( *hMcMasa )->buffer_intensity_real[i] = NULL;
     525             : 
     526       21330 :         free( ( *hMcMasa )->direction_vector_m[i] );
     527       21330 :         ( *hMcMasa )->direction_vector_m[i] = NULL;
     528             :     }
     529             : 
     530       63990 :     for ( j = 0; j < ( *hMcMasa )->no_col_avg_diff; j++ )
     531             :     {
     532       56880 :         free( ( *hMcMasa )->buffer_intensity_real_vert[j] );
     533       56880 :         ( *hMcMasa )->buffer_intensity_real_vert[j] = NULL;
     534             :     }
     535        7110 :     free( ( *hMcMasa )->buffer_intensity_real_vert );
     536        7110 :     ( *hMcMasa )->buffer_intensity_real_vert = NULL;
     537             : 
     538        7110 :     free( ( *hMcMasa )->buffer_energy );
     539        7110 :     ( *hMcMasa )->buffer_energy = NULL;
     540             : 
     541        7110 :     free( ( *hMcMasa ) );
     542        7110 :     ( *hMcMasa ) = NULL;
     543             : 
     544        7110 :     return;
     545             : }
     546             : 
     547             : 
     548             : /*--------------------------------------------------------------------------*
     549             :  * ivas_mcmasa_enc()
     550             :  *
     551             :  * Multichannel MASA encoder
     552             :  *--------------------------------------------------------------------------*/
     553             : 
     554      190840 : void ivas_mcmasa_enc(
     555             :     MCMASA_ENC_HANDLE hMcMasa,     /* i/o: Encoder McMASA handle         */
     556             :     IVAS_QMETADATA_HANDLE hQMeta,  /* o  : Qmetadata handle              */
     557             :     MASA_ENCODER_HANDLE hMasa,     /* i/o: Encoder MASA handle           */
     558             :     float *data_f[],               /* i  : Input frame of audio          */
     559             :     const int16_t input_frame,     /* i  : Input frame size              */
     560             :     const int16_t nchan_transport, /* i  : Number of transport channels  */
     561             :     const int16_t nchan_inp        /* i  : Number of input channels      */
     562             : )
     563             : {
     564             :     int16_t i, j, k;
     565      190840 :     int16_t nBands = hMcMasa->nbands;
     566      190840 :     int16_t nBlocks = MAX_PARAM_SPATIAL_SUBFRAMES;
     567      190840 :     uint8_t fixedDistance = 0;
     568             :     float elevation_m_values[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     569             :     float azimuth_m_values[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     570             :     float energyRatio[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     571             :     float spreadCoherence[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     572             :     float surroundingCoherence[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     573             :     float separatedChannelSignal[L_FRAME48k];
     574             : 
     575             :     /* Compute low frequency energy */
     576      190840 :     computeLfeEnergy( hMcMasa, data_f, input_frame );
     577             : 
     578             :     /* Sum center and LFE, move surround channels */
     579      190840 :     v_add( data_f[2], data_f[3], data_f[2], input_frame );
     580     1024728 :     for ( i = 4; i < nchan_inp; i++ )
     581             :     {
     582      833888 :         mvr2r( data_f[i], data_f[i - 1], input_frame );
     583             :     }
     584             : 
     585      190840 :     if ( hMcMasa->separateChannelEnabled )
     586             :     {
     587             :         /* Identify channel to separate */
     588       36974 :         i = hMcMasa->separateChannelIndex;
     589             : 
     590             :         /* Separate the identified channel */
     591       36974 :         mvr2r( data_f[i], separatedChannelSignal, input_frame );
     592             : 
     593             :         /* Move the remaining channels in order to perform the analysis without the separated channel */
     594      329966 :         for ( i = ( hMcMasa->separateChannelIndex + 1 ); i < ( nchan_inp - 1 ); i++ )
     595             :         {
     596      292992 :             mvr2r( data_f[i], data_f[i - 1], input_frame );
     597             :         }
     598             :     }
     599             : 
     600             :     /* Analysis */
     601      190840 :     ivas_mcmasa_param_est_enc( hMcMasa, hMasa, data_f, elevation_m_values, azimuth_m_values, energyRatio, spreadCoherence, surroundingCoherence, input_frame, nchan_inp );
     602             : 
     603             :     /* Determine LFE-to-total energy ratio */
     604      954200 :     for ( i = 0; i < MAX_PARAM_SPATIAL_SUBFRAMES; i++ )
     605             :     {
     606      763360 :         hMasa->data.lfeToTotalEnergyRatio[i] = hMcMasa->lfeLfEne[i] / ( EPSILON + hMcMasa->totalLfEne[i] );
     607             :     }
     608             : 
     609             :     /* Set analyzed values to the MASA struct */
     610     1145040 :     for ( i = 0; i < nBands; i++ )
     611             :     {
     612     4771000 :         for ( j = 0; j < nBlocks; j++ )
     613             :         {
     614     3816800 :             if ( hMcMasa->combineRatios )
     615             :             {
     616     3816800 :                 k = 0;
     617             :             }
     618             :             else
     619             :             {
     620           0 :                 k = j;
     621             :             }
     622             : 
     623     3816800 :             hQMeta->q_direction[0].band_data[i].azimuth[j] = azimuth_m_values[j][i];
     624     3816800 :             hQMeta->q_direction[0].band_data[i].elevation[j] = elevation_m_values[j][i];
     625     3816800 :             hQMeta->q_direction[0].band_data[i].energy_ratio[j] = energyRatio[k][i];
     626     3816800 :             hQMeta->q_direction[0].band_data[i].distance[j] = fixedDistance;
     627             : 
     628     3816800 :             if ( hQMeta->surcoh_band_data != NULL )
     629             :             {
     630     3484720 :                 hQMeta->q_direction[0].coherence_band_data[i].spread_coherence[j] = (uint8_t) roundf( spreadCoherence[j][i] * UINT8_MAX );
     631     3484720 :                 hQMeta->surcoh_band_data[i].surround_coherence[j] = (uint8_t) roundf( surroundingCoherence[k][i] * UINT8_MAX );
     632             :             }
     633             :         }
     634             :     }
     635             : 
     636             :     /* At lower sampling rates, set zeros for higher bands that were not analyzed */
     637      190840 :     if ( nBands < hMcMasa->nCodingBands )
     638             :     {
     639           0 :         for ( i = nBands; i < hMcMasa->nCodingBands; i++ )
     640             :         {
     641           0 :             for ( j = 0; j < nBlocks; j++ )
     642             :             {
     643           0 :                 hQMeta->q_direction[0].band_data[i].azimuth[j] = 0.0f;
     644           0 :                 hQMeta->q_direction[0].band_data[i].elevation[j] = 0.0f;
     645           0 :                 hQMeta->q_direction[0].band_data[i].energy_ratio[j] = 0.0f;
     646           0 :                 hQMeta->q_direction[0].band_data[i].distance[j] = 0;
     647             : 
     648           0 :                 if ( hQMeta->surcoh_band_data != NULL )
     649             :                 {
     650           0 :                     hQMeta->q_direction[0].coherence_band_data[i].spread_coherence[j] = 0;
     651           0 :                     hQMeta->surcoh_band_data[i].surround_coherence[j] = 0;
     652             :                 }
     653             :             }
     654             :         }
     655             :     }
     656             : 
     657             :     /* Downmix */
     658      190840 :     ivas_mcmasa_dmx( hMcMasa, data_f, input_frame, nchan_transport, nchan_inp );
     659             : 
     660      190840 :     if ( hMcMasa->separateChannelEnabled )
     661             :     {
     662             :         /* Put separated channel back to data_f to first empty channel after the transport audio signals for encoding */
     663       36974 :         mvr2r( separatedChannelSignal, data_f[2], input_frame );
     664             :     }
     665             : 
     666             :     /* Update mcMASA-relevant coding parameters */
     667             :     /* These are reset to default values as they may be modified during later processing. */
     668      190840 :     hMasa->config.joinedSubframes = FALSE;
     669      190840 :     hQMeta->q_direction[0].cfg.nbands = hMcMasa->nbands;
     670      190840 :     hQMeta->q_direction[0].cfg.nblocks = MAX_PARAM_SPATIAL_SUBFRAMES;
     671      190840 :     hQMeta->all_coherence_zero = 1;
     672             : 
     673             :     /* Check spread coherence */
     674      190840 :     i = 0;
     675      481000 :     while ( i < nBlocks && hQMeta->all_coherence_zero )
     676             :     {
     677      290160 :         j = 0;
     678     1140971 :         while ( j < nBands && hQMeta->all_coherence_zero )
     679             :         {
     680      850811 :             if ( spreadCoherence[i][j] > MASA_COHERENCE_THRESHOLD )
     681             :             {
     682      168910 :                 hQMeta->all_coherence_zero = 0;
     683             :             }
     684      850811 :             j++;
     685             :         }
     686      290160 :         i++;
     687             :     }
     688             : 
     689             :     /* Check surrounding coherence */
     690      190840 :     if ( hQMeta->all_coherence_zero )
     691             :     {
     692             :         float diffuse_to_total_ratio[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     693             :         uint8_t cohSignificant;
     694             :         int16_t nSubFrames;
     695             : 
     696       21930 :         nSubFrames = hMcMasa->combineRatios ? 1 : MAX_PARAM_SPATIAL_SUBFRAMES;
     697       43860 :         for ( i = 0; i < nSubFrames; i++ )
     698             :         {
     699      131580 :             for ( j = 0; j < nBands; j++ )
     700             :             {
     701      109650 :                 diffuse_to_total_ratio[i][j] = fmaxf( 0.0f, 1.0f - energyRatio[i][j] );
     702             :             }
     703             :         }
     704             : 
     705       21930 :         cohSignificant = ivas_masa_surrcoh_signicant( surroundingCoherence, diffuse_to_total_ratio, nSubFrames, nBands );
     706       21930 :         if ( cohSignificant )
     707             :         {
     708       14253 :             hQMeta->all_coherence_zero = 0;
     709             :         }
     710             :     }
     711      190840 :     hMasa->config.coherencePresent = !hQMeta->all_coherence_zero;
     712             : 
     713      190840 :     return;
     714             : }
     715             : 
     716             : 
     717             : /*--------------------------------------------------------------------------*
     718             :  * ivas_mcmasa_param_est_enc()
     719             :  *
     720             :  * Estimate metadata parameters for McMASA
     721             :  *--------------------------------------------------------------------------*/
     722             : 
     723      190840 : void ivas_mcmasa_param_est_enc(
     724             :     MCMASA_ENC_HANDLE hMcMasa,                                                     /* i  : McMASA encoder structure        */
     725             :     MASA_ENCODER_HANDLE hMasa,                                                     /* i  : MASA encoder structure          */
     726             :     float *data_f[],                                                               /* i  : Audio frame in MC-format        */
     727             :     float elevation_m_values[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS],   /* o  : Estimated elevation             */
     728             :     float azimuth_m_values[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS],     /* o  : Estimated azimuth               */
     729             :     float energyRatio[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS],          /* o  : Estimated direct-to-total ratio */
     730             :     float spreadCoherence[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS],      /* o  : Estimated spread coherence      */
     731             :     float surroundingCoherence[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS], /* o  : Estimated surround coherence    */
     732             :     const int16_t input_frame,                                                     /* i  : Input frame size                */
     733             :     const int16_t nchan_inp                                                        /* i  : Number of input channels        */
     734             : )
     735             : {
     736             :     float reference_power[MDFT_NO_COL_MAX][DIRAC_NO_FB_BANDS_MAX];
     737             :     int16_t ts, i, j, d;
     738             :     int16_t num_freq_bins, num_freq_bands, index;
     739             :     float dir_v[DIRAC_NUM_DIMS];
     740             :     int16_t l_ts;
     741             :     float *pcm_in[MCMASA_MAX_ANA_CHANS];
     742             :     float Chnl_RealBuffer[MCMASA_MAX_ANA_CHANS][DIRAC_NO_FB_BANDS_MAX];
     743             :     float Chnl_ImagBuffer[MCMASA_MAX_ANA_CHANS][DIRAC_NO_FB_BANDS_MAX];
     744             :     float *p_Chnl_RealBuffer[MCMASA_MAX_ANA_CHANS];
     745             :     float *p_Chnl_ImagBuffer[MCMASA_MAX_ANA_CHANS];
     746             :     float Foa_RealBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX];
     747             :     float Foa_ImagBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX];
     748             :     float FoaEven_RealBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX];
     749             :     float FoaEven_ImagBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX];
     750             :     float intensity_real[DIRAC_NUM_DIMS][MASA_FREQUENCY_BANDS];
     751             :     float intensity_even_real[DIRAC_NUM_DIMS][MASA_FREQUENCY_BANDS];
     752             :     float direction_vector[DIRAC_NUM_DIMS][MASA_FREQUENCY_BANDS];
     753             :     float diffuseness_vector[MASA_FREQUENCY_BANDS];
     754             :     float vertical_diffuseness_vector[MASA_FREQUENCY_BANDS];
     755             :     float diffuseness_m[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     756             :     float coherentEnergyRatio[MAX_PARAM_SPATIAL_SUBFRAMES][MASA_FREQUENCY_BANDS];
     757             :     int16_t band_m_idx, block_m_idx;
     758             :     float renormalization_factor_diff[MASA_FREQUENCY_BANDS];
     759             :     float norm_tmp;
     760             :     int16_t mrange[2], brange[2];
     761             :     int16_t numSubFramesForRatio;
     762             :     CovarianceMatrix COVls[MASA_FREQUENCY_BANDS];
     763             :     float absCOVls[MCMASA_MAX_ANA_CHANS][MCMASA_MAX_ANA_CHANS];
     764             :     float lsEnergy[MCMASA_MAX_ANA_CHANS];
     765             :     float lsEnergySum, maxEne;
     766             :     int16_t loudestCh;
     767             :     float surrCoh, tempCoh, tempCoh2;
     768             :     int16_t i1, i2, i3;
     769             :     float angleDist, minAngleDist;
     770             :     float currentAzi;
     771             :     float lsEnergyRelation;
     772             :     float tempLsEnergyRelation;
     773             :     float stereoness, cohwideness, spreadCoh;
     774             :     float stereoRatio, cohPanRatio;
     775             :     float stereoCoh, cohPanCoh, cohRatio;
     776             :     float renormalization_factor_coh[MASA_FREQUENCY_BANDS];
     777             :     int16_t numAnalysisChannels;
     778             : 
     779      190840 :     num_freq_bins = input_frame / MDFT_NO_COL_MAX;
     780      190840 :     num_freq_bands = hMcMasa->nbands;
     781      190840 :     l_ts = input_frame / MDFT_NO_COL_MAX;
     782             : 
     783      190840 :     numAnalysisChannels = nchan_inp - 1;
     784      190840 :     if ( hMcMasa->separateChannelEnabled )
     785             :     {
     786       36974 :         numAnalysisChannels = nchan_inp - 2;
     787             :     }
     788             : 
     789      190840 :     if ( hMcMasa->combineRatios )
     790             :     {
     791             :         /* Need to initialize renormalization_factors, and variables to be normalized */
     792      190840 :         set_zero( renormalization_factor_diff, hMcMasa->nbands );
     793      190840 :         set_zero( diffuseness_m[0], hMcMasa->nbands );
     794      190840 :         set_zero( renormalization_factor_coh, hMcMasa->nbands );
     795      190840 :         set_zero( surroundingCoherence[0], hMcMasa->nbands );
     796      190840 :         set_zero( coherentEnergyRatio[0], hMcMasa->nbands );
     797             :     }
     798             : 
     799             :     /* Copy current frame to memory for delay compensation */
     800     1560274 :     for ( i = 0; i < numAnalysisChannels; i++ )
     801             :     {
     802     1369434 :         pcm_in[i] = data_f[i];
     803     1369434 :         p_Chnl_RealBuffer[i] = &Chnl_RealBuffer[i][0];
     804     1369434 :         p_Chnl_ImagBuffer[i] = &Chnl_ImagBuffer[i][0];
     805             :     }
     806             : 
     807             :     /* do processing over all CLDFB time slots */
     808      954200 :     for ( block_m_idx = 0; block_m_idx < MAX_PARAM_SPATIAL_SUBFRAMES; block_m_idx++ )
     809             :     {
     810      763360 :         mrange[0] = hMcMasa->block_grouping[block_m_idx];
     811      763360 :         mrange[1] = hMcMasa->block_grouping[block_m_idx + 1];
     812             : 
     813     4580160 :         for ( band_m_idx = 0; band_m_idx < hMcMasa->nbands; band_m_idx++ )
     814             :         {
     815     3816800 :             hMcMasa->direction_vector_m[0][block_m_idx][band_m_idx] = 0;
     816     3816800 :             hMcMasa->direction_vector_m[1][block_m_idx][band_m_idx] = 0;
     817     3816800 :             hMcMasa->direction_vector_m[2][block_m_idx][band_m_idx] = 0;
     818             :         }
     819             : 
     820             :         /* Reset variable */
     821     4580160 :         for ( i = 0; i < hMcMasa->nbands; i++ )
     822             :         {
     823    31205480 :             for ( j = 0; j < numAnalysisChannels; j++ )
     824             :             {
     825    27388680 :                 set_zero( COVls[i].xr[j], numAnalysisChannels );
     826    27388680 :                 set_zero( COVls[i].xi[j], numAnalysisChannels );
     827             :             }
     828             :         }
     829             : 
     830     1526720 :         for ( ts = mrange[0]; ts < mrange[1]; ts++ )
     831             :         {
     832      763360 :             ivas_fb_mixer_get_windowed_fr( hMcMasa->hFbMixer, pcm_in, p_Chnl_RealBuffer, p_Chnl_ImagBuffer, l_ts, l_ts, hMcMasa->hFbMixer->fb_cfg->num_in_chans );
     833             : 
     834      763360 :             ivas_fb_mixer_update_prior_input( hMcMasa->hFbMixer, pcm_in, l_ts, hMcMasa->hFbMixer->fb_cfg->num_in_chans );
     835             : 
     836     6241096 :             for ( i = 0; i < numAnalysisChannels; i++ )
     837             :             {
     838     5477736 :                 pcm_in[i] += l_ts;
     839             :             }
     840             : 
     841             :             /* Compute covariance matrix */
     842     4580160 :             for ( i = 0; i < num_freq_bands; i++ )
     843             :             {
     844     3816800 :                 brange[0] = hMcMasa->band_grouping[i];
     845     3816800 :                 brange[1] = hMcMasa->band_grouping[i + 1];
     846   184981600 :                 for ( j = brange[0]; j < brange[1]; j++ )
     847             :                 {
     848   181164800 :                     compute_cov_mtx( Chnl_RealBuffer, Chnl_ImagBuffer, j, numAnalysisChannels, &( COVls[i] ) );
     849             :                 }
     850             : 
     851             :                 /* Store energies for guiding metadata encoding */
     852     3816800 :                 hMasa->data.energy[block_m_idx][i] = 0.0f;
     853    31205480 :                 for ( j = 0; j < numAnalysisChannels; j++ )
     854             :                 {
     855    27388680 :                     hMasa->data.energy[block_m_idx][i] += COVls[i].xr[j][j];
     856             :                 }
     857             :             }
     858             : 
     859      763360 :             if ( !hMcMasa->separateChannelEnabled )
     860             :             {
     861             :                 /* Compute low frequency energy */
     862     4625440 :                 for ( i = 0; i < numAnalysisChannels; i++ )
     863             :                 {
     864    20049880 :                     for ( j = 0; j < CLDFB_TO_MDFT_FAC; j++ )
     865             :                     {
     866    16039904 :                         hMcMasa->totalLfEne[block_m_idx] += Chnl_RealBuffer[i][j] * Chnl_RealBuffer[i][j] + Chnl_ImagBuffer[i][j] * Chnl_ImagBuffer[i][j];
     867             :                     }
     868             :                 }
     869             :             }
     870             : 
     871             :             /* Compute standard FOA */
     872             :             /* W */
     873      763360 :             v_add( Chnl_RealBuffer[0], Chnl_RealBuffer[1], Foa_RealBuffer[0], num_freq_bins );
     874      763360 :             v_add( Chnl_ImagBuffer[0], Chnl_ImagBuffer[1], Foa_ImagBuffer[0], num_freq_bins );
     875     4714376 :             for ( i = 2; i < numAnalysisChannels; i++ )
     876             :             {
     877     3951016 :                 v_add( Chnl_RealBuffer[i], Foa_RealBuffer[0], Foa_RealBuffer[0], num_freq_bins );
     878     3951016 :                 v_add( Chnl_ImagBuffer[i], Foa_ImagBuffer[0], Foa_ImagBuffer[0], num_freq_bins );
     879             :             }
     880             : 
     881             :             /* Y */
     882      763360 :             v_multc( Chnl_RealBuffer[0], hMcMasa->chnlToFoaMtx[1][0], Foa_RealBuffer[1], num_freq_bins );
     883      763360 :             v_multc( Chnl_ImagBuffer[0], hMcMasa->chnlToFoaMtx[1][0], Foa_ImagBuffer[1], num_freq_bins );
     884     5477736 :             for ( i = 1; i < numAnalysisChannels; i++ )
     885             :             {
     886     4714376 :                 v_multc_acc( Chnl_RealBuffer[i], hMcMasa->chnlToFoaMtx[1][i], Foa_RealBuffer[1], num_freq_bins );
     887     4714376 :                 v_multc_acc( Chnl_ImagBuffer[i], hMcMasa->chnlToFoaMtx[1][i], Foa_ImagBuffer[1], num_freq_bins );
     888             :             }
     889             : 
     890             :             /* Z */
     891      763360 :             if ( hMcMasa->isHorizontalSetup )
     892             :             {
     893             :                 /* Set zero for horizontal setups */
     894      417304 :                 set_zero( Foa_RealBuffer[2], num_freq_bins );
     895      417304 :                 set_zero( Foa_ImagBuffer[2], num_freq_bins );
     896             :             }
     897             :             else
     898             :             {
     899      346056 :                 v_multc( Chnl_RealBuffer[0], hMcMasa->chnlToFoaMtx[2][0], Foa_RealBuffer[2], num_freq_bins );
     900      346056 :                 v_multc( Chnl_ImagBuffer[0], hMcMasa->chnlToFoaMtx[2][0], Foa_ImagBuffer[2], num_freq_bins );
     901     3340336 :                 for ( i = 1; i < numAnalysisChannels; i++ )
     902             :                 {
     903     2994280 :                     v_multc_acc( Chnl_RealBuffer[i], hMcMasa->chnlToFoaMtx[2][i], Foa_RealBuffer[2], num_freq_bins );
     904     2994280 :                     v_multc_acc( Chnl_ImagBuffer[i], hMcMasa->chnlToFoaMtx[2][i], Foa_ImagBuffer[2], num_freq_bins );
     905             :                 }
     906             :             }
     907             : 
     908             :             /* X */
     909      763360 :             v_multc( Chnl_RealBuffer[0], hMcMasa->chnlToFoaMtx[3][0], Foa_RealBuffer[3], num_freq_bins );
     910      763360 :             v_multc( Chnl_ImagBuffer[0], hMcMasa->chnlToFoaMtx[3][0], Foa_ImagBuffer[3], num_freq_bins );
     911     5477736 :             for ( i = 1; i < numAnalysisChannels; i++ )
     912             :             {
     913     4714376 :                 v_multc_acc( Chnl_RealBuffer[i], hMcMasa->chnlToFoaMtx[3][i], Foa_RealBuffer[3], num_freq_bins );
     914     4714376 :                 v_multc_acc( Chnl_ImagBuffer[i], hMcMasa->chnlToFoaMtx[3][i], Foa_ImagBuffer[3], num_freq_bins );
     915             :             }
     916             : 
     917             :             /* Compute even FOA */
     918             :             /* W */
     919      763360 :             mvr2r( Foa_RealBuffer[0], FoaEven_RealBuffer[0], num_freq_bins );
     920      763360 :             mvr2r( Foa_ImagBuffer[0], FoaEven_ImagBuffer[0], num_freq_bins );
     921             : 
     922             :             /* Y */
     923      763360 :             v_multc( Chnl_RealBuffer[0], hMcMasa->chnlToFoaEvenMtx[1][0], FoaEven_RealBuffer[1], num_freq_bins );
     924      763360 :             v_multc( Chnl_ImagBuffer[0], hMcMasa->chnlToFoaEvenMtx[1][0], FoaEven_ImagBuffer[1], num_freq_bins );
     925     5477736 :             for ( i = 1; i < numAnalysisChannels; i++ )
     926             :             {
     927     4714376 :                 v_multc_acc( Chnl_RealBuffer[i], hMcMasa->chnlToFoaEvenMtx[1][i], FoaEven_RealBuffer[1], num_freq_bins );
     928     4714376 :                 v_multc_acc( Chnl_ImagBuffer[i], hMcMasa->chnlToFoaEvenMtx[1][i], FoaEven_ImagBuffer[1], num_freq_bins );
     929             :             }
     930             : 
     931             :             /* Z (even setups are handled as horizontal) */
     932      763360 :             set_zero( FoaEven_RealBuffer[2], num_freq_bins );
     933      763360 :             set_zero( FoaEven_ImagBuffer[2], num_freq_bins );
     934             : 
     935             :             /* X */
     936      763360 :             v_multc( Chnl_RealBuffer[0], hMcMasa->chnlToFoaEvenMtx[3][0], FoaEven_RealBuffer[3], num_freq_bins );
     937      763360 :             v_multc( Chnl_ImagBuffer[0], hMcMasa->chnlToFoaEvenMtx[3][0], FoaEven_ImagBuffer[3], num_freq_bins );
     938     5477736 :             for ( i = 1; i < numAnalysisChannels; i++ )
     939             :             {
     940     4714376 :                 v_multc_acc( Chnl_RealBuffer[i], hMcMasa->chnlToFoaEvenMtx[3][i], FoaEven_RealBuffer[3], num_freq_bins );
     941     4714376 :                 v_multc_acc( Chnl_ImagBuffer[i], hMcMasa->chnlToFoaEvenMtx[3][i], FoaEven_ImagBuffer[3], num_freq_bins );
     942             :             }
     943             : 
     944             :             /* Direction estimation */
     945      763360 :             computeIntensityVector_enc(
     946      763360 :                 hMcMasa->band_grouping,
     947             :                 Foa_RealBuffer,
     948             :                 Foa_ImagBuffer,
     949             :                 0,
     950             :                 num_freq_bands,
     951             :                 intensity_real );
     952             : 
     953      763360 :             computeDirectionVectors(
     954             :                 intensity_real[0],
     955             :                 intensity_real[1],
     956             :                 intensity_real[2],
     957             :                 0,
     958             :                 num_freq_bands,
     959             :                 direction_vector[0],
     960             :                 direction_vector[1],
     961             :                 direction_vector[2] );
     962             : 
     963             :             /* Power and intensity estimation for diffuseness */
     964      763360 :             computeIntensityVector_enc(
     965      763360 :                 hMcMasa->band_grouping,
     966             :                 FoaEven_RealBuffer,
     967             :                 FoaEven_ImagBuffer,
     968             :                 0,
     969             :                 num_freq_bands,
     970             :                 intensity_even_real );
     971             : 
     972      763360 :             computeReferencePower_enc( hMcMasa->band_grouping,
     973             :                                        FoaEven_RealBuffer,
     974             :                                        FoaEven_ImagBuffer,
     975      763360 :                                        reference_power[ts],
     976             :                                        0,
     977             :                                        num_freq_bands,
     978             :                                        MC_FORMAT,
     979             :                                        0,
     980             :                                        FOA_CHANNELS,
     981             :                                        NULL,
     982             :                                        NULL );
     983             : 
     984             :             /* Fill buffers of length "averaging_length" time slots for intensity and energy */
     985      763360 :             hMcMasa->index_buffer_intensity = ( hMcMasa->index_buffer_intensity % hMcMasa->no_col_avg_diff ) + 1; /* averaging_length = 32 */
     986      763360 :             index = hMcMasa->index_buffer_intensity;
     987     3053440 :             for ( i = 0; i < DIRAC_NUM_DIMS; i++ )
     988             :             {
     989             :                 /* only real part needed */
     990     2290080 :                 mvr2r( intensity_even_real[i], &( hMcMasa->buffer_intensity_real[i][index - 1][0] ), num_freq_bands );
     991             :             }
     992      763360 :             mvr2r( reference_power[ts], &( hMcMasa->buffer_energy[( index - 1 ) * num_freq_bands] ), num_freq_bands );
     993             : 
     994      763360 :             computeDiffuseness_mdft( hMcMasa->buffer_intensity_real, hMcMasa->buffer_energy, num_freq_bands, hMcMasa->no_col_avg_diff, diffuseness_vector );
     995             : 
     996             :             /* Compute vertical diffuseness, and tune original diffuseness if needed */
     997      763360 :             if ( !hMcMasa->isHorizontalSetup )
     998             :             {
     999      346056 :                 mvr2r( intensity_real[2], &( hMcMasa->buffer_intensity_real_vert[index - 1][0] ), num_freq_bands );
    1000      346056 :                 computeVerticalDiffuseness( hMcMasa->buffer_intensity_real_vert, hMcMasa->buffer_energy, hMcMasa->no_col_avg_diff, num_freq_bands, vertical_diffuseness_vector );
    1001      346056 :                 v_min( diffuseness_vector, vertical_diffuseness_vector, diffuseness_vector, num_freq_bands );
    1002             :             }
    1003             : 
    1004     4580160 :             for ( band_m_idx = 0; band_m_idx < hMcMasa->nbands; band_m_idx++ )
    1005             :             {
    1006     3816800 :                 norm_tmp = reference_power[ts][band_m_idx] * ( 1 - diffuseness_vector[band_m_idx] );
    1007             : 
    1008     3816800 :                 hMcMasa->direction_vector_m[0][block_m_idx][band_m_idx] += norm_tmp * direction_vector[0][band_m_idx];
    1009     3816800 :                 hMcMasa->direction_vector_m[1][block_m_idx][band_m_idx] += norm_tmp * direction_vector[1][band_m_idx];
    1010     3816800 :                 hMcMasa->direction_vector_m[2][block_m_idx][band_m_idx] += norm_tmp * direction_vector[2][band_m_idx];
    1011             : 
    1012     3816800 :                 if ( hMcMasa->combineRatios )
    1013             :                 {
    1014     3816800 :                     diffuseness_m[0][band_m_idx] += reference_power[ts][band_m_idx] * diffuseness_vector[band_m_idx];
    1015     3816800 :                     renormalization_factor_diff[band_m_idx] += reference_power[ts][band_m_idx];
    1016             :                 }
    1017             :                 else
    1018             :                 {
    1019           0 :                     diffuseness_m[block_m_idx][band_m_idx] = diffuseness_vector[band_m_idx];
    1020             :                 }
    1021             :             }
    1022             :         }
    1023             : 
    1024     4580160 :         for ( band_m_idx = 0; band_m_idx < hMcMasa->nbands; band_m_idx++ )
    1025             :         {
    1026    15267200 :             for ( d = 0; d < DIRAC_NUM_DIMS; d++ )
    1027             :             {
    1028    11450400 :                 dir_v[d] = hMcMasa->direction_vector_m[d][block_m_idx][band_m_idx];
    1029             :             }
    1030     3816800 :             ivas_qmetadata_direction_vector_to_azimuth_elevation( dir_v, &azimuth_m_values[block_m_idx][band_m_idx], &elevation_m_values[block_m_idx][band_m_idx] );
    1031             :         }
    1032             : 
    1033             :         /* Coherence processing */
    1034     4580160 :         for ( band_m_idx = 0; band_m_idx < hMcMasa->nbands; band_m_idx++ )
    1035             :         {
    1036             :             /* Compute absolute values */
    1037    31205480 :             for ( i = 0; i < numAnalysisChannels; i++ )
    1038             :             {
    1039   150788800 :                 for ( j = i; j < numAnalysisChannels; j++ )
    1040             :                 {
    1041   123400120 :                     absCOVls[i][j] = sqrtf( ( COVls[band_m_idx].xr[i][j] * COVls[band_m_idx].xr[i][j] + COVls[band_m_idx].xi[i][j] * COVls[band_m_idx].xi[i][j] ) );
    1042             :                 }
    1043    27388680 :                 lsEnergy[i] = absCOVls[i][i];
    1044             :             }
    1045             : 
    1046             :             /* Find loudest channel */
    1047     3816800 :             maxEne = lsEnergy[0];
    1048     3816800 :             loudestCh = 0;
    1049    27388680 :             for ( i = 1; i < numAnalysisChannels; i++ )
    1050             :             {
    1051    23571880 :                 if ( lsEnergy[i] > maxEne )
    1052             :                 {
    1053     6682854 :                     maxEne = lsEnergy[i];
    1054     6682854 :                     loudestCh = i;
    1055             :                 }
    1056             :             }
    1057             : 
    1058             :             /* Compute surrounding coherence */
    1059     3816800 :             surrCoh = 1.0f;
    1060    31205480 :             for ( i = 0; i < numAnalysisChannels; i++ )
    1061             :             {
    1062    27388680 :                 if ( i != loudestCh )
    1063             :                 {
    1064    23571880 :                     if ( i < loudestCh )
    1065             :                     {
    1066    12194839 :                         i1 = i;
    1067    12194839 :                         i2 = loudestCh;
    1068             :                     }
    1069             :                     else
    1070             :                     {
    1071    11377041 :                         i1 = loudestCh;
    1072    11377041 :                         i2 = i;
    1073             :                     }
    1074    23571880 :                     tempCoh = absCOVls[i1][i2] / ( sqrtf( ( lsEnergy[i1] * lsEnergy[i2] + EPSILON ) ) );
    1075    23571880 :                     surrCoh = ( surrCoh < tempCoh ) ? surrCoh : tempCoh;
    1076             :                 }
    1077             :             }
    1078     3816800 :             surrCoh = surrCoh * surrCoh;
    1079     3816800 :             surrCoh = ( surrCoh < 1.0f ) ? surrCoh : 1.0f;
    1080     3816800 :             surrCoh = ( surrCoh > 0.0f ) ? surrCoh : 0.0f;
    1081             : 
    1082             :             /* Compute spread coherence */
    1083     3816800 :             if ( elevation_m_values[block_m_idx][band_m_idx] < NEAR_HORIZONTAL_PLANE_ELEVATION ) /* Computed only near horizontal plane */
    1084             :             {
    1085     2571911 :                 minAngleDist = 180.0f;
    1086     2571911 :                 i1 = 0;
    1087     2571911 :                 currentAzi = azimuth_m_values[block_m_idx][band_m_idx];
    1088    16105916 :                 for ( i = 0; i < hMcMasa->numHorizontalChannels; i++ )
    1089             :                 {
    1090    13534005 :                     angleDist = fabsf( currentAzi - hMcMasa->ls_azimuth[i] );
    1091    13534005 :                     if ( angleDist > 180.0f )
    1092             :                     {
    1093      421887 :                         angleDist = fabsf( angleDist - 360.0f );
    1094             :                     }
    1095    13534005 :                     if ( angleDist < minAngleDist )
    1096             :                     {
    1097     5602698 :                         minAngleDist = angleDist;
    1098     5602698 :                         i1 = i;
    1099             :                     }
    1100             :                 }
    1101     2571911 :                 i2 = hMcMasa->leftNearest[i1];
    1102     2571911 :                 i3 = hMcMasa->rightNearest[i1];
    1103             : 
    1104     2571911 :                 if ( i2 < i3 )
    1105             :                 {
    1106     2071568 :                     stereoCoh = absCOVls[i2][i3] / ( sqrtf( lsEnergy[i2] * lsEnergy[i3] + EPSILON ) );
    1107             :                 }
    1108             :                 else
    1109             :                 {
    1110      500343 :                     stereoCoh = absCOVls[i3][i2] / ( sqrtf( lsEnergy[i2] * lsEnergy[i3] + EPSILON ) );
    1111             :                 }
    1112     2571911 :                 lsEnergyRelation = ( lsEnergy[i2] + lsEnergy[i3] ) / ( lsEnergy[i1] + lsEnergy[i2] + lsEnergy[i3] + EPSILON );
    1113     2571911 :                 stereoness = stereoCoh * lsEnergyRelation;
    1114             : 
    1115     2571911 :                 if ( i1 < i2 )
    1116             :                 {
    1117     1140124 :                     tempCoh = absCOVls[i1][i2] / ( sqrtf( lsEnergy[i1] * lsEnergy[i2] + EPSILON ) );
    1118             :                 }
    1119             :                 else
    1120             :                 {
    1121     1431787 :                     tempCoh = absCOVls[i2][i1] / ( sqrtf( lsEnergy[i1] * lsEnergy[i2] + EPSILON ) );
    1122             :                 }
    1123     2571911 :                 if ( i1 < i3 )
    1124             :                 {
    1125     1135775 :                     tempCoh2 = absCOVls[i1][i3] / ( sqrtf( lsEnergy[i1] * lsEnergy[i3] + EPSILON ) );
    1126             :                 }
    1127             :                 else
    1128             :                 {
    1129     1436136 :                     tempCoh2 = absCOVls[i3][i1] / ( sqrtf( lsEnergy[i1] * lsEnergy[i3] + EPSILON ) );
    1130             :                 }
    1131     2571911 :                 cohPanCoh = ( tempCoh < tempCoh2 ) ? tempCoh : tempCoh2;
    1132     2571911 :                 lsEnergyRelation = lsEnergy[i2] / ( lsEnergy[i1] + EPSILON );
    1133     2571911 :                 tempLsEnergyRelation = lsEnergy[i1] / ( lsEnergy[i2] + EPSILON );
    1134     2571911 :                 lsEnergyRelation = ( lsEnergyRelation < tempLsEnergyRelation ) ? lsEnergyRelation : tempLsEnergyRelation;
    1135     2571911 :                 tempLsEnergyRelation = lsEnergy[i3] / ( lsEnergy[i1] + EPSILON );
    1136     2571911 :                 lsEnergyRelation = ( lsEnergyRelation < tempLsEnergyRelation ) ? lsEnergyRelation : tempLsEnergyRelation;
    1137     2571911 :                 tempLsEnergyRelation = lsEnergy[i1] / ( lsEnergy[i3] + EPSILON );
    1138     2571911 :                 lsEnergyRelation = ( lsEnergyRelation < tempLsEnergyRelation ) ? lsEnergyRelation : tempLsEnergyRelation;
    1139     2571911 :                 cohwideness = cohPanCoh * lsEnergyRelation;
    1140             : 
    1141     2571911 :                 spreadCoh = ( cohwideness > stereoness ) ? cohwideness : stereoness;
    1142     2571911 :                 if ( spreadCoh > 0.5f )
    1143             :                 {
    1144     1337648 :                     if ( cohwideness > stereoness )
    1145             :                     {
    1146      343305 :                         tempCoh = stereoness - ( cohwideness - 0.5f );
    1147      343305 :                         spreadCoh = ( tempCoh > 0.5f ) ? tempCoh : 0.5f;
    1148             :                     }
    1149             :                 }
    1150     2571911 :                 spreadCoh = ( spreadCoh < 1.0f ) ? spreadCoh : 1.0f;
    1151     2571911 :                 spreadCoh = ( spreadCoh > 0.0f ) ? spreadCoh : 0.0f;
    1152             : 
    1153             :                 /* Compute energy ratio tuning parameter */
    1154     2571911 :                 lsEnergySum = sum_f( lsEnergy, numAnalysisChannels ) + EPSILON;
    1155     2571911 :                 lsEnergyRelation = ( lsEnergy[i2] + lsEnergy[i3] ) / lsEnergySum;
    1156     2571911 :                 stereoRatio = stereoCoh * lsEnergyRelation - surrCoh;
    1157             : 
    1158     2571911 :                 lsEnergyRelation = ( lsEnergy[i1] + lsEnergy[i2] + lsEnergy[i3] ) / lsEnergySum;
    1159     2571911 :                 cohPanRatio = cohPanCoh * lsEnergyRelation - surrCoh;
    1160             : 
    1161     2571911 :                 cohRatio = ( stereoRatio > cohPanRatio ) ? stereoRatio : cohPanRatio;
    1162     2571911 :                 cohRatio = ( cohRatio < 1.0f ) ? cohRatio : 1.0f;
    1163     2571911 :                 cohRatio = ( cohRatio > 0.0f ) ? cohRatio : 0.0f;
    1164             :             }
    1165             :             else /* Otherwise, set spread coherence to zero */
    1166             :             {
    1167     1244889 :                 spreadCoh = 0.0f;
    1168     1244889 :                 cohRatio = 0.0f;
    1169     1244889 :                 lsEnergySum = sum_f( lsEnergy, numAnalysisChannels );
    1170             :             }
    1171             : 
    1172             :             /* Store values */
    1173     3816800 :             spreadCoherence[block_m_idx][band_m_idx] = spreadCoh;
    1174             : 
    1175     3816800 :             if ( hMcMasa->combineRatios )
    1176             :             {
    1177     3816800 :                 surroundingCoherence[0][band_m_idx] += lsEnergySum * surrCoh;
    1178     3816800 :                 coherentEnergyRatio[0][band_m_idx] += lsEnergySum * cohRatio;
    1179     3816800 :                 renormalization_factor_coh[band_m_idx] += lsEnergySum;
    1180             :             }
    1181             :             else
    1182             :             {
    1183           0 :                 surroundingCoherence[block_m_idx][band_m_idx] = surrCoh;
    1184           0 :                 coherentEnergyRatio[block_m_idx][band_m_idx] = cohRatio;
    1185             :             }
    1186             :         }
    1187             :     }
    1188             : 
    1189      190840 :     if ( hMcMasa->combineRatios )
    1190             :     {
    1191     1145040 :         for ( band_m_idx = 0; band_m_idx < hMcMasa->nbands; band_m_idx++ )
    1192             :         {
    1193      954200 :             if ( renormalization_factor_diff[band_m_idx] > EPSILON )
    1194             :             {
    1195      954200 :                 diffuseness_m[0][band_m_idx] /= renormalization_factor_diff[band_m_idx];
    1196             :             }
    1197             :             else
    1198             :             {
    1199           0 :                 diffuseness_m[0][band_m_idx] = 0.f;
    1200             :             }
    1201      954200 :             if ( renormalization_factor_coh[band_m_idx] > EPSILON )
    1202             :             {
    1203      954200 :                 surroundingCoherence[0][band_m_idx] /= renormalization_factor_coh[band_m_idx];
    1204      954200 :                 coherentEnergyRatio[0][band_m_idx] /= renormalization_factor_coh[band_m_idx];
    1205             :             }
    1206             :             else
    1207             :             {
    1208           0 :                 surroundingCoherence[0][band_m_idx] = 0.f;
    1209           0 :                 coherentEnergyRatio[0][band_m_idx] = 0.f;
    1210             :             }
    1211             :         }
    1212             :     }
    1213             : 
    1214             :     /* Determine energy ratios */
    1215      190840 :     if ( hMcMasa->combineRatios )
    1216             :     {
    1217      190840 :         numSubFramesForRatio = 1;
    1218             :     }
    1219             :     else
    1220             :     {
    1221           0 :         numSubFramesForRatio = MAX_PARAM_SPATIAL_SUBFRAMES;
    1222             :     }
    1223             : 
    1224      381680 :     for ( i = 0; i < numSubFramesForRatio; i++ )
    1225             :     {
    1226     1145040 :         for ( j = 0; j < hMcMasa->nbands; j++ )
    1227             :         {
    1228      954200 :             energyRatio[i][j] = 1.0f - diffuseness_m[i][j];
    1229      954200 :             energyRatio[i][j] = ( energyRatio[i][j] > coherentEnergyRatio[i][j] ) ? energyRatio[i][j] : coherentEnergyRatio[i][j];
    1230             :         }
    1231             :     }
    1232             : 
    1233      190840 :     return;
    1234             : }
    1235             : 
    1236             : 
    1237             : /*--------------------------------------------------------------------------*
    1238             :  * ivas_mcmasa_dmx_modify()
    1239             :  *
    1240             :  *
    1241             :  *--------------------------------------------------------------------------*/
    1242             : 
    1243        1919 : void ivas_mcmasa_dmx_modify(
    1244             :     const int16_t n_samples,                                        /* i  : input frame length in samples                        */
    1245             :     float dmx[][L_FRAME48k + NS2SA( 48000, IVAS_FB_ENC_DELAY_NS )], /* i/o: downmix signal to be transformed into another format */
    1246             :     const int16_t n_chnls_dmx_old,                                  /* i  : number of downmix channels in the old format         */
    1247             :     const int16_t n_chnls_dmx_new )                                 /* i  : number of downmix channels in the target format      */
    1248             : {
    1249             :     /* assumed data ordering in **dmx: [sce][cpe_chnl0][cpe_chnl1], i.e., [c][l][r] */
    1250             :     int16_t i;
    1251             : 
    1252        1919 :     assert( ( n_chnls_dmx_old == 1 || n_chnls_dmx_old == 2 || n_chnls_dmx_old == 3 ) && "Input downmix may contain only 1-3 channels." );
    1253        1919 :     assert( ( n_chnls_dmx_new == 1 || n_chnls_dmx_new == 2 || n_chnls_dmx_new == 3 ) && "Output downmix may contain only 1-3 channels." );
    1254             : 
    1255        1919 :     if ( n_chnls_dmx_old == n_chnls_dmx_new )
    1256             :     {
    1257             :         /* same dmx layout -> nothing to do */
    1258           0 :         return;
    1259             :     }
    1260             : 
    1261        1919 :     if ( n_chnls_dmx_old == 1 )
    1262             :     {
    1263             :         /* split mono energy into identical channels */
    1264      643870 :         for ( i = 0; i < n_samples; i++ )
    1265             :         {
    1266      643200 :             if ( n_chnls_dmx_new == 2 )
    1267             :             {
    1268      287040 :                 dmx[1][i] = dmx[0][i] * INV_SQRT2;
    1269      287040 :                 dmx[2][i] = dmx[1][i];
    1270             :             }
    1271      356160 :             else if ( n_chnls_dmx_new == 3 )
    1272             :             {
    1273      356160 :                 dmx[0][i] = dmx[0][i] * INV_SQRT3;
    1274             :             }
    1275             :         }
    1276             :     }
    1277        1249 :     else if ( n_chnls_dmx_old == 2 )
    1278             :     {
    1279      566029 :         for ( i = 0; i < n_samples; i++ )
    1280             :         {
    1281      565440 :             if ( n_chnls_dmx_new == 1 )
    1282             :             {
    1283             :                 /* sum l and r */
    1284      268800 :                 dmx[0][i] = dmx[1][i] + dmx[2][i];
    1285             :             }
    1286      296640 :             else if ( n_chnls_dmx_new == 3 )
    1287             :             {
    1288      296640 :                 dmx[0][i] = 0.5f * ( dmx[1][i] + dmx[2][i] );
    1289      296640 :                 dmx[1][i] = dmx[1][i] - dmx[0][i];
    1290      296640 :                 dmx[2][i] = dmx[2][i] - dmx[0][i];
    1291             :             }
    1292             :         }
    1293             :     }
    1294         660 :     else if ( n_chnls_dmx_old == 3 )
    1295             :     {
    1296      634260 :         for ( i = 0; i < n_samples; i++ )
    1297             :         {
    1298      633600 :             if ( n_chnls_dmx_new == 1 )
    1299             :             {
    1300             :                 /* sum all channels */
    1301      357120 :                 dmx[0][i] = dmx[0][i] + dmx[1][i] + dmx[2][i];
    1302             :             }
    1303      276480 :             else if ( n_chnls_dmx_new == 2 )
    1304             :             {
    1305             :                 /* mix center into sides */
    1306      276480 :                 dmx[0][i] *= INV_SQRT2;
    1307      276480 :                 dmx[1][i] += dmx[0][i];
    1308      276480 :                 dmx[2][i] += dmx[0][i];
    1309             :             }
    1310             :         }
    1311             :     }
    1312             : 
    1313        1919 :     return;
    1314             : }
    1315             : 
    1316             : 
    1317             : /*--------------------------------------------------------------------------*
    1318             :  * Local functions
    1319             :  *--------------------------------------------------------------------------*/
    1320             : 
    1321             : /* Compute downmix */
    1322      190840 : static void ivas_mcmasa_dmx(
    1323             :     MCMASA_ENC_HANDLE hMcMasa,
    1324             :     float *data_f[],
    1325             :     const int16_t input_frame,
    1326             :     const int16_t nchan_transport,
    1327             :     const int16_t nchan_inp )
    1328             : {
    1329             :     int16_t i, j;
    1330             :     int16_t numAnalysisChannels;
    1331             :     float dmx_c;
    1332             :     float multiChEne, downmixEne;
    1333             :     float prevEQ, currEQ, instEQ;
    1334             :     float alpha;
    1335             : 
    1336      190840 :     numAnalysisChannels = nchan_inp - 1;
    1337      190840 :     if ( hMcMasa->separateChannelEnabled )
    1338             :     {
    1339       36974 :         numAnalysisChannels = nchan_inp - 2;
    1340             :     }
    1341             : 
    1342      190840 :     multiChEne = 0.0f;
    1343     1560274 :     for ( j = 0; j < numAnalysisChannels; j++ )
    1344             :     {
    1345  1301373274 :         for ( i = 0; i < input_frame; i++ )
    1346             :         {
    1347  1300003840 :             multiChEne += data_f[j][i] * data_f[j][i];
    1348             :         }
    1349             :     }
    1350             : 
    1351      190840 :     if ( nchan_transport == 2 )
    1352             :     {
    1353             :         int16_t numSideChannels; /* Channels other than left, right, center */
    1354             :         int16_t leftIndex, rightIndex;
    1355             : 
    1356       61353 :         numSideChannels = numAnalysisChannels / 2 - 1;
    1357      296199 :         for ( j = 0; j < numSideChannels; j++ )
    1358             :         {
    1359      234846 :             if ( hMcMasa->separateChannelEnabled )
    1360             :             {
    1361      146496 :                 leftIndex = j * 2 + 2;
    1362      146496 :                 rightIndex = j * 2 + 3;
    1363             :             }
    1364             :             else
    1365             :             {
    1366       88350 :                 leftIndex = j * 2 + 3;
    1367       88350 :                 rightIndex = j * 2 + 4;
    1368             :             }
    1369             : 
    1370   224487006 :             for ( i = 0; i < input_frame; i++ )
    1371             :             {
    1372   224252160 :                 data_f[0][i] += data_f[leftIndex][i];
    1373   224252160 :                 data_f[1][i] += data_f[rightIndex][i];
    1374             :             }
    1375             :         }
    1376             : 
    1377       61353 :         if ( !hMcMasa->separateChannelEnabled )
    1378             :         {
    1379    23332219 :             for ( i = 0; i < input_frame; i++ )
    1380             :             {
    1381    23307840 :                 dmx_c = INV_SQRT2 * data_f[2][i];
    1382    23307840 :                 data_f[0][i] += dmx_c;
    1383    23307840 :                 data_f[1][i] += dmx_c;
    1384             :             }
    1385             :         }
    1386             :     }
    1387      129487 :     else if ( nchan_transport == 1 )
    1388             :     {
    1389   122731407 :         for ( i = 0; i < input_frame; i++ )
    1390             :         {
    1391   711065920 :             for ( j = 1; j < numAnalysisChannels; j++ )
    1392             :             {
    1393   588464000 :                 data_f[0][i] += data_f[j][i];
    1394             :             }
    1395             :         }
    1396             :     }
    1397             : 
    1398      190840 :     downmixEne = 0.0f;
    1399      443033 :     for ( j = 0; j < nchan_transport; j++ )
    1400             :     {
    1401   239979873 :         for ( i = 0; i < input_frame; i++ )
    1402             :         {
    1403   239727680 :             downmixEne += data_f[j][i] * data_f[j][i];
    1404             :         }
    1405             :     }
    1406             : 
    1407      190840 :     alpha = 0.1f;
    1408      190840 :     hMcMasa->prevMultiChEne = alpha * multiChEne + ( 1.0f - alpha ) * hMcMasa->prevMultiChEne;
    1409      190840 :     hMcMasa->prevDownmixEne = alpha * downmixEne + ( 1.0f - alpha ) * hMcMasa->prevDownmixEne;
    1410             : 
    1411      190840 :     prevEQ = hMcMasa->prevEQ;
    1412      190840 :     currEQ = sqrtf( hMcMasa->prevMultiChEne / ( hMcMasa->prevDownmixEne + EPSILON ) );
    1413      190840 :     hMcMasa->prevEQ = currEQ;
    1414             : 
    1415   181355640 :     for ( i = 0; i < input_frame; i++ )
    1416             :     {
    1417   181164800 :         instEQ = hMcMasa->interpolator[i] * currEQ + ( 1.0f - hMcMasa->interpolator[i] ) * prevEQ;
    1418   420892480 :         for ( j = 0; j < nchan_transport; j++ )
    1419             :         {
    1420   239727680 :             data_f[j][i] *= instEQ;
    1421             :         }
    1422             :     }
    1423             : 
    1424      190840 :     return;
    1425             : }
    1426             : 
    1427             : 
    1428             : /* Compute covariance matrix, i.e., xT * conj(x), and accumulate to the output */
    1429   181164800 : static void compute_cov_mtx(
    1430             :     float sr[MCMASA_MAX_ANA_CHANS][DIRAC_NO_FB_BANDS_MAX], /* i  : Input matrix, real, s[ch][freq]                         */
    1431             :     float si[MCMASA_MAX_ANA_CHANS][DIRAC_NO_FB_BANDS_MAX], /* i  : Input matrix, imag, s[ch][freq]                         */
    1432             :     const int16_t freq,                                    /* i  : Freq to process                                         */
    1433             :     const int16_t N,                                       /* i  : Number of channels                                      */
    1434             :     CovarianceMatrix *COVls                                /* o  : Output matrix, contains upper part of cov mtx           */
    1435             : )
    1436             : {
    1437             :     int16_t i, j;
    1438             :     float a, b, c, d;
    1439             : 
    1440  1481168640 :     for ( i = 0; i < N; i++ )
    1441             :     {
    1442  1300003840 :         a = sr[i][freq];
    1443  1300003840 :         b = si[i][freq];
    1444  7158323200 :         for ( j = i; j < N; j++ )
    1445             :         {
    1446  5858319360 :             c = sr[j][freq];
    1447  5858319360 :             d = si[j][freq];
    1448  5858319360 :             COVls->xr[i][j] += a * c + b * d;
    1449  5858319360 :             COVls->xi[i][j] += b * c - a * d;
    1450             :         }
    1451             :     }
    1452             : 
    1453   181164800 :     return;
    1454             : }
    1455             : 
    1456             : 
    1457     1526720 : static void computeIntensityVector_enc(
    1458             :     const int16_t *band_grouping,
    1459             :     float Cldfb_RealBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX],
    1460             :     float Cldfb_ImagBuffer[FOA_CHANNELS][DIRAC_NO_FB_BANDS_MAX],
    1461             :     const int16_t enc_param_start_band, /* i  : first band to process */
    1462             :     const int16_t num_frequency_bands,
    1463             :     float intensity_real[DIRAC_NUM_DIMS][MASA_FREQUENCY_BANDS] )
    1464             : {
    1465             :     /* Reminder
    1466             :      * X = a + ib; Y = c + id
    1467             :      * X*Y = ac - bd + i(ad +bc)
    1468             :      */
    1469             :     int16_t i, j;
    1470             :     float real, img;
    1471             :     int16_t brange[2];
    1472             : 
    1473     9160320 :     for ( i = enc_param_start_band; i < enc_param_start_band + num_frequency_bands; i++ )
    1474             :     {
    1475     7633600 :         brange[0] = band_grouping[i];
    1476     7633600 :         brange[1] = band_grouping[i + 1];
    1477             : 
    1478     7633600 :         intensity_real[0][i] = 0;
    1479     7633600 :         intensity_real[1][i] = 0;
    1480     7633600 :         intensity_real[2][i] = 0;
    1481             : 
    1482   369963200 :         for ( j = brange[0]; j < brange[1]; j++ )
    1483             :         {
    1484   362329600 :             real = Cldfb_RealBuffer[0][j];
    1485   362329600 :             img = Cldfb_ImagBuffer[0][j];
    1486   362329600 :             intensity_real[0][i] += Cldfb_RealBuffer[3][j] * real + Cldfb_ImagBuffer[3][j] * img;
    1487   362329600 :             intensity_real[1][i] += Cldfb_RealBuffer[1][j] * real + Cldfb_ImagBuffer[1][j] * img;
    1488   362329600 :             intensity_real[2][i] += Cldfb_RealBuffer[2][j] * real + Cldfb_ImagBuffer[2][j] * img;
    1489             :         }
    1490             :     }
    1491             : 
    1492     1526720 :     return;
    1493             : }
    1494             : 
    1495             : 
    1496             : /*-------------------------------------------------------------------------
    1497             :  * computeVerticalDiffuseness()
    1498             :  *
    1499             :  *
    1500             :  *------------------------------------------------------------------------*/
    1501             : 
    1502      346056 : static void computeVerticalDiffuseness(
    1503             :     float **buffer_intensity,       /* i  : Intensity vectors           */
    1504             :     const float *buffer_energy,     /* i  : Energy                      */
    1505             :     const int16_t averaging_length, /* i  : Averaging length            */
    1506             :     const int16_t num_freq_bands,   /* i  : Number of frequency bands   */
    1507             :     float *diffuseness              /* o  : Estimated diffuseness       */
    1508             : )
    1509             : {
    1510             :     float intensity_slow[MASA_FREQUENCY_BANDS];
    1511             :     float intensity_slow_abs[MASA_FREQUENCY_BANDS];
    1512             :     float energy_slow[MASA_FREQUENCY_BANDS];
    1513             :     int16_t i, k;
    1514      346056 :     float tmp = 0;
    1515             :     const float *p_tmp_c;
    1516             : 
    1517             :     /* Set variables to zero */
    1518      346056 :     set_f( intensity_slow, 0.0f, MASA_FREQUENCY_BANDS );
    1519      346056 :     set_f( energy_slow, 0.0f, MASA_FREQUENCY_BANDS );
    1520             : 
    1521     3114504 :     for ( i = 0; i < averaging_length; ++i )
    1522             :     {
    1523             :         /* Energy slow */
    1524     2768448 :         p_tmp_c = buffer_energy + i * num_freq_bands;
    1525    16610688 :         for ( k = 0; k < num_freq_bands; k++ )
    1526             :         {
    1527    13842240 :             energy_slow[k] += *( p_tmp_c++ );
    1528             :         }
    1529             : 
    1530             :         /* Intensity slow */
    1531    16610688 :         for ( k = 0; k < num_freq_bands; k++ )
    1532             :         {
    1533    13842240 :             intensity_slow[k] += buffer_intensity[i][k];
    1534             :         }
    1535             :     }
    1536             : 
    1537             :     /* Compute absolute value */
    1538     2076336 :     for ( k = 0; k < num_freq_bands; k++ )
    1539             :     {
    1540     1730280 :         intensity_slow_abs[k] = fabsf( intensity_slow[k] );
    1541             :     }
    1542             : 
    1543             :     /* Compute Diffuseness */
    1544     2076336 :     for ( i = 0; i < num_freq_bands; ++i )
    1545             :     {
    1546     1730280 :         tmp = intensity_slow_abs[i] / ( energy_slow[i] + EPSILON );
    1547     1730280 :         tmp = ( tmp - VERTICAL_ENERGY_RATIO_OFFSET ) / ( 1.0f - VERTICAL_ENERGY_RATIO_OFFSET ); /* Tuned to avoid effect due to ambience of vertically un-even setups */
    1548     1730280 :         tmp = 1.0f - tmp;
    1549     1730280 :         diffuseness[i] = ( ( tmp < 1.0f ) ? ( ( tmp < 0.0f ) ? 0.f : tmp ) : 1.0f );
    1550             :     }
    1551             : 
    1552      346056 :     return;
    1553             : }
    1554             : 
    1555             : 
    1556       11824 : static void computeEvenLayout(
    1557             :     const float *ls_azimuth,
    1558             :     float *ls_azimuth_even,
    1559             :     const int16_t numChannels )
    1560             : {
    1561             :     int16_t i;
    1562             :     int16_t j;
    1563             :     float ls_azimuth_temp[MCMASA_MAX_ANA_CHANS];
    1564             :     float ls_azimuth_even_ordered[MCMASA_MAX_ANA_CHANS];
    1565             :     int16_t ls_azimuth_order[MCMASA_MAX_ANA_CHANS];
    1566             :     float smallestAzimuth;
    1567             :     int16_t smallestAzimuthIndex;
    1568             :     float lsSpacing;
    1569             :     uint8_t oddLayout;
    1570             :     float startAzimuth;
    1571             :     int16_t numChannelsHalf;
    1572             : 
    1573       11824 :     lsSpacing = 360.0f / (float) numChannels;
    1574       11824 :     oddLayout = numChannels % 2;
    1575       11824 :     numChannelsHalf = numChannels / 2;
    1576             : 
    1577       11824 :     mvr2r( ls_azimuth, ls_azimuth_temp, numChannels );
    1578       72837 :     for ( i = 0; i < numChannels; i++ )
    1579             :     {
    1580       61013 :         smallestAzimuth = 1000.0f;
    1581       61013 :         smallestAzimuthIndex = 0;
    1582      397040 :         for ( j = 0; j < numChannels; j++ )
    1583             :         {
    1584      336027 :             if ( ls_azimuth_temp[j] < smallestAzimuth )
    1585             :             {
    1586      114665 :                 smallestAzimuth = ls_azimuth_temp[j];
    1587      114665 :                 smallestAzimuthIndex = j;
    1588             :             }
    1589             :         }
    1590       61013 :         ls_azimuth_order[i] = smallestAzimuthIndex;
    1591       61013 :         ls_azimuth_temp[smallestAzimuthIndex] = 1000.0f;
    1592             :     }
    1593             : 
    1594       11824 :     if ( oddLayout )
    1595             :     {
    1596        5575 :         startAzimuth = -lsSpacing * ( (float) numChannelsHalf );
    1597             :     }
    1598             :     else
    1599             :     {
    1600        6249 :         startAzimuth = -lsSpacing * ( (float) numChannelsHalf - 0.5f );
    1601             :     }
    1602             : 
    1603       72837 :     for ( i = 0; i < numChannels; i++ )
    1604             :     {
    1605       61013 :         ls_azimuth_even_ordered[i] = (float) i * lsSpacing + startAzimuth;
    1606             :     }
    1607             : 
    1608       72837 :     for ( i = 0; i < numChannels; i++ )
    1609             :     {
    1610       61013 :         ls_azimuth_even[ls_azimuth_order[i]] = roundf( ls_azimuth_even_ordered[i] );
    1611             :     }
    1612             : 
    1613       11824 :     return;
    1614             : }
    1615             : 
    1616      190840 : static void computeLfeEnergy(
    1617             :     MCMASA_ENC_HANDLE hMcMasa,
    1618             :     float *data_f[],
    1619             :     const int16_t input_frame )
    1620             : {
    1621             :     int16_t l_ts;
    1622             :     int16_t block_m_idx;
    1623             :     int16_t mrange[2];
    1624             :     int16_t separateChannelIndex;
    1625             :     int16_t lfeChannelIndex;
    1626             :     float *pcm_in[1];
    1627             : 
    1628             : 
    1629      190840 :     l_ts = input_frame / MDFT_NO_COL_MAX;
    1630      190840 :     separateChannelIndex = hMcMasa->separateChannelIndex;
    1631      190840 :     lfeChannelIndex = LFE_CHANNEL;
    1632             : 
    1633      190840 :     if ( hMcMasa->separateChannelEnabled )
    1634             :     {
    1635       36974 :         mvr2r( data_f[lfeChannelIndex], &( hMcMasa->delay_buffer_lfe[0][hMcMasa->num_samples_delay_comp - hMcMasa->offset_comp] ), hMcMasa->offset_comp );
    1636       36974 :         mvr2r( data_f[separateChannelIndex], &( hMcMasa->delay_buffer_lfe[1][hMcMasa->num_samples_delay_comp - hMcMasa->offset_comp] ), hMcMasa->offset_comp );
    1637             :     }
    1638             :     else
    1639             :     {
    1640      153866 :         pcm_in[0] = &data_f[lfeChannelIndex][0];
    1641             :     }
    1642             : 
    1643             :     /* Reset variables */
    1644      190840 :     set_zero( hMcMasa->lfeLfEne, MAX_PARAM_SPATIAL_SUBFRAMES );
    1645      190840 :     set_zero( hMcMasa->totalLfEne, MAX_PARAM_SPATIAL_SUBFRAMES );
    1646             : 
    1647             :     /* Compute low-frequency energies */
    1648      190840 :     if ( hMcMasa->separateChannelEnabled ) /* Using low-pass filter */
    1649             :     {
    1650             :         float lowpassCoef;
    1651             :         int16_t i, j;
    1652             :         float delayedInputSignal[2][L_FRAME48k];
    1653             :         float lowPassSignal[2][L_FRAME48k];
    1654             : 
    1655       36974 :         mvr2r( &( hMcMasa->delay_buffer_lfe[0][0] ), &( delayedInputSignal[0][0] ), hMcMasa->num_slots_delay_comp * l_ts );
    1656       36974 :         mvr2r( data_f[lfeChannelIndex] + hMcMasa->offset_comp, &( delayedInputSignal[0][hMcMasa->num_slots_delay_comp * l_ts] ), ( MDFT_NO_COL_MAX - hMcMasa->num_slots_delay_comp ) * l_ts );
    1657       36974 :         mvr2r( &( hMcMasa->delay_buffer_lfe[1][0] ), &( delayedInputSignal[1][0] ), hMcMasa->num_slots_delay_comp * l_ts );
    1658       36974 :         mvr2r( data_f[separateChannelIndex] + hMcMasa->offset_comp, &( delayedInputSignal[1][hMcMasa->num_slots_delay_comp * l_ts] ), ( MDFT_NO_COL_MAX - hMcMasa->num_slots_delay_comp ) * l_ts );
    1659             : 
    1660       36974 :         lowpassCoef = 1.0f / ( (float) hMcMasa->ringBufferSize );
    1661             : 
    1662    35292014 :         for ( i = 0; i < input_frame; i++ )
    1663             :         {
    1664   105765120 :             for ( j = 0; j < 2; j++ )
    1665             :             {
    1666    70510080 :                 hMcMasa->lowpassSum[j] += lowpassCoef * delayedInputSignal[j][i] - lowpassCoef * hMcMasa->lfeAnaRingBuffer[j][hMcMasa->ringBufferPointer];
    1667    70510080 :                 lowPassSignal[j][i] = hMcMasa->lowpassSum[j];
    1668    70510080 :                 hMcMasa->lfeAnaRingBuffer[j][hMcMasa->ringBufferPointer] = delayedInputSignal[j][i];
    1669             :             }
    1670             : 
    1671    35255040 :             hMcMasa->ringBufferPointer--;
    1672    35255040 :             if ( hMcMasa->ringBufferPointer < 0 )
    1673             :             {
    1674      147896 :                 hMcMasa->ringBufferPointer = hMcMasa->ringBufferSize - 1;
    1675             :             }
    1676             :         }
    1677             : 
    1678      184870 :         for ( block_m_idx = 0; block_m_idx < MAX_PARAM_SPATIAL_SUBFRAMES; block_m_idx++ )
    1679             :         {
    1680      147896 :             mrange[0] = hMcMasa->block_grouping[block_m_idx] * l_ts;
    1681      147896 :             mrange[1] = hMcMasa->block_grouping[block_m_idx + 1] * l_ts;
    1682             : 
    1683    35402936 :             for ( i = mrange[0]; i < mrange[1]; i++ )
    1684             :             {
    1685    35255040 :                 hMcMasa->lfeLfEne[block_m_idx] += lowPassSignal[0][i] * lowPassSignal[0][i];
    1686    35255040 :                 hMcMasa->totalLfEne[block_m_idx] += lowPassSignal[1][i] * lowPassSignal[1][i];
    1687             :             }
    1688      147896 :             hMcMasa->totalLfEne[block_m_idx] += hMcMasa->lfeLfEne[block_m_idx];
    1689             :         }
    1690             :     }
    1691             :     else /* Using CLDFB */
    1692             :     {
    1693             :         int16_t ts;
    1694             :         int16_t i;
    1695             :         float Chnl_RealBuffer[2][DIRAC_NO_FB_BANDS_MAX];
    1696             :         float Chnl_ImagBuffer[2][DIRAC_NO_FB_BANDS_MAX];
    1697             :         float *p_Chnl_RealBuffer[2];
    1698             :         float *p_Chnl_ImagBuffer[2];
    1699             : 
    1700      153866 :         p_Chnl_RealBuffer[0] = &Chnl_RealBuffer[0][0];
    1701      153866 :         p_Chnl_RealBuffer[1] = &Chnl_RealBuffer[1][0];
    1702      153866 :         p_Chnl_ImagBuffer[0] = &Chnl_ImagBuffer[0][0];
    1703      153866 :         p_Chnl_ImagBuffer[1] = &Chnl_ImagBuffer[1][0];
    1704             : 
    1705      769330 :         for ( block_m_idx = 0; block_m_idx < MAX_PARAM_SPATIAL_SUBFRAMES; block_m_idx++ )
    1706             :         {
    1707      615464 :             mrange[0] = hMcMasa->block_grouping[block_m_idx];
    1708      615464 :             mrange[1] = hMcMasa->block_grouping[block_m_idx + 1];
    1709             : 
    1710     1230928 :             for ( ts = mrange[0]; ts < mrange[1]; ts++ )
    1711             :             {
    1712      615464 :                 ivas_fb_mixer_get_windowed_fr( hMcMasa->hFbMixerLfe, pcm_in, p_Chnl_RealBuffer, p_Chnl_ImagBuffer, l_ts, l_ts, hMcMasa->hFbMixerLfe->fb_cfg->num_in_chans );
    1713             : 
    1714      615464 :                 ivas_fb_mixer_update_prior_input( hMcMasa->hFbMixerLfe, pcm_in, l_ts, hMcMasa->hFbMixerLfe->fb_cfg->num_in_chans );
    1715             : 
    1716      615464 :                 pcm_in[0] += l_ts;
    1717             : 
    1718             :                 /* Compute low frequency energy for LFE, for other channels it is computed in ivas_chnl_param_est_enc() */
    1719     3077320 :                 for ( i = 0; i < CLDFB_TO_MDFT_FAC; i++ )
    1720             :                 {
    1721     2461856 :                     hMcMasa->lfeLfEne[block_m_idx] += Chnl_RealBuffer[0][i] * Chnl_RealBuffer[0][i] + Chnl_ImagBuffer[0][i] * Chnl_ImagBuffer[0][i];
    1722             :                 }
    1723             :             }
    1724             :         }
    1725             :     }
    1726             : 
    1727      190840 :     if ( hMcMasa->separateChannelEnabled )
    1728             :     {
    1729       36974 :         mvr2r( data_f[lfeChannelIndex] + ( input_frame - hMcMasa->num_samples_delay_comp + hMcMasa->offset_comp ), &( hMcMasa->delay_buffer_lfe[0][0] ), ( hMcMasa->num_samples_delay_comp - hMcMasa->offset_comp ) );
    1730       36974 :         mvr2r( data_f[separateChannelIndex] + ( input_frame - hMcMasa->num_samples_delay_comp + hMcMasa->offset_comp ), &( hMcMasa->delay_buffer_lfe[1][0] ), ( hMcMasa->num_samples_delay_comp - hMcMasa->offset_comp ) );
    1731             :     }
    1732             : 
    1733      190840 :     return;
    1734             : }

Generated by: LCOV version 1.14